Bacteria and Their Antibiotic Resistance Profiles in Ambient Air in Accra, Ghana, February 2020: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.2.1. General Setting
2.2.2. Specific Setting
Meteorological Characteristics
Economic Activities
2.2.3. EPA of Ghana
2.2.4. EPA Air Quality Monitoring Program
2.3. Study Population and Periods
2.4. Data Variables and Sources of Data
2.5. Sampling and Testing Procedures and Data Collection
2.5.1. Sampling and Testing Procedures
Routine Air Quality Sampling Procedure
Quality Assurance for Routine Air Quality Sampling Procedure
Microbiology Procedures
2.5.2. Data Collection Procedures
2.6. Data Analysis
3. Results
3.1. Environmental and Meteorological Characteristics and Airborne Bacterial Counts
3.2. Presence of Selected Bacteria in Ambient Air Samples
3.3. Antibiotic Resistance Profiles of the Bacteria Identified in Ambient Air Samples
3.4. Association between PM10 Concentrations and Airborne Bacterial Counts, Selected Bacteria and Antibiotic Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. The Journal of Global Antimicrobial Resistance meets the World Health Organization (WHO). J. Glob. Antimicrob. Resist. 2019, 18, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Kuralayanapalya, S.P.; Patil, S.S.; Hamsapriya, S.; Shinduja, R.; Roy, P.; Id, R.G.A. Prevalence of extended-spectrum beta- lactamase producing bacteria from animal origin: A systematic review and meta-analysis report from India. PLoS ONE 2019, 14, e0221771. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Colbeck, I.; Sultan, S.; Ahmed, S. Bioaerosols in residential micro-environments in low income countries: A case study from Pakistan. Environ. Pollut. 2012, 168, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.; Kihlström, E.; Lagesson, V.; Wessen, B.; Szponar, B.; Larsson, L.; Tagesson, C. Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air 2004, 14, 74–82. [Google Scholar] [CrossRef]
- Bragoszewska, E.; Mainka, A.; Pastuszka, J.G.; Lizonczyk, K.; Desta, Y.G. Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere 2018, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Brochu, C.A. Eosuchus (Crocodylia, Gavialoidea) from the lower Eocene of the Isle of Sheepey, England. J. Vertebr. Paleontol. 2006, 26, 466–470. [Google Scholar] [CrossRef]
- De Freitas, L.C. Global Prio. Cad. Pesqui. 2013, 43, 348–365. [Google Scholar]
- Lee, T.; Grinshpun, S.A.; Martuzevicius, D.; Adhikari, A.; Crawford, C.M.; Reponen, T. Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmos. Environ. 2006, 40, 2902–2910. [Google Scholar] [CrossRef] [Green Version]
- Pompilio, A.; Di Bonaventura, G. Ambient air pollution and respiratory bacterial infections, a troubling association: Epidemiology, underlying mechanisms, and future challenges. Crit. Rev. Microbiol. 2020, 46, 600–630. [Google Scholar] [CrossRef]
- Abiola, I.; Abass, A.; Duodu, S.; Mosi, L. Characterization of culturable airborne bacteria and antibiotic susceptibility profiles of indoor and immediate-outdoor environments of a research institute in Ghana. AAS Open Res. 2018, 1, 17. [Google Scholar] [CrossRef]
- Mansour, G.; Esseku, H. Situation Analysis of the Urban Sanitation Sector in Ghana; Urban Sanitation Research Initiative Ghana: Accra, Ghana, 2017. [Google Scholar]
- EPA. The Greater Accra Metropolitan Areas Air Quality Management Plan 2018; EPA: Washington, DC, USA, 2018; ISBN 9789988285098.
- GSA. Ghana Standard for Environment and Health Protection, Requirements for Motor Vehicle Emissions; Ghana Standard Authority: Accra, Ghana, 2018.
- Breu, F.; Guggenbichler, S.; Wollmann, J. Environmental Protection Agency Act, 1994 Act 490. pp. 1–17. Available online: http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed on 10 June 2021).
- GSA. Ghana Standard for Environment and Health Protection-Requirements for Ambient Air Quality; GSA: Accra, Ghana, 2019.
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. 2009, pp. 1–13. Available online: https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro (accessed on 10 June 2021).
- Naz, N.; Nasim, F.U.H.; Pasha, T.S. Prevalence of antibiotic-resistant airborne bacteria along roadsides in Rahim Yar Khan, Pakistan. Pol. J. Environ. Stud. 2019, 28, 1295–1303. [Google Scholar] [CrossRef]
- Gao, X.L.; Shao, M.F.; Luo, Y.; Dong, Y.F.; Ouyang, F.; Dong, W.Y.; Li, J. Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. Sci. Total Environ. 2016, 572, 681–687. [Google Scholar] [CrossRef]
- Madhwal, S.; Prabhu, V.; Sundriyal, S.; Shridhar, V. Ambient bioaerosol distribution and associated health risks at a high traffic density junction at Dehradun city, India. Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef] [Green Version]
- Rajasekar, A.; Balasubramanian, R. Assessment of airborne bacteria and fungi in food courts. Build. Environ. 2011, 46, 2081–2087. [Google Scholar] [CrossRef]
- Morakinyo, O.M.; Mokgobu, M.I.; Mukhola, M.S. Biological Composition of Respirable Particulate Matter in an Industrial Vicinity in South Africa. Int. J. Environ. Res. Public Health 2019, 16, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, P.C.B. Bacillus. In Galveston (TX); Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; ISBN 0-9631172-1-1. [Google Scholar]
- Kozajda, A.; Jeżak, K.; Kapsa, A. Airborne Staphylococcus aureus in different environments—A review. Environ. Sci. Pollut. Res. 2019, 26, 34741–34753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, M.S.; Mridha, F.; Islam, S.; Shorifujjaman, M. Microbiological pollutants in air and antibiotic resistance profile of some bacterial isolates. Jahangirnagar Univ. J. Biol. Sci. 2016, 5, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Naruka, K.; Gaur, J. Distribution Pattern of Airborne Bacteria and Fungi at Market Area. Am. J. Sci. Res. 2014, 9, 186–192. [Google Scholar] [CrossRef]
- Ogugbue, C. Assessment of microbial air contamination of post processed garri on sale in markets. Afr. J. Food Sci. 2011, 5, 503–512. Available online: https://academicjournals.org/article/article1380017811_Ogugbue%20et%20al.pdf (accessed on 10 June 2021).
- Islam, A.; Kabir, S.; Khair, A. Molecular Identification and Evaluation of Indigenous Bacterial Isolates for Their Plant Growth Promoting and Biological Control Activities against Fusarium Wilt Pathogen of Tomato. Plant Pathol. J. 2019, 35, 137–148. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). Antimicrobial Resistance: Global Report on Surveillance 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Yevutsey, S.K.; Buabeng, K.O.; Aikins, M.; Anto, B.P.; Biritwum, R.B.; Frimodt-Møller, N.; Gyansa-Lutterodt, M. Situational analysis of antibiotic use and resistance in Ghana: Policy and regulation. BMC Public Health 2017, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Carrión, D.; Kaali, S.; Kinney, P.L.; Owusu-Agyei, S.; Chillrud, S.; Yawson, A.K.; Quinn, A.; Wylie, B.; Ae-Ngibise, K.; Lee, A.G.; et al. Examining the relationship between household air pollution and infant microbial nasal carriage in a Ghanaian cohort. Environ. Int. 2019, 133, 105150. [Google Scholar] [CrossRef]
- Hodgson, A.; Smith, T.; Gagneux, S.; Adjuik, M.; Pluschke, G.; Mensah, N.K.; Binka, F.; Genton, B. Risk factors for meningococcal meningitis in northern Ghana. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liao, H.; Yao, H. Prevalence of antibiotic resistance genes in air-conditioning systems in hospitals, farms, and residences. Int. J. Environ. Res. Public Health 2019, 16, 683. [Google Scholar] [CrossRef] [Green Version]
Sampling Sites N | Temperature (°C) Median (Range) | Relative Humidity (%) Median (Range) | Wind Speed (km/h) Median (Range) | PM10 Concentration (µg/m3) Median (Range) | |||||
---|---|---|---|---|---|---|---|---|---|
All sites | 12 | 32 | (27–38) | 84 | (66–96) | 21 | (16–25) | 119 | (83–236) |
Roadside | 7 | 35 | (31–38) | 86 | (66–96) | 21 | (18–25) | 126 | (97–236) |
Industrial | 2 | 29 | (29–30) | 84 | (82–86) | 19 | (16–22) | 90 | (83–97) |
Residential | 3 | 27 | (27–38) | 80 | (79–82) | 18 | (16–20) | 111 | (83–153) |
Sampling Sites N | Airborne Bacteria Count (CFU/m3) Median (Range) | ||
---|---|---|---|
All sites | 12 | 35,150 | (1080–186,000) |
Roadside | 7 | 115,000 | (6700–186,000) |
Industrial | 2 | 35,150 | (9300–61,000) |
Residential | 3 | 1210 | (1080–6000) |
Organisms | Type of Site | |||||
---|---|---|---|---|---|---|
Roadside n = 7 | Industrial n = 2 | Residential n = 3 | ||||
(%) | (%) | (%) | ||||
Pseudomonas aeruginosa | 0 | (0) | 0 | (0) | 1 | (33) |
Escherichia coli | 1 | (14) | 1 | (50) | 0 | (0) |
Pseudomonas species | 2 | (29) | 1 | (50) | 0 | (0) |
Non-hemolytic Streptococci | 1 | (14) | 0 | (0) | 0 | (0) |
Bacillus species | 7 | (100) | 2 | (100) | 3 | (100) |
Coliforms | 1 | (14) | 0 | (0) | 0 | (0) |
Staphylococci species | 2 | (29) | 2 | (50) | 0 | (0) |
Bacterial Isolates | Resistance Profiles to Selected Antibiotics | N | (%) |
---|---|---|---|
Pseudomonas aeruginosa | 1 | ||
Penicillin | 0 | ||
Ampicillin | 0 | ||
Ciprofloxacin | 0 | ||
Ceftriaxone | 0 | ||
Escherichia coli | 2 | ||
Penicillin | 0 | ||
Ampicillin | 2 | (100) | |
Ciprofloxacin | 2 | (100) | |
Ceftriaxone | 2 | (100) | |
Pseudomonas species | 3 | ||
Penicillin | 0 | ||
Ampicillin | 0 | ||
Ciprofloxacin | 0 | ||
Ceftriaxone | 0 | ||
Non-hemolytic Streptococci | 1 | ||
Penicillin | 0 | ||
Ampicillin | 1 | (50) | |
Ciprofloxacin | 0 | ||
Ceftriaxone | 0 | ||
Bacillus species | 12 | ||
Penicillin | 0 | ||
Ampicillin | 0 | ||
Ciprofloxacin | 0 | ||
Ceftriaxone | 0 | ||
Coliforms | 1 | ||
Penicillin | 0 | ||
Ampicillin | 0 | ||
Ciprofloxacin | 0 | ||
Ceftriaxone | 1 | (50) | |
Staphylococci species | 4 | ||
Penicillin | 2 | (50) | |
Ampicillin | 2 | (50) | |
Ciprofloxacin | 0 | (50) | |
Ceftriaxone | 2 | (50) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azaglo, G.S.K.; Khogali, M.; Hann, K.; Pwamang, J.A.; Appoh, E.; Appah-Sampong, E.; Agyarkwa, M.A.-K.; Fiati, C.; Kudjawu, J.; Hedidor, G.K.; et al. Bacteria and Their Antibiotic Resistance Profiles in Ambient Air in Accra, Ghana, February 2020: A Cross-Sectional Study. Trop. Med. Infect. Dis. 2021, 6, 110. https://doi.org/10.3390/tropicalmed6030110
Azaglo GSK, Khogali M, Hann K, Pwamang JA, Appoh E, Appah-Sampong E, Agyarkwa MA-K, Fiati C, Kudjawu J, Hedidor GK, et al. Bacteria and Their Antibiotic Resistance Profiles in Ambient Air in Accra, Ghana, February 2020: A Cross-Sectional Study. Tropical Medicine and Infectious Disease. 2021; 6(3):110. https://doi.org/10.3390/tropicalmed6030110
Chicago/Turabian StyleAzaglo, Godfred Saviour Kudjo, Mohammed Khogali, Katrina Hann, John Alexis Pwamang, Emmanuel Appoh, Ebenezer Appah-Sampong, Meldon Ansah-Koi Agyarkwa, Carl Fiati, Jewel Kudjawu, George Kwesi Hedidor, and et al. 2021. "Bacteria and Their Antibiotic Resistance Profiles in Ambient Air in Accra, Ghana, February 2020: A Cross-Sectional Study" Tropical Medicine and Infectious Disease 6, no. 3: 110. https://doi.org/10.3390/tropicalmed6030110
APA StyleAzaglo, G. S. K., Khogali, M., Hann, K., Pwamang, J. A., Appoh, E., Appah-Sampong, E., Agyarkwa, M. A. -K., Fiati, C., Kudjawu, J., Hedidor, G. K., Akumwena, A., Timire, C., Tweya, H., Opintan, J. A., & Harries, A. D. (2021). Bacteria and Their Antibiotic Resistance Profiles in Ambient Air in Accra, Ghana, February 2020: A Cross-Sectional Study. Tropical Medicine and Infectious Disease, 6(3), 110. https://doi.org/10.3390/tropicalmed6030110