Proposed Integrated Control of Zoonotic Plasmodium knowlesi in Southeast Asia Using Themes of One Health
Abstract
:1. Introduction
2. Ecological Drivers of Plasmodium knowlesi Transmission
2.1. The Significance of P. knowlesi Subpopulations in Human Disease Transmission
2.2. The Influence of Deforestation, Changing Land-use and Risk of P. knowlesi Transmission
2.3. The Influence of Forest Disturbances on the Mosquito Vector and Transmission Dynamics
2.4. The Influence of Forest Disturbances on the Natural Host, Prevalence and Transmission Dynamics
2.5. The Influence of Individual Behavioural Factors that Increase Risk of Disease Acquisition
3. Integrative Control Perspectives
3.1. Improved Disease Surveillance of P. knowlesi Infection
3.2. Ecological Interventions: Deforestation Regulations and Forest Restoration Strategies
3.3. Individual-level protection: Insecticide Treated Clothing
3.4. Vector Behavioural Tools: Synthetic Odour-based Traps and Baits for Control of Vector Transmission of P. knowlesi
3.5. Biocontrol Strategies Targeting Vector Transmission
4. Conclusion and Integrative Control Proposal
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. World Malaria Report. In World Health Organization; World Health Organization: Geneva, Switzerland, 2019; pp. 1–232. [Google Scholar]
- Barber, B.E.; Rajahram, G.S.; Grigg, M.J.; William, T.; Anstey, N.M. World Malaria Report: Time to acknowledge Plasmodium knowlesi malaria. Malar. J. 2017, 16, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox-Singh, J.; Davis, T.M.E.; Lee, K.-S.; Shamsul, S.S.G.; Matusop, A.; Ratnam, S.; Rahman, H.A.; Conway, D.J.; Singh, B. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 2008, 46, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Daneshvar, C. Human infections and detection of Plasmodium knowlesi. CMR 2013, 26, 165–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Sung, L.K.; Matusop, A.; Radhakrishnan, A.; Shamsul, S.S.G.; Cox-Singh, J.; Thomas, A.; Conway, D.J. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 2004, 363, 1017–1024. [Google Scholar] [CrossRef]
- Karunajeewa, H.; Berman, J. Is the epidemiology of Plasmodium knowlesi changing and what does this mean for malaria control in Southeast Asia? Clin. Infect. Dis. 2019, 19, 19. [Google Scholar] [CrossRef]
- William, T.; Rahman, H.A.; Jelip, J.; Ibrahim, M.Y.; Menon, J.; Grigg, M.J.; Yeo, T.W.; Anstey, N.M.; Barber, B.E. Increasing incidence of Plasmodium knowlesi malaria following control of p. Falciparum and p. Vivax malaria in Sabah, Malaysia. PLoS Negl. Trop. Dis. 2013, 7, e2026. [Google Scholar]
- Cooper, D.J.; Rajahram, G.S.; William, T.; Jelip, J.; Mohammad, R.; Benedict, J.; Alaza, D.A.; Malacova, E.; Yeo, T.W.; Grigg, M.J. Plasmodium knowlesi malaria in Sabah, Malaysia, 2015–2017: Ongoing increase in incidence despite near-elimination of the human-only Plasmodium species. Clin. Infect. Dis. 2020, 70, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Jongwutiwes, S.; Putaporntip, C.; Iwasaki, T.; Sata, T.; Kanbara, H. Naturally acquired Plasmodium knowlesi malaria in human, Thailand. Emerg. Infect. Dis. 2004, 10, 2211. [Google Scholar] [CrossRef]
- Jongwutiwes, S.; Buppan, P.; Kosuvin, R.; Seethamchai, S.; Pattanawong, U.; Sirichaisinthop, J.; Putaporntip, C. Plasmodium knowlesi malaria in humans and macaques, Thailand. Emerg. Infect. Dis. 2011, 17, 1799. [Google Scholar] [CrossRef]
- Putaporntip, C.; Hongsrimuang, T.; Seethamchai, S.; Kobasa, T.; Limkittikul, K.; Cui, L.; Jongwutiwes, S. Differential prevalence of Plasmodium infections and cryptic Plasmodium knowlesi malaria in humans in Thailand. J. Infect. Dis. 2009, 199, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Khim, N.; Siv, S.; Kim, S.; Mueller, T.; Fleischmann, E.; Singh, B.; Divis, P.C.; Steenkeste, N.; Duval, L.; Bouchier, C.; et al. Plasmodium knowlesi infection in humans, Cambodia, 2007–2010. Emerg. Infect. Dis. 2011, 17, 1900–1902. [Google Scholar] [CrossRef]
- Jiang, N.; Chang, Q.; Sun, X.; Lu, H.; Yin, J.; Zhang, Z.; Wahlgren, M.; Chen, Q. Coinfections with Plasmodium knowlesi and other malaria parasites, Myanmar. Emerg. Infect. Dis. 2010, 16, 1476. [Google Scholar] [CrossRef] [PubMed]
- Ng, O.T.; Ooi, E.E.; Lee, C.C.; Lee, P.J.; Ng, L.C.; Pei, S.W.; Tu, T.M.; Loh, J.P.; Leo, Y.S. Naturally acquired human Plasmodium knowlesi infection, Singapore. Emerg. Infect. Dis. 2008, 14, 814. [Google Scholar] [CrossRef] [PubMed]
- Figtree, M.; Lee, R.; Bain, L.; Kennedy, T.; Mackertich, S.; Urban, M.; Cheng, Q.; Hudson, B.J. Plasmodium knowlesi in human, Indonesian Borneo. Emerg. Infect. Dis. 2010, 16, 672. [Google Scholar] [CrossRef] [PubMed]
- Setiadi, W.; Sudoyo, H.; Trimarsanto, H.; Sihite, B.A.; Saragih, R.J.; Juliawaty, R.; Wangsamuda, S.; Asih, P.B.; Syafruddin, D. A zoonotic human infection with simian malaria, Plasmodium knowlesi, in central kalimantan, indonesia. Malar. J. 2016, 15, 218. [Google Scholar] [CrossRef] [Green Version]
- Maeno, Y.; Culleton, R.; Quang, N.T.; Kawai, S.; Marchand, R.P.; Nakazawa, S. Plasmodium knowlesi and human malaria parasites in khan Phu, Vietnam: Gametocyte production in humans and frequent coinfection of mosquitoes. Parasitology 2017, 144, 527–535. [Google Scholar] [CrossRef]
- Luchavez, J.; Espino, F.; Curameng, P.; Espina, R.; Bell, D.; Chiodini, P.; Nolder, D.; Sutherland, C.; Lee, K.-S.; Singh, B. Human infections with Plasmodium knowlesi, the Philippines. Emerg. Infect. Dis. 2008, 14, 811. [Google Scholar] [CrossRef]
- Fornace, K.M.; Herman, L.S.; Abidin, T.R.; Chua, T.H.; Daim, S.; Lorenzo, P.J.; Grignard, L.; Nuin, N.A.; Ying, L.T.; Grigg, M.J.; et al. Exposure and infection to Plasmodium knowlesi in case study communities in northern Sabah, Malaysia and Palawan, the Philippines. PLoS Negl. Trop. Dis. 2018, 12, e0006432. [Google Scholar] [CrossRef] [Green Version]
- Hussin, N.; Lim, Y.A.; Goh, P.P.; William, T.; Jelip, J.; Mudin, R.N. Updates on malaria incidence and profile in Malaysia from 2013 to 2017. Malar J. 2020, 19, 55. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Divis, P.C.; Zakaria, S.K.; Matusop, A.; Julin, R.A.; Conway, D.J.; Cox-Singh, J.; Singh, B. Plasmodium knowlesi: Reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog. 2011, 7, e1002015. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.; Fong, M.Y.; Lau, Y.L.; Yusof, R. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from peninsular Malaysia and Malaysia Borneo. Malar. J. 2016, 15, 241. [Google Scholar] [CrossRef] [Green Version]
- Daneshvar, C.; Davis, T.M.E.; Cox-Singh, J.; Rafa’ee, M.Z.; Zakaria, S.K.; Divis, P.C.S.; Singh, B. Clinical and laboratory features of human Plasmodium knowlesi infection. Clin. Infect. Dis. 2009, 49, 852–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidlein, L.V.; Peto, T.J.; Landier, J.; Nguyen, T.N.; Tripura, R.; Phommasone, K.; Pongvongsa, T.; Lwin, K.M.; Keereecharoen, L.; Kajeechiwa, L.; et al. The impact of targeted malaria elimination with mass drug administrations on falciparum malaria in southeast Asia: A cluster randomised trial. PLoS Med. 2019, 16, e1002745. [Google Scholar] [CrossRef] [PubMed]
- Imwong, M.; Madmanee, W.; Suwannasin, K.; Kunasol, C.; Peto, T.J.; Tripura, R.; Von Seidlein, L.; Nguon, C.; Davoeung, C.; Day, N.P.J.; et al. Asymptomatic natural human infections with the simian malaria parasites Plasmodium cynomolgi and Plasmodium knowlesi. J. Infect. Dis. 2019, 219, 695–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyes, C.L.; Shearer, F.M.; Huang, Z.; Wiebe, A.; Gibson, H.S.; Nijman, V.; Mohd-Azlan, J.; Brodie, J.F.; Malaivijitnond, S.; Linkie, M.; et al. Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas. Parasites Vectors. 2016, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shearer, F.M.; Huang, Z.; Weiss, D.J.; Wiebe, A.; Gibson, H.S.; Battle, K.E.; Pigott, D.M.; Brady, O.J.; Putaporntip, C.; Jongwutiwes, S.; et al. Estimating geographical variation in the risk of zoonotic Plasmodium knowlesi infection in countries eliminating malaria. PLoS Negl. Trop. Dis. 2016, 10, e0004915. [Google Scholar] [CrossRef]
- Rodman, P.S. Structural differentiation of microhabitats of sympatric Macaca fascicularis and M. nemestrina in East Kalimantan, Indonesia. Int. J. Primatol. 1991, 12, 357–375. [Google Scholar] [CrossRef]
- Stark, D.J.; Fornace, K.M.; Brock, P.M.; Abidin, T.R.; Gilhooly, L.; Jalius, C.; Goossens, B.; Drakeley, C.J.; Salgado-Lynn, M. Long-tailed macaque response to deforestation in a Plasmodium knowlesi-endemic area. Ecohealth 2019, 29, 29. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.L.; Chua, T.H.; Leong, C.S.; Khaw, L.T.; Fornace, K.; Wan-Sulaiman, W.Y.; William, T.; Drakeley, C.; Ferguson, H.M.; Vythilingam, I. Seasonal and spatial dynamics of the primary vector of Plasmodium knowlesi within a major transmission focus in Sabah, Malaysia. PLoS Negl. Trop. Dis. 2015, 9, e0004135. [Google Scholar] [CrossRef]
- Brant, H.L.; Ewers, R.M.; Vythilingam, I.; Drakeley, C.; Benedick, S.; Mumford, J.D. Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malar. J. 2016, 15, 370. [Google Scholar] [CrossRef] [Green Version]
- Chua, T.H.; Manin, B.O.; Vythilingam, I.; Fornace, K.; Drakeley, C.J. Effect of different habitat types on abundance and biting times of Anopheles balabacensis Baisas (Diptera: Culicidae) in Kudat district of Sabah, Malaysia. Parasites Vectors. 2019, 12, 364. [Google Scholar] [CrossRef]
- Vythilingam, I.; Tan, C.H.; Asmad, M.; Chan, S.T.; Lee, K.S.; Singh, B. Natural transmission of Plasmodium knowlesi to humans by Anopheles latens in Sarawak, Malaysia. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 1087–1088. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Vythilingam, I.; Matusop, A.; Chan, S.T.; Singh, B. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi. Malar. J. 2008, 7, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiram, A.I.; Vythilingam, I.; NoorAzian, Y.M.; Yusof, Y.M.; Azahari, A.H.; Fong, M.Y. Entomologic investigation of Plasmodium knowlesi vectors in Kuala Lipis, Pahang, Malaysia. Malar. J. 2012, 11, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seng, C.M.; Matusop, A.; Sen, F.K. Differences in Anopheles composition and malaria transmission in the village settlements and cultivated farming zone in Sarawak, Malaysia. Southeast Asian J. Trop. Med. Public Health 1999, 30, 454–459. [Google Scholar]
- Marchand, R.P.; Culleton, R.; Maeno, Y.; Quang, N.T.; Nakazawa, S. Coinfections of Plasmodium knowlesi, P. Falciparum, and P. Vivax among humans and Anopheles dirus mosquitoes, southern Vietnam. Emerg. Infect. Dis. 2011, 17, 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Ang, J.X.D.; Kadir, K.A.; Mohamad, D.S.A.; Matusop, A.; Divis, P.C.S.; Yaman, K.; Singh, B. New vectors in northern Sarawak, Malaysian Borneo, for the zoonotic malaria parasite, Plasmodium knowlesi. Parasites Vectors. 2020, 13, 472. [Google Scholar] [CrossRef]
- Vidhya, P.T.; Sunish, I.P.; Maile, A.; Zahid, A.K. Anopheles sundaicus mosquitoes as vector for Plasmodium knowlesi, Andaman and Nicobar Islands, India. Emerg. Infect. Dis. 2019, 25, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Vythilingam, I.; Lim, Y.A.; Venugopalan, B.; Ngui, R.; Leong, C.S.; Wong, M.L.; Khaw, L.; Goh, X.; Yap, N.; Sulaiman, W.Y.; et al. Plasmodium knowlesi malaria an emerging public health problem in Hulu Selangor, Selangor, Malaysia (2009–2013): Epidemiologic and entomologic analysis. Parasites Vectors. 2014, 7, 436. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.C.; Egan, A.; Arze, C.; Spouge, J.L.; Harris, D.G. A new method for estimating species age supports the coexistence of malaria parasites and their mammalian hosts. Mol. Biol. Evol. 2015, 32, 1354–1364. [Google Scholar] [CrossRef] [Green Version]
- Imai, N.; White, M.T.; Ghani, A.C.; Drakeley, C.J. Transmission and control of plasmodium knowlesi: A mathematical modelling study. PLoS Negl. Trop. Dis. 2014, 8, e2978. [Google Scholar] [CrossRef] [Green Version]
- Divis, P.C.; Hu, T.H.; Kadir, K.A.; Mohammad, D.S.; Hii, K.C.; Daneshvar, C.; Conway, D.J.; Singh, B. Efficient surveillance of Plasmodium knowlesi genetic subpopulations, Malaysian Borneo, 2000–2018. Emerg. Infect. Dis. 2020, 26, 1392. [Google Scholar] [CrossRef] [PubMed]
- Muehlenbein, M.P.; Pacheco, M.A.; Taylor, J.E.; Prall, S.P.; Ambu, L.; Nathan, S.; Alsisto, S.; Ramirez, D.; Escalante, A.A. Accelerated diversification of nonhuman primate malarias in Southeast Asia: Adaptive radiation or geographic speciation? Mol. Biol. Evol. 2015, 32, 422–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assefa, S.; Lim, C.; Preston, M.D.; Duffy, C.W.; Nair, M.B.; Adroub, S.A.; Kadir, K.A.; Goldberg, J.M.; Neafsey, D.E.; Divis, P.; et al. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi. Proc. Natl. Acad. Sci. USA 2015, 112, 13027–13032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divis, P.C.; Singh, B.; Anderios, F.; Hisam, S.; Matusop, A.; Kocken, C.H.; Assefa, S.A.; Duffy, C.W.; Conway, D.J. Admixture in humans of two divergent Plasmodium knowlesi populations associated with different macaque host species. PLoS Pathog. 2015, 11, e1004888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divis, P.C.; Lin, L.C.; Rovie-Ryan, J.J.; Kadir, K.A.; Anderios, F.; Hisam, S.; Sharma, R.S.; Singh, B.; Conway, D.J. Three divergent subpopulations of the malaria parasite Plasmodium knowlesi. Emerg. Infect. Dis. 2017, 23, 616–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divis, P.C.S.; Duffy, C.W.; Kadir, K.A.; Singh, B.; Conway, D.J. Genome-wide mosaicism in divergence between zoonotic malaria parasite subpopulations with separate sympatric transmission cycles. Mol. Ecol. 2018, 27, 860–870. [Google Scholar] [CrossRef] [Green Version]
- Benavente, E.D.; Gomes, A.R.; De Silva, J.R.; Grigg, M.; Walker, H.; Barber, B.E.; William, T.; Yeo, T.W.; de Sessions, P.F.; Ramaprasad, A.; et al. Whole genome sequencing of amplified Plasmodium knowlesi DNA from unprocessed blood reveals genetic exchange events between Malaysian peninsular and Borneo subpopulations. Sci. Rep. 2019, 9, 9873. [Google Scholar] [CrossRef] [Green Version]
- Diez Benavente, E.; Florez de Sessions, P.; Moon, R.W.; Holder, A.A.; Blackman, M.J.; Roper, C.; Drakeley, C.J.; Pain, A.; Sutherland, C.J.; Hibberd, M.L.; et al. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations. PLoS Genet. 2017, 13, e1007008. [Google Scholar] [CrossRef] [Green Version]
- Brock, P.M.; Fornace, K.M.; Grigg, M.J.; Anstey, N.M.; William, T.; Cox, J.; Drakeley, C.J.; Ferguson, H.M.; Kao, R.R. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2019, 286, 20182351. [Google Scholar] [CrossRef] [Green Version]
- Fornace, K.M.; Abidin, T.R.; Alexander, N.; Brock, P.; Grigg, M.J.; Murphy, A.; William, T.; Menon, J.; Drakeley, C.J.; Cox, J. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 2016, 22, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Brant, H. Impacts of Deforestation on Mosquito Community Dynamics. Ph.D. Thesis, Imperial College London, London, UK, 2015. [Google Scholar]
- Burkett-Cadena, N.D.; Vittor, A.Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 2018, 26, 101–110. [Google Scholar] [CrossRef]
- Hawkes, F.M.; Manin, B.O.; Cooper, A.; Daim, S.; Homathevi, R.; Jelip, J.; Husin, T.; Chua, T.H. Vector compositions change across forested to deforested ecotones in emerging areas of zoonotic malaria transmission in Malaysia. Sci. Rep. 2019, 9, 13312. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, A.A. Changing patterns of emerging zoonotic diseases in wildlife, domestic animals, and humans linked to biodiversity loss and globalization. Ilar J. 2017, 58, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Salkeld, D.J.; Padgett, K.A.; Jones, J.H.; Lafferty, K. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 2013, 16, 679–686. [Google Scholar] [CrossRef]
- Morand, S.; Jittapalapong, S.; Suputtamongkol, Y.; Abdullah, M.T.; Huan, T.B. Infectious diseases and their outbreaks in Asia-pacific: Biodiversity and its regulation loss matter. PLoS ONE 2014, 9, e90032. [Google Scholar] [CrossRef] [Green Version]
- Civitello, D.J.; Cohen, J.; Fatima, H.; Halstead, N.T.; Liriano, J.; McMahon, T.A.; Ortega, C.N.; Sauer, E.L.; Sehgal, T.; Young, S.; et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl. Acad. Sci. USA 2015, 112, 8667–8671. [Google Scholar] [CrossRef] [Green Version]
- Bryan, J.E.; Shearman, P.L.; Asner, G.P.; Knapp, D.E.; Aoro, G.; Lokes, B. Extreme differences in forest degradation in Borneo: Comparing practices in Sarawak, Sabah, and Brunei. PLoS ONE 2013, 8, e69679. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Tojo, B.; Hoshi, T.; Minsong, L.I.F.; Kugan, O.K.; Giloi, N.; Ahmed, K.; Jeffree, S.M.; Moji, K.; Kita, K. Recent incidence of human malaria caused by Plasmodium knowlesi in the villages in Kudat peninsula, Sabah, Malaysia: Mapping of the infection risk using remote sensing data. Int. J. Environ. Res. Public Health 2019, 16, 16. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Edwards, D.P.; Giam, X.; Wilcove, D.S. The high costs of conserving Southeast Asia’s lowland rainforests. Front. Ecol. Environ. 2011, 9, 329–334. [Google Scholar] [CrossRef]
- Wilcove, D.S.; Koh, L.P. Addressing the threats to biodiversity from oil-palm agriculture. Biodivers. Conserv. 2010, 19, 999–1007. [Google Scholar] [CrossRef]
- Davidson, G.; Chua, T.H.; Cook, A.; Speldewinde, P.; Weinstein, P. The role of ecological linkage mechanisms in Plasmodium knowlesi transmission and spread. Ecohealth 2019, 23, 23. [Google Scholar] [CrossRef] [PubMed]
- Manin, B.O.; Ferguson, H.M.; Vythilingam, I.; Fornace, K.; William, T.; Torr, S.J.; Drakeley, C.; Chua, T.H. Investigating the contribution of peri-domestic transmission to risk of zoonotic malaria infection in humans. PLoS Negl. Trop. Dis. 2016, 10, e0005064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigg, M.J.; Cox, J.; William, T.; Jelip, J.; Fornace, K.M.; Brock, P.M.; von Seidlein, L.; Barber, B.E.; Anstey, N.M.; Yeo, T.W.; et al. Individual-level factors associated with the risk of acquiring human Plasmodium knowlesi malaria in Malaysia: A case-control study. Lancet Planet. Health 2017, 1, e97–e104. [Google Scholar] [CrossRef]
- Vythilingam, I.; Noorazian, Y.M.; Huat, T.C.; Jiram, A.I.; Yusri, Y.M.; Azahari, A.H.; Norparina, I.; Noorrain, A.; Lokmanhakim, S. Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia. Parasites Vectors. 2008, 1, 26. [Google Scholar] [CrossRef] [Green Version]
- Moyes, C.L.; Henry, A.J.; Golding, N.; Huang, Z.; Singh, B.; Baird, J.K.; Newton, P.N.; Huffman, M.; Duda, K.A.; Drakeley, C.J. Defining the geographical range of the Plasmodium knowlesi reservoir. PLoS Negl. Trop. Dis. 2014, 8, e2780. [Google Scholar] [CrossRef]
- Gamalo, L.E.; Dimalibot, J.; Kadir, K.A.; Singh, B.; Paller, V.G. Plasmodium knowlesi and other malaria parasites in long-tailed macaques from the Philippines. Malar. J. 2019, 18, 1–7. [Google Scholar] [CrossRef]
- Irene, L.M. Identification and Molecular Characterisation of Simian Malaria Parasites in Wild Monkeys of Singapore. Ph.D. Thesis, National University of Singapore, Singapore, 2011. [Google Scholar]
- Amir, A.; Shahari, S.; Liew, J.W.K.; de Silva, J.R.; Khan, M.B.; Lai, M.Y.; Snounou, G.; Abdullah, M.L.; Gani, M.; Rovie-Ryan, J.J. Natural Plasmodium infection in wild macaques of three states in peninsular Malaysia. Acta Trop. 2020, 211, 105596. [Google Scholar] [CrossRef]
- Fungfuang, W.; Udom, C.; Tongthainan, D.; Kadir, K.A.; Singh, B. Malaria parasites in macaques in Thailand: Stump-tailed macaques (Macaca arctoides) are new natural hosts for Plasmodium Knowlesi, P. Inui, P. Coatneyi and P. Fieldi. Malar. J. 2020, 19, 350. [Google Scholar] [CrossRef]
- Chapman, C.A.; Gillespie, T.R.; Goldberg, T.L. Primates and the ecology of their infectious diseases: How will anthropogenic change affect host-parasite interactions? Evol. Anthropol. Issues News Rev. 2005, 14, 134–144. [Google Scholar] [CrossRef]
- Akter, R.; Vythilingam, I.; Khaw, L.T.; Qvist, R.; Lim, Y.A.-L.; Sitam, F.T.; Venugopalan, B.; Sekaran, S.D. Simian malaria in wild macaques: First report from Hulu Selangor district, Selangor, Malaysia. Malar. J. 2015, 14, 386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Kadir, K.A.; Quintanilla-Zariñan, L.F.; Villano, J.; Houghton, P.; Du, H.; Singh, B.; Smith, D.G. Distribution and prevalence of malaria parasites among long-tailed macaques (Macaca fascicularis) in regional populations across Southeast Asia. Malar. J. 2016, 15, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putaporntip, C.; Jongwutiwes, S.; Thongaree, S.; Seethamchai, S.; Grynberg, P.; Hughes, A.L. Ecology of malaria parasites infecting Southeast Asian macaques: Evidence from cytochrome b sequences. Mol. Ecol. 2010, 19, 3466–3476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herdiana, H.; Cotter, C.; Coutrier, F.N.; Zarlinda, I.; Zelman, B.W.; Tirta, Y.K.; Greenhouse, B.; Gosling, R.D.; Baker, P.; Whittaker, M.; et al. Malaria risk factor assessment using active and passive surveillance data from Aceh Besar, Indonesia, a low endemic, malaria elimination setting with Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum. Malar. J. 2016, 15, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigg, M.J.; William, T.; Drakeley, C.J.; Jelip, J.; von Seidlein, L.; Barber, B.E.; Fornace, K.M.; Anstey, N.M.; Yeo, T.W.; Cox, J. Factors that are associated with the risk of acquiring Plasmodium knowlesi malaria in Sabah, Malaysia: A case-control study protocol. BMJ Open. 2014, 4, e006004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornace, K.M.; Brock, P.M.; Abidin, T.R.; Grignard, L.; Herman, L.S.; Chua, T.H.; Daim, S.; William, T.; Patterson, C.; Hall, T.; et al. Environmental risk factors and exposure to the zoonotic malaria parasite Plasmodium knowlesi across northern Sabah, Malaysia: A population-based cross-sectional survey. Lancet Planet. Health 2019, 3, e179–e186. [Google Scholar] [CrossRef] [Green Version]
- Brock, P.M.; Fornace, K.M.; Parmiter, M.; Cox, J.; Drakeley, C.J.; Ferguson, H.M.; Kao, R.R. Plasmodium knowlesi transmission: Integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. Parasitology 2016, 143, 389–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangena, J.-A.A.; Thammavong, P.; Wilson, A.L.; Brey, P.T.; Lindsay, S.W. Risk and control of mosquito-borne diseases in Southeast Asian rubber plantations. Trends Parasitol. 2016, 32, 402–415. [Google Scholar] [CrossRef] [Green Version]
- Crawshaw, A.F.; Maung, T.M.; Shafique, M.; Sint, N.; Nicholas, S.; Li, M.S.; Roca-Feltrer, A.; Hii, J. Acceptability of insecticide-treated clothing for malaria prevention among migrant rubber tappers in Myanmar: A cluster-randomized non-inferiority crossover trial. Malar. J. 2017, 16, 92. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.L.; Chen-Hussey, V.; Logan, J.G.; Lindsay, S.W. Are topical insect repellents effective against malaria in endemic populations? A systematic review and meta-analysis. Malar. J. 2014, 13, 446. [Google Scholar] [CrossRef] [Green Version]
- Maia, M.F.; Kliner, M.; Richardson, M.; Lengeler, C.; Moore, S.J. Mosquito repellents for malaria prevention. Cochrane Database Syst. Rev. 2018, 2018, CD011595. [Google Scholar] [CrossRef] [Green Version]
- Gryseels, C.; Uk, S.; Sluydts, V.; Durnez, L.; Phoeuk, P.; Suon, S.; Set, S.; Heng, S.; Siv, S.; Gerrets, R.; et al. Factors influencing the use of topical repellents: Implications for the effectiveness of malaria elimination strategies. Sci. Rep. 2015, 5, 16847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- President’s Malaria Initiative. Greater Mekong Subregion Malaria Operational Plan FY 2015; President’s Malaria Initiative: Washington, DC, USA, 2015; pp. 1–140. [Google Scholar]
- Most, B.; Pommier de Santi, V.; Pagès, F.; Mura, M.; Uedelhoven, W.M.; Faulde, M.K. Long-lasting permethrin-impregnated clothing: Protective efficacy against malaria in hyperendemic foci, and laundering, wearing, and weathering effects on residual bioactivity after worst-case use in the rain forests of French Guiana. Parasitol. Res. 2017, 116, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Londono-Renteria, B.; Patel, J.C.; Vaughn, M.; Funkhauser, S.; Ponnusamy, L.; Grippin, C.; Jameson, S.B.; Apperson, C.; Mores, C.N.; Wesson, D.M. Long-lasting permethrin-impregnated clothing protects against mosquito bites in outdoor workers. Am. J. Trop. Med. 2015, 93, 869–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, K.M.; Poffley, A.; Funkhouser, S.; Driver, J.; Ross, J.; Ospina, M.; Calafat, A.M.; Beard, C.B.; White, A.; Balanay, J.A. Bioabsorption and effectiveness of long-lasting permethrin-treated uniforms over three months among North Carolina outdoor workers. Parasites Vectors. 2019, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Banks, S.; Murray, N.; Wilder-Smith, A.; Logan, J.G. Insecticide-treated clothes for the control of vector-borne diseases: A review on effectiveness and safety. Med. Vet. Entomol. 2014, 28, 14–25. [Google Scholar] [CrossRef]
- Banks, S.D.; Orsborne, J.; Gezan, S.A.; Kaur, H.; Wilder-Smith, A.; Lindsey, S.W.; Logan, J.G. Permethrin-treated clothing as protection against the dengue vector, Aedes aegypti: Extent and duration of protection. PLoS Negl. Trop. Dis. 2015, 9, e0004109. [Google Scholar]
- Eamsila, C.; Frances, S.P.; Strickman, D. Evaluation of permethrin-treated military uniforms for personal protection against malaria in northeastern Thailand. J. Am. Mosq. Control Assoc. 1994, 10, 515–521. [Google Scholar]
- Kimani, E.W.; Vulule, J.M.; Kuria, I.W.; Mugisha, F. Use of insecticide-treated clothes for personal protection against malaria: A community trial. Malar. J. 2006, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Maule, A.L.; Heaton, K.J.; Cadarette, B.; Taylor, K.M.; Guerriere, K.I.; Haven, C.C.; Scarpaci, M.M.; Kenefick, R.W.; Ospina, M.; Calafat, A.M. Effect of environmental temperature and humidity on permethrin biomarkers of exposure in US soldiers wearing permethrin-treated uniforms. Am. J. Trop. Med. 2020, 102, 1455–1462. [Google Scholar] [CrossRef]
- Van De Straat, B.; Hiscox, A.; Takken, W.; Burkot, T.R. Evaluating synthetic odours and trap designs for monitoring Anopheles farauti in Queensland, Australia. Malar. J. 2019, 18, 299. [Google Scholar] [CrossRef]
- Mafra-Neto, A.; Dekker, T. Novel odor-based strategies for integrated management of vectors of disease. Curr. Opin. Insect Sci. 2019, 34, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Jeffries, C.L.; Walker, T. Biological control of mosquito vectors: Past, present, and future. Insects 2016, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.L.; Rivero, A.; Rasgon, J.L. Wolbachia can enhance Plasmodium infection in mosquitoes: Implications for malaria control? PLoS Pathog. 2014, 10, e1004182. [Google Scholar] [CrossRef] [PubMed]
- Knols, B.G.J.; Bukhari, T.; Farenhorst, M. Entomopathogenic fungi as the next-generation control agents against malaria mosquitoes. Future Microbiol. 2010, 5, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Wasinpiyamongkol, L.; Kanchanaphum, P. Isolating and identifying fungi to determine whether their biological properties have the potential to control the population density of mosquitoes. Heliyon 2019, 5, e02331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanford, S.; Brian, H.K.C.; Jenkins, N.; Sim, D.; Turner, R.J.; Read, A.F.; Thomas, M.B. Fungal pathogen reduces potential for malaria transmission. Science 2005, 308, 1638–1641. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.L.; Wang, Y.; Liu, J.N.; Zhao, J.; Sun, P.L.; Wang, S.B. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Wei, G.; Lai, Y.; Wang, G.; Chen, H.; Li, F.; Wang, S. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc. Natl. Acad. Sci. USA 2017, 114, 5994–5999. [Google Scholar] [CrossRef] [Green Version]
- Mnyone, L.L.; Kirby, M.J.; Lwetoijera, D.W.; Mpingwa, M.W.; Simfukwe, E.T.; Knols, B.G.J.; Takken, W.; Russell, T.L. Tools for delivering entomopathogenic fungi to malaria mosquitoes: Effects of delivery surfaces on fungal efficacy and persistence. Malar. J. 2010, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Dos-Santos, A.L.A.; Huang, W.; Liu, K.C.; Oshaghi, M.A.; Wei, G.; Agre, P.; Jacobs-Lorena, M. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 2017, 357, 1399–1402. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zou, X. Modeling the potential role of engineered symbiotic bacteria in malaria control. BMB 2019, 81, 2569–2595. [Google Scholar] [CrossRef] [PubMed]
- Koosha, M.; Vatandoost, H.; Karimian, F.; Choubdar, N.; Oshaghi, M.A. Delivery of a genetically marked Serratia as1 to medically important arthropods for use in RNAi and paratransgenic control strategies. Microb. Ecol. 2019, 78, 185–194. [Google Scholar] [CrossRef] [PubMed]
Vector | Geographical Location | Common Areas of Capture | Biting Behaviour | Host Preference | Author |
---|---|---|---|---|---|
An. balabaecensis | Sabah and Sarawak, Malaysia, Kuala Lipis, Philippines | Village sites, forest edges, small farming sites, logged forest areas, palm oil estates, shrub bushes | Exophagic & endophagic, acrodendrophillic | Humans and Macaques | [30,31,32] |
An. latens | Sarawak, Malaysia | Forests, forest fringe, farms and longhouses | Acrodendrophillic, Exophagic | Humans and Macaques | [33,34] |
An. cracens | Pahang and Sarawak, Malaysia, Thailand, Indonesia | Village sites, fruit orchards | Exophagic, ground-level biting | Humans and Macaques | [35,36] |
An. dirus | Sarawak, Malaysia, Southern Vietnam | Forest and Forest fringes | Exophagic and acrodendrophillic | Not described | [37] |
An. donaldi | Sarawak, Malaysia | Village sites, farm huts, long-houses | Not described | Not described | [38] |
An. sundaicus | Katchal island, India | Village sites | Not described | Not described | [39] |
An. introlatus | Selangor, Malaysia | Farmlands, forests | Exophagic & endophagic. | No comparison made | [40] |
Country | Findings | Reference |
---|---|---|
Peninsular Malaysia, Pahang & Kuala Lipis | 145 M. fascicularis blood samples were collected. In Pahang, P. knowlesi was detected in 6.9% of samples. In Kuala Lipis, 77 M. fascicularis blood samples were collected. P. knowlesi was detected in 7.3% of samples. | [67] |
Peninsular Malaysia, Pahang, Perak and Johor | 103 M. fascicularis blood samples were collected. In Pahang, P. knowlesi prevalence among M. fascicularis was 26.5%. In Perak, P. knowlesi prevalence among M. fascicularis was 3.8%. In Johor, P. knowlesi prevalence among M. fascicularis was 2.6%. | [71] |
Kapit Division of Malaysian Borneo | 108 macaque blood samples were collected. In 83 M. fascicularis, 82 were positive for plasmodia infection. P. knowlesi prevalence was 87%. In 26 M. nemestrina, only 21 were positive for plasmodia infection. P. knowlesi prevalence was 50%. | [21] |
Selangor, Malaysia | 70 M. fascicularis blood samples were collected. P. knowlesi prevalence among M. fascicularis was 60%. Four out of 35 had mono-infection of P. knowlesi. Co-infection with multiple simian Plasmodium species occurred in 65% of samples. | [74] |
Thailand | In 93 blood samples collected from three macaque reservoir hosts, P. knowlesi prevalence was 2.5%. It was detected only in M. arctodes. | [72] |
Loas | 276 M. fascicularis samples were collected from various regional populations across Southeast Asia. One P. knowlesi infection was detected in Laos. The prevalence of P. knowlesi in across the Southeast region was 0.4%. | [75] |
Thailand | Retrospective analysis of blood films from M. fascicularis from 2006-2009. Prevalence of P. knowlesi has increased within M. fascicularis across the Northern-western, Eastern and South provinces of Thailand. | [10] |
Gulf of Thailand | In 195 Macaca fascicularis, 5.7% were infected with P. knowlesi, and in 449 Macaca nemestrina, 2.3% were infected with P. knowlesi. | [76] |
The Philippines, Palawan island | 95 M. fascicularis blood samples were collected. P. knowlesi was detected in 19% of cases. | [69] |
Singapore | 65 peri-domestic and 92 wild macaques blood samples were collected. It was found that the former group was uninfected, while 71.7% of the sampled wild macaques were positive for at least one simian-malaria parasite species. P. knowlesi had a prevalence of 68.2% among the infected wild macaques. | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, J. Proposed Integrated Control of Zoonotic Plasmodium knowlesi in Southeast Asia Using Themes of One Health. Trop. Med. Infect. Dis. 2020, 5, 175. https://doi.org/10.3390/tropicalmed5040175
Scott J. Proposed Integrated Control of Zoonotic Plasmodium knowlesi in Southeast Asia Using Themes of One Health. Tropical Medicine and Infectious Disease. 2020; 5(4):175. https://doi.org/10.3390/tropicalmed5040175
Chicago/Turabian StyleScott, Jessica. 2020. "Proposed Integrated Control of Zoonotic Plasmodium knowlesi in Southeast Asia Using Themes of One Health" Tropical Medicine and Infectious Disease 5, no. 4: 175. https://doi.org/10.3390/tropicalmed5040175
APA StyleScott, J. (2020). Proposed Integrated Control of Zoonotic Plasmodium knowlesi in Southeast Asia Using Themes of One Health. Tropical Medicine and Infectious Disease, 5(4), 175. https://doi.org/10.3390/tropicalmed5040175