Antibiotic Susceptibility and Molecular Characterization of Uropathogenic Escherichia coli Associated with Community-Acquired Urinary Tract Infections in Urban and Rural Settings in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Design and Study Sites
2.3. Patient Selection, Enrolment, and Sample Collection
2.4. Bacterial Isolation and Identification
2.5. Antibiotic Susceptibility Testing
2.6. Molecular Conformation of Isolates and Detection of Antibiotic Resistance Genes
2.7. Determination of Clonal Relatedness of Isolates
3. Results
3.1. Prevalence of UTIs in Participants
3.2. Etiology of UTI in the Sampled Participants
3.3. Antibiotic Resistance Profile of Isolates
3.4. Detection of Antibiotic Resistance Genes
3.5. Determination of Clonality Through ERIC-PCR
4. Discussion
4.1. Prevalence of UTIs in Pparticipants
4.2. Etiology of UTI in the Sampled Participants
4.3. Antibiotic Resistance Profile of Isolates
4.4. Clonal Relatedness of Isolates
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Gene | Sequences 5′ to 3′ | Primer (µL) | Annealing Temperature (°C) | Reference |
---|---|---|---|---|
TEM | F-CATTTCCGTGTCGCCTTATTC | 2 | 60 | [47] |
R-CGTTCATCCATAGTTGCCTGAC | 2 | |||
SHV | F-AGCCGCTTGAGCAAATTAAAC | 2 | 60 | [47] |
R-ATCCCGCAGATAAATCACCAC | 2 | |||
blaCTX-M-1 | F-TTAGGAARTGTGCCGCTGYA | 2 | 60 | [47] |
R-CGATATCGTTGGTGGTRCCAT | 1 | |||
blaCTX-M-2 | F-CGTTAACGGCACGATGAC | 1 | 60 | [47] |
R-CGATATCGTTGGTGGTRCCAT | 1 | |||
blaCTX-M-9 | F-TCAAGCCTGCCGATCTGGT | 2 | 60 | [47] |
R-TGATTCTCGCCGCTGAAG | 2 | |||
qnrA | F-AGAGGATTTCTCACGCCAGG | 2 | 55 | [46] |
R-TGCCAGGCACAGATCTTGAC | 2 | |||
qnrB | F-GGAATCGAAATTCGCCACTG | 2 | 55 | [46] |
R-TTTGCCGTTCGCCAGTCGAA | 2 | |||
qnrS | F-CACTTTGATGTCGCAGAT | 2 | 55 | [48] |
R-CAACATACCCAGTGCTT | 2 | |||
aac(6’)-Ib-cr | F-GATGCTCTATGGGTGGCTAA | 2 | 55 | [49] |
R-GGTCCGTTTGGATCTTGGTGA | 2 | |||
qepA | F-CCGATGACGAAGCACAGGG | 2 | 55 | [49] |
R-CTACGGGCTCAAGCAGTTGG | 2 | |||
gyrA | F-GGTACACCGTCGCGTACTTT | 2 | 55 | [50] |
R-CAACGAAATCGACCGTCTCT | 2 | |||
parC | F-GCCTTGCGCTACATGAATTT | 2 | 55 | [50] |
R-ACCATCAACCAGCGGATAAC | 2 | |||
papC | F-GACGGCTGTACTGCAGGGTGGCG | 0.5 | 55 | [18] |
R-ATATCCTTTCTGCAGGGATGCAATA | 0.5 | |||
ERIC | ERIC1-ATGTAAGCTCCTGGGGATTCAC | 0.1 | 50 | [21] |
ERIC2-AAGTAAGTGACTGGGGTGAGCG | 0.1 |
References
- Kalal, B.S.; Nagaraj, S. Urinary tract infections: A retrospective, descriptive study of causative organisms and antimicrobial pattern of samples received for culture, from a tertiary care setting. Germs 2016, 6, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caneiras, C.; Lito, L.; Melo-Cristino, J.; Duarte, A. Community- and Hospital-Acquired Klebsiella pneumoniae Urinary Tract Infections in Portugal: Virulence and Antibiotic Resistance. Microorganisms 2019, 7, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyo, S.J.; Aboud, S.; Kasubi, M.; Lyamuya, E.F.; Maselle, S.Y. Antimicrobial resistance among producers and non-producers of extended spectrum beta-lactamases in urinary isolates at a tertiary Hospital in Tanzania. BMC Res. Notes 2010, 3, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabugo, D.; Kizito, S.; Ashok, D.D.; Graham, K.A.; Nabimba, R.; Namunana, S.; Kabaka, M.R.; Achan, B.; Najjuka, F.C. Factors associated with community-acquired urinary tract infections among adults attending assessment centre, Mulago Hospital Uganda. Afr. Health Sci. 2017, 16, 1131–1142. [Google Scholar] [CrossRef] [Green Version]
- Pitart, C.; Marco, F.; Keating, T.A.; Nichols, W.W.; Vila, J. Evaluation of the activity of ceftazidime-avibactam against fluoroquinolone-resistant Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2015, 59, 3059–3065. [Google Scholar] [CrossRef] [Green Version]
- Vohra, P.; Mengi, S.; Bunger, R.; Garg, S. Bacterial Uropathogens in Urinary Tract Infection and Their Antibiotic Susceptibility Pattern in a Tertiary Care Hospital. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 696–699. [Google Scholar]
- Kajihara, T.; Yahara, K.; Stelling, J.; Eremin, S.R.; Tornimbene, B.; Thamlikitkul, V.; Hirabayashi, A.; Anzai, E.; Wakai, S.; Matsunaga, N.; et al. Comparison of de-duplication methods used by WHO Global Antimicrobial Resistance Surveillance System (GLASS) and Japan Nosocomial Infections Surveillance (JANIS) in the surveillance of antimicrobial resistance. PLoS ONE 2020, 15, e0228234. [Google Scholar] [CrossRef]
- Chiu, C.-C.; Lin, T.-C.; Wu, R.-X.; Yang, Y.-S.; Hsiao, P.-J.; Lee, Y.; Lin, J.-C.; Chang, F.-Y. Etiologies of community-onset urinary tract infections requiring hospitalization and antimicrobial susceptibilities of causative microorganisms. J. Microbiol. Immunol. Infect. 2017, 50, 879–885. [Google Scholar] [CrossRef]
- Kang, C.-I.; Kim, J.; Park, D.W.; Kim, B.-N.; Ha, U.-S.; Lee, S.-J.; Yeo, J.K.; Min, S.K.; Lee, H.; Wie, S.-H. Clinical Practice Guidelines for the Antibiotic Treatment of Community-Acquired Urinary Tract Infections. Infect. Chemother. 2018, 50, 67–100. [Google Scholar] [CrossRef]
- Erdem, I.; Ali, R.K.; Ardic, E.; Omar, S.E.; Mutlu, R.; Topkaya, A.E. Community-acquired lower urinary tract infections: Etiology, antimicrobial resistance, and treatment results in female patients. J. Glob. Infect. Dis. 2018, 10, 129–132. [Google Scholar] [CrossRef]
- Habte, T.M.; Dube, S.; Ismail, N.; Hoosen, A.A. Hospital and community isolates of uropathogens at a tertiary hospital in South Africa. S. Afr. Med. J. 2009, 99, 584–587. [Google Scholar] [PubMed]
- El Bouamri, M.; Arsalane, L.; El Kamouni, Y.; Zouhair, S. Antimicrobial susceptibility of urinary Klebsiella pneumoniae and the emergence of carbapenem-resistant strains: A retrospective study from a university hospital in Morocco, North Africa. Afr. J. Urol. 2015, 21, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, W.R.; Schlosser, J.; Jarvis, A.A.; Chinn, R.Y. National point prevalence of Clostridium difficile in US health care facility inpatients, 2008. Am. J. Infect. Control 2009, 37, 263–270. [Google Scholar] [CrossRef] [PubMed]
- KZN Department of Health. Umgungundlovu Health District. Available online: http://www.kznhealth.gov.za/umgungundlovu.htm (accessed on 2 October 2020).
- Yilmaz, Y.; Tazegun, Z.T.; Aydin, E.; Dulger, M. Bacterial Uropathogens Causing Urinary Tract Infection and Their Resistance Patterns Among Children in Turkey. Iran. Red Crescent Med. J. 2016, 18, e26610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmiemann, G.; Kniehl, E.; Gebhardt, K.; Matejczyk, M.M.; Hummers-Pradier, E. The Diagnosis of Urinary Tract Infection. Dtsch. Aerzteblatt Online 2010, 107, 361–367. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing—EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 7.0. 2017. Available online: http://www.eucast.org (accessed on 5 October 2020).
- Titilawo, Y.; Obi, L.C.; Okoh, A.I. Occurrence of virulence gene signatures associated with diarrhoeagenic and non-diarrhoeagenic pathovars of Escherichia coli isolates from some selected rivers in South-Western Nigeria. BMC Microbiol. 2015, 15, 204. [Google Scholar] [CrossRef] [Green Version]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.A. Enterobacterial Repetitive Intergenic Consensus (ERIC) Sequences in Escherichia coli: Evolution and Implications for ERIC-PCR. Mol. Biol. Evol. 2006, 23, 1156–1168. [Google Scholar] [CrossRef] [Green Version]
- Versalovic, J.; Koeuth, T.; Lupski, J.R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef]
- Akoachere, J.-F.T.K.; Yvonne, S.; Njom, H.; Esemu, S.N. Etiologic profile and antimicrobial susceptibility of community-acquired urinary tract infection in two Cameroonian towns. BMC Res. Notes 2012, 5, 219. [Google Scholar] [CrossRef] [Green Version]
- Donkor, E.S.; Horlortu, P.Z.; Dayie, N.T.; Obeng-Nkrumah, N.; Labi, A.-K. Community acquired urinary tract infections among adults in Accra, Ghana. Infect. Drug Resist. 2019, 12, 2059–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magliano, E.; Grazioli, V.; Deflorio, L.; Leuci, A.I.; Mattina, R.; Romano, P.; Cocuzza, C.E. Gender and Age-Dependent Etiology of Community-Acquired Urinary Tract Infections. Sci. World J. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iweriebor, B.C. Uropathogens isolated from HIV-infected patients from Limpopo Province, South Africa. Afr. J. Biotechnol. 2012, 11, 10598–10604. [Google Scholar] [CrossRef]
- Sevilla, C.R.; Lanza, E.G.; Manzanera, J.L.; Martín, J.A.R.; Sanz, M.; Ángel, B. Active immunoprophyilaxis with uromune® decreases the recurrence of urinary tract infections at three and six months after treatment without relevant secondary effects. BMC Infect. Dis. 2019, 19, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Storme, O.A.; Saucedo, J.T.; Garcia-Mora, A.; Dehesa-Dávila, M.; Naber, K.G. Risk factors and predisposing conditions for urinary tract infection. Ther. Adv. Urol. 2019, 11, 175628721881438. [Google Scholar] [CrossRef]
- Gebremariam, G.; Legese, H.; Woldu, Y.; Araya, T.; Hagos, K.; GebreyesusWasihun, A. Bacteriological profile, risk factors and antimicrobial susceptibility patterns of symptomatic urinary tract infection among students of Mekelle University, northern Ethiopia. BMC Infect. Dis. 2019, 19, 950. [Google Scholar] [CrossRef]
- Hsiao, V. Relationship between urinary tract infection and contraceptive methods. J. Adolesc. Health Care 1986, 7, 381–385. [Google Scholar] [CrossRef]
- Moore, E.E.; Hawes, S.E.; Scholes, D.; Boyko, E.J.; Hughes, J.P.; Fihn, S.D. Sexual Intercourse and Risk of Symptomatic Urinary Tract Infection in Post-Menopausal Women. J. Gen. Intern. Med. 2008, 23, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Dereje, M.; Woldeamanuel, Y.; Asrat, D.; Ayenachew, F. Urinary tract infection among fistula patients admitted at Hamlin fistula hospital, Addis Ababa, Ethiopia. BMC Infect. Dis. 2017, 17, 150. [Google Scholar] [CrossRef] [Green Version]
- Spaulding, C.N.; Klein, R.D.; Ruer, S.; Kau, A.L.; Schreiber, H.L.; Cusumano, Z.T.; Dodson, K.W.; Pinkner, J.S.; Fremont, D.H.; Janetka, J.W.; et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nat. Cell Biol. 2017, 546, 528–532. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.A.; Gumede, L.Y.E.; Van Der Hoven, L.A.; De Gita, G.N.; De Kock, E.J.E.; De Lange, T.; Maseko, V.; Kekana, V.; Smuts, F.P.; Perovic, O. Antimicrobial susceptibility of organisms causing community-acquired urinary tract infections in Gauteng Province, South Africa. S. Afr. Med. J. 2013, 103, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, M.; Al Naimi, M.K.; Saleem, H.G.M.; Ullah, M.M.; Al Baloshi, A.Y.M.D. Antibiotics Resistance Profile of Uropathogens Isolated from Al Buraimi Hospital, Sultanate of Oman. Glob. J. Health Sci. 2017, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Flores-Oropeza, M.A.; Reyes-Grajeda, J.P.; Ochoa, S.A.; Cruz-Córdova, A.; Flores-Encarnación, M.; Ramírez-Vargas, A.; Luna-Pineda, V.M.; Xicohtencatl-Cortes, J.; Arellano-Galindo, J.; Hernández-Castro, R.; et al. Features of urinary Escherichia coli isolated from children with complicated and uncomplicated urinary tract infections in Mexico. PLoS ONE 2018, 13, e0208285. [Google Scholar]
- Khaleque, M.; Akter, S.; Humaira, A.; Khan, S.I.; Begum, A. Analysis of diarrheagenic potential of uropathogenic Escherichia coli isolates in Dhaka, Bangladesh. J. Infect. Dev. Ctries. 2017, 11, 459–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, Z.E.; Shaker, M.; Baxter, J.D. Urinary Tract Infection Caused by Citrobacter koseri in a Patient With Spina Bifida, an Ileal Conduit and Renal Caluli Progressing to Peri-nephric Abscess and Empyema. Urol. Case Rep. 2017, 11, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Bakhshi, B.; Peerayeh, S.N. Particular Distribution of Enterobacter cloacae Strains Isolated from Urinary Tract Infection within Clonal Complexes. Iran. Biomed. J. 2015, 20, 49–55. [Google Scholar]
- South African National Department of Health. Standard Treatment Guidelines And Essential Medicines List for South Africa: Hospital Level (Adults), 4th ed.; The National Department of Health: Pretoria, South Africa, 2015. [Google Scholar]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Bamford, C.; Bonorchis, K.; Ryan, A.; Hoffmann, R.; Naicker, P.; Maloba, M.; Nana, T.; Zietsman, I.; Govind, C. Antimicrobial susceptibility patterns of Escherichia coli strains isolated from urine samples in South Africa from 2007–2011. S. Afr. J. Epidemiol. Infect. 2012, 27, 46–52. [Google Scholar]
- Arya, S.C.; Agarwal, N. Antimicrobial resistance patterns in outpatient urinary tract infections: The constant need to revise prescribing habits. S. Afr. Med. J. 2011, 101, 678–680. [Google Scholar]
- Rezai, M.S.; Salehifar, E.; Rafiei, A.; Langaee, T.; Rafati, M.; Shafahi, K.; Eslami, G. Characterization of Multidrug Resistant Extended-Spectrum Beta-Lactamase-Producing Escherichia coli among Uropathogens of Pediatrics in North of Iran. BioMed Res. Int. 2015, 2015, 309478. [Google Scholar] [CrossRef] [Green Version]
- Chenia, H.Y. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Aeromonas spp. isolated from South African freshwater fish. Int. J. Food Microbiol. 2016, 231, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Manyahi, J.; Tellevik, M.G.; Ndugulile, F.; Moyo, S.J.; Langeland, N.; Blomberg, B. Molecular Characterization of Cotrimoxazole Resistance Genes and Their Associated Integrons in Clinical Isolates of Gram-Negative Bacteria from Tanzania. Microb. Drug Resist. 2017, 23, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Poddar, S.; Banerjee, S.; Choudhury, J.; Mukhopadhyay, M.; Ray, J. Antibiotic Resistance in Community Acquired Urinary Tract Infection in Children: Data from a Tertiary Center in Eastern India. J. Clin. Diagn. Res. 2018, 12. [Google Scholar] [CrossRef]
- Väisänen, V.; Tallgren, L.; Mäkelä, P.H.; Källenius, G.; Hultberg, H.; Elo, J.; Siitonen, A.; Svanborg-Edén, C.; Svenson, S.; Korhonen, T. Mannose-Resistant Haemagglutination And P Antigen Recognition Are Characteristic of Escherichia Coli Causing Primary Pyelonephritis. Lancet 1981, 318, 1366–1369. [Google Scholar] [CrossRef]
- Shao, Y.; Xiong, Z.; Li, X.; Hu, L.; Shen, J.; Li, T.; Hu, F.; Chen, S. Prevalence of plasmid-mediated quinolone resistance determinants in Citrobacter freundii isolates from Anhui province, PR China. J. Med. Microbiol. 2011, 60, 1801–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, Y.; Feng, S.; Dai, X.; Yang, Y.; Li, J.; Zeng, M. Detection and coexistence of six categories of resistance genes in Escherichia coli strains from chickens in Anhui Province, China. Ital. J. Anim. Sci. 2015, 14, 3897. [Google Scholar] [CrossRef]
- Johnning, A.; Kristiansson, E.; Angelin, M.; Marathe, N.; Shouche, Y.S.; Johansson, A.; Larsson, D.G.J. Quinolone resistance mutations in the faecal microbiota of Swedish travellers to India. BMC Microbiol. 2015, 15, 235. [Google Scholar] [CrossRef] [Green Version]
Isolate ID | β-Lactam Resistance Genes | Fluoroquinolone Resistance Genes | |||||||
---|---|---|---|---|---|---|---|---|---|
TEM | SHV | CTX-M (Group 1,2,9) | gyrA | qnrA | qnrB | qnrS | aac (6’)-Ib-cr | qepA | |
I8 | − | − | 1,2,9 | − | − | − | − | − | − |
I42 | + | − | 1,2 | + | + | − | + | + | − |
I53 | − | − | 1,2 | − | + | − | + | + | − |
B9 | − | − | − | + | − | − | − | − | − |
E31 | − | − | − | + | − | + | − | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubone, P.Z.; Mlisana, K.P.; Govinden, U.; Abia, A.L.K.; Essack, S.Y. Antibiotic Susceptibility and Molecular Characterization of Uropathogenic Escherichia coli Associated with Community-Acquired Urinary Tract Infections in Urban and Rural Settings in South Africa. Trop. Med. Infect. Dis. 2020, 5, 176. https://doi.org/10.3390/tropicalmed5040176
Kubone PZ, Mlisana KP, Govinden U, Abia ALK, Essack SY. Antibiotic Susceptibility and Molecular Characterization of Uropathogenic Escherichia coli Associated with Community-Acquired Urinary Tract Infections in Urban and Rural Settings in South Africa. Tropical Medicine and Infectious Disease. 2020; 5(4):176. https://doi.org/10.3390/tropicalmed5040176
Chicago/Turabian StyleKubone, Purity Z., Koleka P. Mlisana, Usha Govinden, Akebe Luther King Abia, and Sabiha Y. Essack. 2020. "Antibiotic Susceptibility and Molecular Characterization of Uropathogenic Escherichia coli Associated with Community-Acquired Urinary Tract Infections in Urban and Rural Settings in South Africa" Tropical Medicine and Infectious Disease 5, no. 4: 176. https://doi.org/10.3390/tropicalmed5040176
APA StyleKubone, P. Z., Mlisana, K. P., Govinden, U., Abia, A. L. K., & Essack, S. Y. (2020). Antibiotic Susceptibility and Molecular Characterization of Uropathogenic Escherichia coli Associated with Community-Acquired Urinary Tract Infections in Urban and Rural Settings in South Africa. Tropical Medicine and Infectious Disease, 5(4), 176. https://doi.org/10.3390/tropicalmed5040176