Extended Spectrum Beta-Lactamase Escherichia coli in River Waters Collected from Two Cities in Ghana, 2018–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.2.1. General Setting
2.2.2. Specific Setting: Accra and Its Sampling Locations
2.2.3. Specific Setting: Kasoa and Its Sampling Locations
2.3. Sample Site Selection
2.4. Sample Collection Period
2.5. Sampling Method
2.6. Laboratory Procedures
2.7. Quality Control Measures
2.8. Data Collection, Source of Data and Validation
2.9. Statistical Analysis
3. Results
3.1. Physical Characteristics of Water Samples
3.2. E. coli Concentrations (cfu/100 mL) in Water Samples in Accra and Kasoa
3.3. ESBL-Ec Concentrations (cfu/100 mL) in Water Samples in Accra and Kasoa
3.4. Percentage ESBL-Ec (cfu/100 mL) Concentrations in Water Samples in Accra and Kasoa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2017; pp. 1–28. Available online: https://www.paho.org/en/documents/global-action-plan-antimicrobial-resistance-2017 (accessed on 20 June 2021).
- World Organization for Animal Health. The OIE Strategy on Antimicrobial Resistance and the Prudent Use of Antimicrobials. 2016, pp. 1–61. Available online: https://www.oie.int/app/uploads/2021/03/en-oie-amrstrategy.pdf (accessed on 20 June 2021).
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef] [Green Version]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef]
- Obaidat, M.M.; Al-Zyoud, A.A.; Bani Salman, A.E.; Davis, M.A. Antimicrobial use and resistance among commensal Escherichia coli and Salmonella enterica in rural Jordan small ruminant herds. Small Rumin. Res. 2017, 149, 99–104. [Google Scholar] [CrossRef]
- Tadesse, B.T.; Ashley, E.A.; Ongarello, S.; Havumaki, J.; Wijegoonewardena, M.; González, I.J.; Dittrich, S. Antimicrobial resistance in Africa: A systematic review. BMC Infect. Dis. 2017, 17, 1–17. [Google Scholar] [CrossRef]
- Ogura, Y.; Ueda, T.; Nukazawa, K.; Hiroki, H.; Xie, H.; Arimizu, Y.; Hayashi, T.; Suzuki, Y. The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. Sci. Rep. 2020, 10, 17880. [Google Scholar] [CrossRef]
- Haberecht, H.B.; Nealon, N.J.; Gilliland, J.R.; Holder, A.V.; Runyan, C.; Oppel, R.C.; Ibrahim, H.M.; Mueller, L.; Schrupp, F.; Vilchez, S.; et al. Antimicrobial-Resistant Escherichia coli from Environmental Waters in Northern Colorado. J. Environ. Public Health 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulshus, E.; Kühn, I.; Möllby, R.; Colque, P.; O’Sullivan, K.; Midtvedt, T.; Lingaas, E.; Holmstad, R.; Sørum, H. Diversity and antibiotic resistance among Escherichia coli populations in hospital and community wastewater compared to wastewater at the receiving urban treatment plant. Water Res. 2019, 161, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Blaak, H.; De Kruijf, P.; Hamidjaja, R.A.; Van Hoek, A.H.A.M.; De Roda Husman, A.M.; Schets, F.M. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants. Vet. Microbiol. 2014, 171, 448–459. [Google Scholar] [CrossRef]
- Sabri, N.A.; Schmitt, H.; Van der Zaan, B.; Gerritsen, H.W.; Zuidema, T.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2018. [Google Scholar] [CrossRef]
- Manaia, C.M.; Rocha, J.; Scaccia, N.; Marano, R.; Radu, E.; Biancullo, F.; Cerqueira, F.; Fortunato, G.; Iakovides, I.C.; Zammit, I.; et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environ. Int. 2018, 115, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Wose Kinge, C.N.; Ateba, C.N.; Kawadza, D.T. Antibiotic resistance profiles of Escherichia coli isolated from different water sources in the Mmabatho locality, Northwest Province, South Africa. S. Afr. J. Sci. 2010, 106. [Google Scholar] [CrossRef] [Green Version]
- Schauss, T.; Glaeser, S.P.; Gütschow, A.; Dott, W.; Kämpfer, P. Improved Detection of Extended Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in Input and Output Samples of German Biogas Plants by a Selective Pre-Enrichment Procedure. PLoS ONE 2015, 10, e0119791. [Google Scholar] [CrossRef]
- Opintan, J.A.; Newman, M.J.; Arhin, R.E.; Donkor, E.S.; Gyansa-Lutterodt, M.; Mills-Pappoe, W. Laboratory-based nationwide surveillance of antimicrobial resistance in Ghana. Infect. Drug Resist. 2015, 8, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Obeng-Nkrumah, N.; Twum-Danso, K.; Krogfelt, K.A.; Newman, M.J. High levels of extended-spectrum beta-lactamases in a major teaching hospital in Ghana: The need for regular monitoring and evaluation of antibiotic resistance. Am. J. Trop. Med. Hyg. 2013, 89, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Amoako, D.G.; Allam, M.; Janice, J.; Pedersen, T.; Sundsfjord, A.; Essack, S. Genomic characterization of multidrug-resistant ESBL-producing Klebsiella pneumoniae isolated from a Ghanaian teaching hospital. Int. J. Infect. Dis. 2019, 85, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastasi, E.M.; Matthews, B.; Stratton, H.M.; Katouli, M. Pathogenic Escherichia coli found in sewage treatment plants and environmental waters. Appl. Environ. Microbiol. 2012, 78, 5536–5541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korzeniewska, E.; Korzeniewska, A.; Harnisz, M. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol. Environ. Saf. 2013, 91, 96–102. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environ. Pollut. 2017, 231, 829–836. [Google Scholar] [CrossRef]
- Adelowo, O.O.; Caucci, S.; Banjo, O.A.; Nnanna, O.C.; Awotipe, E.O.; Peters, F.B.; Fagade, O.E.; Berendonk, T.U. Extended Spectrum Beta-Lactamase (ESBL)-producing bacteria isolated from hospital wastewaters, rivers and aquaculture sources in Nigeria. Environ. Sci. Pollut. Res. 2018, 25, 2744–2755. [Google Scholar] [CrossRef] [PubMed]
- Aworh, M.K.; Kwaga, J.; Okolocha, E.; Harden, L.; Hull, D.; Hendriksen, R.S.; Thakur, S. Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook 2020, 2, 8. [Google Scholar] [CrossRef]
- Wang, Y.; Moe, C.L.; Teunis, P.F.M. Children Are Exposed to Fecal Contamination via Multiple Interconnected Pathways: A Network Model for Exposure Assessment. Risk Anal. 2018, 38, 2478–2496. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; Volume 4, ISBN 978-92-4-154995-0. Available online: http://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/ (accessed on 20 June 2021).
- Matheu, J.; Awa, A.-K.; Andremont, A. The ESBL Tricycle AMR Surveillance Project: A Simple, One Health Approach to Global Surveillance|AMR Control. Available online: http://resistancecontrol.info/2017/the-esbl-tricycle-amr-surveillance-project-a-simple-one-health-approach-to-global-surveillance/ (accessed on 22 March 2021).
- Johnson, A.; Ginn, O.; Bivins, A.; Rocha-Melogno, L.; Tripathi, S.N.; Brown, J. Extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli presence in urban aquatic environments in Kanpur, India. J. Water Health 2020. [CrossRef]
- Thanner, S.; Drissner, D.; Walsh, F. Antimicrobial Resistance in Agriculture. MBio 2016, 7, e02227-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Integrated Global Surveillance on ESBL-Producing E. coli Using a “One Health” Approach. Available online: https://www.who.int/publications/i/item/who-integrated-global-surveillance-on-esbl-producing-e.-coli-using-a-one-health-approach (accessed on 29 March 2021).
- Fund, F.; Davies, D.S.; Fund, F.; Organisation, A.; Organisation, W.; Health, A. The Fourth Improve Global Commandment Surveillance of Drug Resistance and Antimicrobial Consumption in Humans and Animals. Available online: extension://bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https%3A%2F%2Fcarb-x.org%2Fwp-content%2Fuploads%2F2018%2F12%2FSfAM-Ten-Commandments-.pdf (accessed on 20 June 2021).
- Ghana Statistical Services. Available online: https://www.statsghana.gov.gh/regionalpopulation.php?population=MTQ1MTUyODEyMC43MDc1&&Western®id=7 (accessed on 11 March 2021).
- Council of Scientific & Industrial Research. Water Resources of Ghana, 1st ed.; Philip Gyau-Boakye & Kwabena Kankam-Yeboah; CSIR-INSTI: Accra, Ghana, 2016; ISBN 978-9988-2-3380-2-3380-8. [Google Scholar]
- UWP Experts. Accra, Ghana Metro Area Population 1950–2021|MacroTrends. Available online: https://www.macrotrends.net/cities/21107/accra/population (accessed on 11 March 2021).
- Sagoe, G.; Danquah, F.S.; Amofa-Sarkodie, E.S.; Appiah-Effah, E.; Ekumah, E.; Mensah, E.K.; Karikari, K.S. GIS-aided optimisation of faecal sludge management in developing countries: The case of the Greater Accra Metropolitan Area, Ghana. Heliyon 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Bpd, K.C. Quick Stakeholder/Context Analysis of Public Toilets in Kumasi, Ghana: Initial Recommendations for WSUP; Unpublished Report; Building Partnership for Development in Water and Sanitation (BPD): London, UK, 2010. [Google Scholar]
- WSUP Situation Analysis of the Urban Sanitation Sector in Ghana—Water & Sanitation for the Urban Poor. Available online: https://www.wsup.com/insights/situation-analysis-of-the-urban-sanitation-sector-in-ghana/ (accessed on 1 March 2021).
- Agyemang, F.S.K.; Amedzro, K.K.; Silva, E. The emergence of city-regions and their implications for contemporary spatial governance: Evidence from Ghana. Cities 2017, 71, 70–79. [Google Scholar] [CrossRef] [Green Version]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri, L.S., Eds.; American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federati: Washington, DC, USA, 2012. [Google Scholar]
- ISO 19458:2005, IDT Water Quality—Sampling for Microbiological Analysis. CP 401—1214 Vernier, Geneva, Switzerland. Available online: https://www.iso.org/standard/33845.html (accessed on 20 June 2021).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; 547 Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; ISBN 1-56238-1-56238-805-3. Available online: https://www.iso.org (accessed on 20 June 2021).
- ISO 8199:2005 Water Quality—General Guidance on the Enumeration of micro-Organisms by Culture. Case Postale 56 CH-1211 Geneva 20, Switzerland. Available online: https://www.iso.org/standard/37011.html (accessed on 20 June 2021).
- WHO. Guidelines for the Safe Use of Wastewater, Excreta and Greywater—Volume 4; World Health Organization: Geneva, Switzerland; ISBN 1-56238-805-3. Available online: http://www.who.int/water_sanitation_health/publications/gsuweg4/en/ (accessed on 20 June 2021).
- EPA Sector Specific Effluent Quality Guidelines for Discharges; Ghana Environmental Protection Agency: Accra, Ghana, 2000.
- Nzima, B.; Adegoke, A.A.; Ofon, U.A.; Al-Dahmoshi, H.O.M.; Saki, M.; Ndubuisi-Nnaji, U.U.; Inyang, C.U. Resistotyping and extended-spectrum beta-lactamase genes among Escherichia coli from wastewater treatment plants and recipient surface water for reuse in South Africa. New Microbes New Infect. 2020, 38, 100803. [Google Scholar] [CrossRef]
- Amaya, E.; Reyes, D.; Paniagua, M.; Calderón, S.; Rashid, M.U.; Colque, P.; Kühn, I.; Möllby, R.; Weintraub, A.; Nord, C.E. Antibiotic resistance patterns of Escherichia coli isolates from different aquatic environmental sources in León, Nicaragua. Clin. Microbiol. Infect. 2012, 18, E347–E354. [Google Scholar] [CrossRef] [Green Version]
- Berendes, D.M.; de Mondesert, L.; Kirby, A.E.; Yakubu, H.; Lady, A.; Michiel, J.; Raj, S.; Robb, K.; Wang, Y.; Doe, B.; et al. Variation in E. coli concentrations in open drains across neighborhoods in Accra, Ghana: The influence of onsite sanitation coverage and interconnectedness of urban environments. Int. J. Hyg. Environ. Health 2020, 224, 113433. [Google Scholar] [CrossRef] [PubMed]
- Gyan, K. Planning and Provision of Public Infrastructure: A Case Study of Drainage Canals in Tema, Ghana; Iowa State University: Ames, Iowa, 2019; Available online: https://lib.dr.iastate.edu/creativecomponents (accessed on 20 June 2021).
- Gretsch, S.R.; Ampofo, J.A.; Baker, K.K.; Clennon, J.; Null, C.A.; Peprah, D.; Reese, H.; Robb, K.; Teunis, P.; Wellington, N.; et al. Quantification of exposure to fecal contamination in open drains in four neighborhoods in Accra, Ghana. J. Water Health 2016. [Google Scholar] [CrossRef] [Green Version]
- van den Bunt, G.; van Pelt, W.; Hidalgo, L.; Scharringa, J.; de Greeff, S.C.; Schürch, A.C.; Mughini-Gras, L.; Bonten, M.J.M.; Fluit, A.C. Prevalence, risk factors and genetic characterisation of extended-spectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae (ESBL-E and CPE): A community-based cross-sectional study, the Netherlands, 2014 to 2016. Euro Surveill. Bull. Eur. sur les Mal. Transm. Eur. Commun. Dis. Bull. 2019, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccio, M.E.; Verschuuren, T.; Conzelmann, N.; Martak, D.; Meunier, A.; Salamanca, E.; Delgado, M.; Guther, J.; Peter, S.; Paganini, J.; et al. Household acquisition and transmission of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae after hospital discharge of ESBL-positive index patients. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Maataoui, N.; Langendorf, C.; Berthe, F.; Bayjanov, J.R.; van Schaik, W.; Isanaka, S.; Grais, R.F.; Clermont, O.; Andremont, A.; Armand-Lefèvre, L.; et al. Increased risk of acquisition and transmission of ESBL-producing Enterobacteriaceae in malnourished children exposed to amoxicillin. J. Antimicrob. Chemother. 2020, 75, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Hocquet, D.; Muller, A.; Bertrand, X. What happens in hospitals does not stay in hospitals: Antibiotic-resistant bacteria in hospital wastewater systems. J. Hosp. Infect. 2016, 93, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.A.; Brugère, H.; Kérourédan, M.; Dupouy, V.; Toutain, P.-L.; Bousquet-Mélou, A.; Oswald, E.; Bibbal, D. Persistence and prevalence of pathogenic and extended-spectrum beta-lactamase-producing Escherichia coli in municipal wastewater treatment plant receiving slaughterhouse wastewater. Water Res. 2013, 47, 4719–4729. [Google Scholar] [CrossRef] [PubMed]
- Vivant, A.L.; Boutin, C.; Prost-Boucle, S.; Papias, S.; Hartmann, A.; Depret, G.; Ziebal, C.; Le Roux, S.; Pourcher, A.M. Free water surface constructed wetlands limit the dissemination of extended-spectrum beta-lactamase producing Escherichia coli in the natural environment. Water Res. 2016, 104, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. National Recommended Water Quality Criteria—Aquatic Life Criteria Table. Office of Water (4301T) 1200 Pennsylvania Avenue, N.W. Washington, DC, USA, 20460. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 20 June 2021).
- Stocker, M.D.; Penrose, M.; Pachepsky, Y.A. Spatial Patterns of Escherichia coli Concentrations in Sediment before and after High-Flow Events in a First-Order Creek. J. Environ. Qual. 2018, 47, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Pachepsky, Y.A.; Shelton, D.R. Escherichia Coli and Fecal Coliforms in Freshwater and Estuarine Sediments. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1067–1110. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, L.; Yang, K.; Zhang, Y.; Ye, C.; Chen, S.; Yu, X.; Huang, W.E.; Cui, L. Induction of Escherichia coli Into a VBNC State by Continuous-Flow UVC and Subsequent Changes in Metabolic Activity at the Single-Cell Level. Front. Microbiol. 2018, 9, 2243. [Google Scholar] [CrossRef]
- Hodgson, I. Performance of the Akosombo Waste Stabilization Ponds In Ghana. Ghana J. Sci. 2008, 47, 35–44. [Google Scholar] [CrossRef]
- Diwan, V.; Hanna, N.; Purohit, M.; Chandran, S.; Riggi, E.; Parashar, V.; Tamhankar, A.J.; Stålsby Lundborg, C. Seasonal variations in water-quality, antibiotic residues, resistant bacteria and antibiotic resistance genes of Escherichia coli isolates from water and sediments of the Kshipra River in Central India. Int. J. Environ. Res. Public Health 2018, 15, 1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciebin, B.W.; Brodsky, M.H.; Eddington, R.; Horsnell, G.; Choney, A.; Palmateer, G.; Ley, A.; Joshi, R.; Shears, G. Comparative evaluation of modified m-FC and m-TEC media for membrane filter enumeration of Escherichia coli in water. Appl. Environ. Microbiol. 1995, 61, 3940–3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricker, C.R.; Warden, P.S.; Eldred, B.J. Understanding the cause of false negative β-d-glucuronidase reactions in culture media containing fermentable carbohydrate. Lett. Appl. Microbiol. 2010, 50, 547–551. [Google Scholar] [CrossRef]
- Eurofins EPTIS—PT Scheme for Water Microbiology (EPTIS-ID 134754). Available online: https://www.eptis.bam.de/eptis/WebSearch/view/134754 (accessed on 18 March 2021).
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies*. Bull. World Health Organ. 2007, 85, 867–872. [Google Scholar] [CrossRef] [PubMed]
Summaries of Study Elements | |
---|---|
Number of Cities | Within One Country: Two Cities Should be Identified |
Eligible City | Major (capital) city where the analysis laboratories are located. This city must have a hospital health care facility and a wet market for the study of the two other Tricycle work packages; WP1 (ESBL-Ec in food chain) and WP2 (ESBL-Ec in humans). As well as a sentinel city of about 100,000 inhabitants, in proximity to the capital city. Both require the presence of a river. |
Who helps with the selection of sites | Within each city, the identification of collection sites for each sample type will be performed with the assistance of other authorities and specialists to identify the most representative sampling sites. |
Sample points | Four sample points from each city: Two hotspot sources, an upstream and a downstream point on rivers receiving wastewater from these cities. River water upstream of the city, representing pre-city impacts and other upstream activities in the catchment area—serves as a reference sample to detect the influence from the city. River water downstream of the city is representative of city impacts Communal waste (influent of a treatment plant, or major collecting sewers) representing human faecal material. Waste from a wet market (or slaughterhouse, if wet markets are not present), representing animal faecal material. |
Sampling rounds | Monthly sampling for one year. Number of samples: 2 cities × 4 samples × 8–12 rounds/year = 64–96 samples. |
Analysis parameters | Concentration of E. coli Concentration of ESBL producing E. coli (ESBL-Ec) Ratio ESBL-Ec over E. coli |
Sample Type | Sample Number | Median Concentration | (Q1 b, Q2 c) | ||
---|---|---|---|---|---|
(N) | (Ec a cfu/100 mL × 107) | cfu/100 mL × 107 | P d | ||
Sites | 0.00 | ||||
Upstream | 24 | 0.0018 | (0.00096, 0.0039) | ||
Downstream | 24 | 0.19 | (0.037, 0.54) | ||
Human wastewater | 24 | 0.37 | (0.13, 0.84) | ||
Animal wastewater | 24 | 4.8 | (2.4, 8.5) | ||
0.86 | |||||
Season | Wet | 48 | 0.21 | (0.0053, 0.21) | |
Dry | 48 | 0.32 | (0.019, 0.86) | ||
City | 0.23 | ||||
Accra | 48 | 0.40 | (0.032, 2.3) | ||
Kasoa | 48 | 0.06 | (0.008, 0.77) | ||
Sample Total | 96 | 0.3 | (0.008, 1.8) |
Sample Type | Sample Number | Median Concentration | (Q1 b, Q2 c) | ||
---|---|---|---|---|---|
(N) | (ESBL-Ec) a cfu/100 mL × 104 | cfu/100 mL × 104 | P d | ||
Sites | 0.00 | ||||
Upstream | 24 | 0.061 | (0.023, 0.092) | ||
Downstream | 24 | 9.30 | (1.90, 25) | ||
Human wastewater | 24 | 8.80 | (1.50, 47) | ||
Animal wastewater | 24 | 18 | (2.7, 39) | ||
Season | 0.94 | ||||
Wet | 48 | 3.5 | (0.31, 25) | ||
Dry | 48 | 4.3 | (0.35, 23) | ||
City | 0.03 | ||||
Accra | 48 | 17 | (0.44, 30) | ||
Kasoa | 48 | 1.5 | (0.20, 9.0) | ||
Sample Total | 96 | 4.2 | (0.31, 23) |
Sample Type | Sample Number | Median Proportion | (Q1 b, Q2 c) | ||
---|---|---|---|---|---|
(N) | (%ESBL-Ec) a | (cfu/100 mL) | P d | ||
Sites | 0.00 | ||||
Upstream | 24 | 2.93 | (1.57, 4.29) | ||
Downstream | 24 | 6.06 | (4.57, 7.64) | ||
Human wastewater | 24 | 1.58 | (1.04, 6.00) | ||
Animal wastewater | 24 | 0.30 | (0.10, 0.84) | ||
Season | 1.00 | ||||
Wet | 48 | 2.53 | (1.00, 6.10) | ||
Dry | 48 | 3.20 | (0.93, 6.01) | ||
City | 0.07 | ||||
Accra | 48 | 4.08 | (0.79, 6.37) | ||
Kasoa | 48 | 2.06 | (0.99, 5.32) | ||
Sample Total | 96 | 2.79 | (0.96, 6.03) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banu, R.A.; Alvarez, J.M.; Reid, A.J.; Enbiale, W.; Labi, A.-K.; Ansa, E.D.O.; Annan, E.A.; Akrong, M.O.; Borbor, S.; Adomako, L.A.B.; et al. Extended Spectrum Beta-Lactamase Escherichia coli in River Waters Collected from Two Cities in Ghana, 2018–2020. Trop. Med. Infect. Dis. 2021, 6, 105. https://doi.org/10.3390/tropicalmed6020105
Banu RA, Alvarez JM, Reid AJ, Enbiale W, Labi A-K, Ansa EDO, Annan EA, Akrong MO, Borbor S, Adomako LAB, et al. Extended Spectrum Beta-Lactamase Escherichia coli in River Waters Collected from Two Cities in Ghana, 2018–2020. Tropical Medicine and Infectious Disease. 2021; 6(2):105. https://doi.org/10.3390/tropicalmed6020105
Chicago/Turabian StyleBanu, Regina Ama, Jorge Matheu Alvarez, Anthony J. Reid, Wendemagegn Enbiale, Appiah-Korang Labi, Ebenezer D. O. Ansa, Edith Andrews Annan, Mark Osa Akrong, Selorm Borbor, Lady A. B. Adomako, and et al. 2021. "Extended Spectrum Beta-Lactamase Escherichia coli in River Waters Collected from Two Cities in Ghana, 2018–2020" Tropical Medicine and Infectious Disease 6, no. 2: 105. https://doi.org/10.3390/tropicalmed6020105
APA StyleBanu, R. A., Alvarez, J. M., Reid, A. J., Enbiale, W., Labi, A. -K., Ansa, E. D. O., Annan, E. A., Akrong, M. O., Borbor, S., Adomako, L. A. B., Ahmed, H., Mustapha, M. B., Davtyan, H., Owiti, P., Hedidor, G. K., Quarcoo, G., Opare, D., Kikimoto, B., Osei-Atweneboana, M. Y., & Schmitt, H. (2021). Extended Spectrum Beta-Lactamase Escherichia coli in River Waters Collected from Two Cities in Ghana, 2018–2020. Tropical Medicine and Infectious Disease, 6(2), 105. https://doi.org/10.3390/tropicalmed6020105