High Levels of Antibiotic Resistance Patterns in Two Referral Hospitals during the Post-Ebola Era in Free-Town, Sierra Leone: 2017–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Settings (General and Specific)
2.3. Study Population and Period
2.4. Data Collection Source
2.5. Data Analysis and Statistics
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Quarterly Trend of Lab Samples That Showed Bacterial Growth
3.3. Antimicrobial Resistance Patterns
3.4. Factors Associated with Antimicrobial Resistance
3.5. Antibiotic Sensitivity Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Government of the United Kingdom 2016. Available online: https://apo.org.au/sites/default/files/resource-files/2016-05/apo-nid63983.pdf (accessed on 4 June 2021).
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization. 2014. Available online: https://apps.who.int/iris/handle/10665/112642 (accessed on 4 June 2021).
- World Health Organization. Antimicrobial Resistance Global Report on Surveillance: 2014 summary; World Health Organization: 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/112647/WHO_HSE_PED_AIP_2014.2_eng.pdf;jsessionid=920D9EE6A118FD09B25534ADF178F813?sequence=1 (accessed on 7 June 2021).
- Frean, J.; Perovic, O.; Fensham, V.; McCarthy, K.; Von Gottberg, A.; De Gouveia, L.; Poonsamy, B.; Dini, L.; Rossouw, J.; Keddy, K.H.; et al. External quality assessment of national public health laboratories in Africa, 2002–2009. Bull. World Health Organ. 2012, 90, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Bernabé, K.J.; Langendorf, C.; Ford, N.; Ronat, J.-B.; Murphy, R.A. Antimicrobial resistance in West Africa: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2017, 50, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Leski, T.A.; Taitt, C.R.; Bangura, U.; Stockelman, M.G.; Ansumana, R.; Cooper, W.H.; Stenger, D.A.; Vora, G.J. High prevalence of multidrug resistant Enterobacteriaceae isolated from outpatient urine samples but not the hospital environment in Bo, Sierra Leone. BMC Infect. Dis. 2016, 16, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Duan, H.-J.; Chen, H.-Y.; Ji, Y.-J.; Zhang, X.; Rong, Y.-H.; Xu, Z.; Sun, L.-J.; Zhang, J.-Y.; Liu, L.-M.; et al. Age and Ebola viral load correlate with mortality and survival time in 288 Ebola virus disease patients. Int. J. Infect. Dis. 2016, 42, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bebell, L.M.; Muiru, A.N. Antibiotic Use and Emerging Resistance: How Can Resource-Limited Countries Turn the Tide? Glob. Heart 2014, 9, 347–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance 2016, 21, 30280. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI: Wayne, PA, USA, 2017; Volume CLSI Supplement M100. [Google Scholar]
- Newman, M.J.; Frimpong, E.; Donkor, E.S.; Opintan, J.A.; Asamoah-Adu, A. Resistance to antimicrobial drugs in Ghana. Infect. Drug Resist. 2011, 4, 215. [Google Scholar] [PubMed] [Green Version]
- Opintan, J.; Newman, M.J.; Arhin, R.E.; Donkor, E.S.; Gyansah-Lutterodt, M.; Mills-Pappoe, W. Laboratory-based nationwide surveillance of antimicrobial resistance in Ghana. Infect. Drug Resist. 2015, 8, 379–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffa, Y.M.; Kitila, K.T.; Gebretsadik, D.M.; Bitew, A. Prevalence and Antimicrobial Susceptibility of Bacterial Uropathogens Isolated from Pediatric Patients at Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia. Int. J. Microbiol. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiyegoro, O.; Igbinosa, O.; Ogunmwonyi, I.; Odjadjare, E.; Igbinosa, O.; Okoh, A. Incidence of urinary tract infections (UTI) among children and adolescents in Ile-Ife, Nigeria. Afr. J. Microbiol. Res. 2007, 1, 13–19. [Google Scholar]
- Meremikwu, M.M.; Nwachukwu, C.E.; Asuquo, A.E.; Okebe, J.U.; Utsalo, S.J. Bacterial isolates from blood cultures of children with suspected septicaemia in Calabar, Nigeria. BMC Infect. Dis. 2005, 5, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, D.; Elfateh, H.; Sedeek, R.; Seleem, S.; Dm, Y.; Ha, E. Epidemiology of urinary tract infection in neonatal intensive care unit: A single center study in Egypt. J. Acad. Med Sci. 2012, 2, 25. [Google Scholar] [CrossRef]
- Lakoh, S.; Li, L.; Sevalie, S.; Guo, X.; Adekanmbi, O.; Yang, G.; Adebayo, O.; Yi, L.; Coker, J.M.; Wang, S.; et al. Antibiotic resistance in patients with clinical features of healthcare-associated infections in an urban tertiary hospital in Sierra Leone: A cross-sectional study. Antimicrob. Resist. Infect. Control. 2020, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Critically Important Antimicrobials for Human Medicine: 5th revision; WHO. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/255027/9789241512220-eng.pdf?sequence=1 (accessed on 4 June 2021).
Characteristic | Pediatric | Maternity | Total | |||
---|---|---|---|---|---|---|
n | (%) * | n | (%) * | n | (%) * | |
Total | 63 | (100.0) | 26 | (100.0) | 89 | (100.0) |
Age | ||||||
Neonates (0–30 days) | 4 | (6.4) | 0 | (0.0) | 4 | (4.5) |
Infants (1 month–2 years) | 27 | (42.9) | 0 | (0.0) | 27 | (30.3) |
Children (2–18 years) | 29 | (46.0) | 1 | (3.9) | 30 | (33.7) |
Adults (>18 years) | 2 | (3.2) | 25 | (96.1) | 27 | (30.3) |
Gender | ||||||
Male | 32 | (50.8) | 1 | (3.9) | 33 | (37.1) |
Female | 31 | (49.2) | 25 | (96.1) | 56 | (62.9) |
Year | ||||||
2017 | 1 | (1.6) | 0 | (0.0) | 1 | (1.1) |
2018 | 25 | (39.7) | 17 | (65.4) | 42 | (47.2) |
2019 | 37 | (58.7) | 9 | (34.6) | 46 | (51.7) |
Specimen types | ||||||
CSF | 5 | (7.9) | 1 | (3.9) | 6 | (6.7) |
HVS | 0 | (0.0) | 9 | (34.6) | 9 | (10.1) |
Pleural Fluid | 6 | (9.5) | 0 | (0.0) | 6 | (6.7) |
Pus-wound swabs | 25 | (39.7) | 4 | (15.4) | 29 | (32.6) |
Stool samples | 0 | (0.0) | 1 | (3.9) | 1 | (1.1) |
Urine samples | 27 | (42.9) | 11 | (42.3) | 38 | (42.7) |
Organ system involved | ||||||
Respiratory | 7 | (11.1) | 0 | (0.0) | 7 | (7.9) |
Skin | 19 | (30.2) | 3 | (11.5) | 22 | (24.7) |
Urogenital | 24 | (38.1) | 6 | (23.1) | 30 | (33.7) |
Others | 7 | (11.1) | 16 | (61.5) | 23 | (25.8) |
Not recorded | 6 | (9.5) | 1 | (3.9) | 7 | (7.9) |
Lab Department | ||||||
Microbiology | 62 | (98.4) | 26 | (100.0) | 88 | (98.9) |
Haematology | 1 | (1.6) | 0 | (0.0) | 1 | (1.1) |
Characteristic | Total | Antimicrobial Resistance * | p-Value | |
---|---|---|---|---|
n | (%) | |||
Total | 89 | 81 | (91.0) | |
Hospital type | ||||
Paediatric | 63 | 59 | (93.7) | 0.175 |
Maternity | 26 | 22 | (84.6) | |
Time Period | ||||
2017 | 1 | 1 | (100.0) | 0.104 |
2018 | 42 | 41 | (97.6) | |
2019 | 46 | 39 | (84.8) | |
Age | ||||
Neonates (0–30 days) | 4 | 4 | (100.0) | 0.755 |
Infants (1 month-2 years) | 27 | 25 | (92.6) | |
Children (2–18 years) | 30 | 28 | (93.3) | |
Adults (>18 years) | 27 | 23 | (85.2) | |
Gender | ||||
Male | 33 | 32 | (97.0) | 0.131 |
Female | 56 | 49 | (87.5) | |
Specimen types | ||||
CSF | 6 | 6 | (100.0) | 0.920 |
HVS | 9 | 8 | (88.9) | |
Pleural Fluid | 6 | 5 | (83.3) | |
Pus-wound swabs | 29 | 27 | (93.1) | |
Stool samples | 1 | 1 | (100.0) | |
Urine samples | 38 | 34 | (89.5) | |
Organ system involved | ||||
Respiratory | 7 | 6 | (85.7) | 0.394 |
Skin | 22 | 20 | (90.9) | |
Genital | 30 | 29 | (96.7) | |
Urinary | 23 | 19 | (82.6) | |
Others | 7 | 7 | (100.0) | |
Lab Department | ||||
Microbiology | 88 | 80 | (90.9) | 0.752 |
Haematology | 1 | 1 | (100.0) | |
Gram staining | ||||
Gram Positive | 44 | 40 | (90.9) | 0.973 |
Gram Negative | 45 | 41 | (91.1) |
Antibiotic | Gram-Positive, n = 246 | Gram-Negative, n = 213 | Total, n = 459 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tested | Resistant | Tested | Resistant | Tested | Resistant | |||||||
n | n | (%) # | n | n | (%) # | n | n | (%) # | ||||
Cephalothin | 3 | 2 | (66.7) | 5 | 5 | (100.0) | 8 | 7 | (87.5) | |||
Chloramphenicol | 35 | 9 | (25.7) | 34 | 22 | (64.7) | 69 | 31 | (44.9) | |||
Gentamycin | 12 | 5 | (41.7) | 1 | 1 | (100.0) | 13 | 6 | (46.2) | |||
Ciprofloxacillin | 17 | 6 | (35.3) | 26 | 6 | (23.1) | 43 | 12 | (27.9) | |||
Colistrin Sulphate | 5 | 3 | (60.0) | 10 | 4 | (40.0) | 15 | 7 | (46.7) | |||
Kanamycin | 7 | 5 | (71.4) | 21 | 15 | (71.4) | 28 | 20 | (71.4) | |||
Nalidixic Acid | 7 | 4 | (57.1) | 27 | 14 | (51.9) | 34 | 18 | (52.9) | |||
Nitrofurantoin | 8 | 1 | (12.5) | 18 | 8 | (44.4) | 26 | 9 | (34.6) | |||
Tetracycline | 21 | 10 | (47.6) | 2 | 2 | (100.0) | 23 | 12 | (52.2) | |||
Trimethoprim/ Sulfamethoxazole | 29 | 17 | (58.6) | 19 | 17 | (89.5) | 48 | 34 | (70.8) | |||
Ampicillin | 4 | 1 | (25.0) | 4 | 4 | (100.0) | 8 | 5 | (62.5) | |||
Ceftriaxone | 2 | 1 | (50.0) | 17 | 14 | (82.4) | 19 | 15 | (78.9) | |||
Streptomycin | 9 | 4 | (44.4) | 3 | 3 | (100.0) | 12 | 7 | (58.3) | |||
Erythromycin | 34 | 19 | (55.9) | 3 | 2 | (66.7) | 37 | 21 | (56.8) | |||
Oxacillin | 29 | 10 | (34.5) | 2 | 1 | (50.0) | 31 | 11 | (35.5) | |||
Penicillin | 16 | 13 | (81.3) | 1 | 1 | (100.0) | 17 | 14 | (82.4) | |||
Imipenem | 2 | 1 | (50.0) | 19 | 6 | (31.6) | 21 | 7 | (33.3) | |||
Novobiocin | 6 | 2 | (33.3) | 1 | 0 | (0.0) | 7 | 2 | (28.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koroma, Z.; Moses, F.; Delamou, A.; Hann, K.; Ali, E.; Kitutu, F.E.; Namugambe, J.S.; Harding, D.; Hermans, V.; Takarinda, K.; et al. High Levels of Antibiotic Resistance Patterns in Two Referral Hospitals during the Post-Ebola Era in Free-Town, Sierra Leone: 2017–2019. Trop. Med. Infect. Dis. 2021, 6, 103. https://doi.org/10.3390/tropicalmed6020103
Koroma Z, Moses F, Delamou A, Hann K, Ali E, Kitutu FE, Namugambe JS, Harding D, Hermans V, Takarinda K, et al. High Levels of Antibiotic Resistance Patterns in Two Referral Hospitals during the Post-Ebola Era in Free-Town, Sierra Leone: 2017–2019. Tropical Medicine and Infectious Disease. 2021; 6(2):103. https://doi.org/10.3390/tropicalmed6020103
Chicago/Turabian StyleKoroma, Zikan, Francis Moses, Alexandre Delamou, Katrina Hann, Engy Ali, Freddy Eric Kitutu, Juliet Sanyu Namugambe, Doris Harding, Veerle Hermans, Kudakwashe Takarinda, and et al. 2021. "High Levels of Antibiotic Resistance Patterns in Two Referral Hospitals during the Post-Ebola Era in Free-Town, Sierra Leone: 2017–2019" Tropical Medicine and Infectious Disease 6, no. 2: 103. https://doi.org/10.3390/tropicalmed6020103
APA StyleKoroma, Z., Moses, F., Delamou, A., Hann, K., Ali, E., Kitutu, F. E., Namugambe, J. S., Harding, D., Hermans, V., Takarinda, K., Thekkur, P., & Wurie, I. (2021). High Levels of Antibiotic Resistance Patterns in Two Referral Hospitals during the Post-Ebola Era in Free-Town, Sierra Leone: 2017–2019. Tropical Medicine and Infectious Disease, 6(2), 103. https://doi.org/10.3390/tropicalmed6020103