Burden, Antibiotic Resistance, and Clonality of Shigella spp. Implicated in Community-Acquired Acute Diarrhoea in Lilongwe, Malawi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Consideration
2.2. Study Design, Sample Population and Sample Collection
2.3. Culture and Identification of Isolates
2.4. Molecular Confirmation of Shigella spp.
2.5. Antibiotic Susceptibility Testing (AST)
2.6. Identification of Resistance and Virulence Genes
2.7. Analysis of Clonality Using Enterobacterial-Repetitive-Polymerase Chain Reaction (ERIC-PCR)
3. Results
3.1. Prevalence of Shigella spp. and Patients’ Demographics
3.2. Antibiogram and Analysis of Resistance Genes
3.3. Detection of Genes Encoding Virulence Factors
3.4. Clonal Relationships
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kotloff, K.L.; Platts-Mills, J.A.; Nasrin, D.; Roose, A.; Blackwelder, W.C.; Levine, M.M. Global burden of diarrheal diseases among children in developing countries: Incidence, etiology, and insights from new molecular diagnostic techniques. Vaccine 2017, 35, 6783–6789. [Google Scholar] [CrossRef] [PubMed]
- Sansonetti, P.J. Shigellosis: An old disease in new clothes? PLoS Med. 2006, 3, e354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjbar, R.; Farahani, A. Shigella: Antibiotic-resistance mechanisms and new horizons for treatment. Infect. Drug Resist. 2019, 12, 3137–3167. [Google Scholar] [CrossRef] [Green Version]
- Sati, H.F.; Bruinsma, N.; Galas, M.; Hsieh, J.; Sanhueza, A.; Ramon Pardo, P.; Espinal, M.A. Characterizing Shigella species distribution and antimicrobial susceptibility to ciprofloxacin and nalidixic acid in Latin America between 2000–2015. PLoS ONE 2019, 14, e0220445. [Google Scholar] [CrossRef] [Green Version]
- Morales-López, S.; Yepes, J.A.; Prada-Herrera, J.C.; Torres-Jiménez, A. Enterobacteria in the 21st century: A review focused on taxonomic changes. J. Infect. Dev. Ctries. 2019, 13, 265–273. [Google Scholar] [CrossRef]
- Barrantes, K.; Achí, R. The importance of integrons for development and propagation of resistance in Shigella: The case of Latin America. Braz. J. Microbiol. 2016, 47, 800–806. [Google Scholar] [CrossRef] [Green Version]
- Nave, H.H.; Mansouri, S.; Sadeghi, A.; Moradi, M. Molecular diagnosis and anti-microbial resistance patterns among Shigella spp. isolated from patients with diarrhea. Gastroenterol. Hepatol. Bed Bench 2016, 9, 205–210. [Google Scholar]
- Hosseini Nave, H.; Mansouri, S.; Emaneini, M.; Moradi, M. Distribution of genes encoding virulence factors and molecular analysis of Shigella spp. isolated from patients with diarrhea in Kerman, Iran. Microb. Pathog. 2016, 92, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Omona, S.; Malinga, G.M.; Opoke, R.; Openy, G.; Opiro, R. Prevalence of diarrhoea and associated risk factors among children under five years old in Pader District, northern Uganda. BMC Infect. Dis. 2020, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.; The, H.C. Recent insights into Shigella: A major contributor to the global diarrhoeal disease burden. Curr. Opin. Infect. Dis. 2018, 31, 449–454. [Google Scholar] [CrossRef]
- Ministry of Health. Malawi Standard Treatment Guidelines (MSTG), 5th ed.; Ministry of Health: Lilongwe, Malawi, 2015.
- Hussen, S.; Mulatu, G.; Yohannes Kassa, Z. Prevalence of Shigella species and its drug resistance pattern in Ethiopia: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shahsavan, S.; Owlia, P.; Rastegar Lari, A.; Bakhshi, B.; Nobakht, M. Investigation of efflux-mediated tetracycline resistance in Shigella isolates using the inhibitor and real time polymerase chain reaction method. Iran. J. Pathol. 2017, 12, 53–61. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Bhattacharya, H.; Thamizhmani, R.; Sayi, D.S.; Reesu, R.; Anwesh, M.; Kartick, C.; Bharadwaj, A.P.; Singhania, M.; Sugunan, A.P.; et al. Shigellosis in bay of Bengal Islands, India: Clinical and seasonal patterns, surveillance of antibiotic susceptibility patterns, and molecular characterization of multidrug-resistant Shigella strains isolated during a 6-year period from 2006 to 2011. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of drug resistance: Quinolone resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef] [Green Version]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, B.A.; Amyes, S.G.B. OXA β-lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar] [CrossRef] [Green Version]
- Adelowo, O.O.; Helbig, T.; Knecht, C.; Reincke, F.; Mäusezahl, I.; Müller, J.A. High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. PLoS ONE 2018, 13, e0208269. [Google Scholar] [CrossRef] [Green Version]
- Hammerum, A.M.; Sandvang, D.; Andersen, S.R.; Seyfarth, A.M.; Porsbo, L.J.; Frimodt-Møller, N.; Heuer, O.E. Detection of sul1, sul2 and sul3 in sulphonamide resistant Escherichia coli isolates obtained from healthy humans, pork and pigs in Denmark. Int. J. Food Microbiol. 2006, 106, 235–237. [Google Scholar] [CrossRef]
- Perreten, V.; Boerlin, P. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob. Agents Chemother. 2003, 47, 1169–1172. [Google Scholar] [CrossRef] [Green Version]
- Von Seidlein, L.; Deok, R.K.; Ali, M.; Lee, H.; Wang, X.Y.; Vu, D.T.; Do, G.C.; Chaicumpa, W.; Agtini, M.D.; Hossain, A.; et al. A multicentre study of Shigella diarrhoea in six Asian countries: Disease burden, clinical manifestations, and microbiology. PLoS Med. 2006, 3, e353. [Google Scholar] [CrossRef]
- Williams, P.C.M.; Isaacs, D.; Berkley, J.A. Antimicrobial resistance among children in sub-Saharan Africa. Lancet Infect. Dis. 2018, 18, e33–e44. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, W.; Nsaibia, S.; Majouri, D.; Ben Hassen, A.; Gharbi, A.; Aouni, M. Detection and characterization of Shigella species isolated from food and human stool samples in Nabeul, Tunisia, by molecular methods and culture techniques. J. Appl. Microbiol. 2012, 113, 209–222. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 7.0. 2017. Available online: http://www.eucast.org (accessed on 7 September 2020).
- Seol, S.Y.; Kim, Y.T.; Jeong, Y.S.; Oh, J.Y.; Kang, H.Y.; Moon, D.C.; Kim, J.; Lee, Y.C.; Cho, D.T.; Lee, J.C. Molecular characterization of antimicrobial resistance in Shigella sonnei isolates in Korea. J. Med. Microbiol. 2006, 55, 871–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardo, M.N.; G-Dayanandan, N.; Wright, D.L.; Anderson, A.C. Crystal structures of trimethoprim-resistant dfrA1 rationalize potent inhibition by propargyl-linked antifolates. ACS Infect. Dis. 2016, 2, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thungapathra, M.; Amita; Sinha, K.K.; Chaudhuri, S.R.; Garg, P.; Ramamurthy, T.; Nair, G.B.; Ghosh, A. Occurrence of antibiotic resistance gene cassettes aac(6′)-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob. Agents Chemother. 2002, 46, 2948–2955. [Google Scholar] [CrossRef] [Green Version]
- Al-Assil, B.; Mahfoud, M.; Hamzeh, A.R. First report on class 1 integrons and Trimethoprim-resistance genes from dfrA group in uropathogenic E. coli (UPEC) from the Aleppo area in Syria. Mob. Genet. Elements 2013, 3, e25204. [Google Scholar] [CrossRef] [Green Version]
- Ouellette, M.; Bissonnette, L.; Roy, P.H. Precise insertion of antibiotic resistance determinants into Tn2l-like transposons: Nucleotide sequence of the OXA-1. Proc. Natl. Acad. Sci. USA 1987, 84, 7378–7382. [Google Scholar] [CrossRef] [Green Version]
- Chmelnitsky, I.; Carmeli, Y.; Leavitt, A.; Schwaber, M.J.; Navon-Venezia, S. CTX-M-2 and a new CTX-M-39 enzyme are the major extended-spectrum beta-lactamases in multiple Escherichia coli clones isolated in Tel Aviv, Israel. Antimicrob. Agents Chemother. 2005, 49, 4745–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaghoubi, S.; Ranjbar, R.; Dallal, M.M.S.; Fard, S.Y.; Shirazi, M.H.; Mahmoudi, M. Profiling of virulence-associated factors in Shigella species isolated from acute pediatric diarrheal samples in Tehran, Iran. Osong Public Health Res. Perspect. 2017, 8, 220–226. [Google Scholar] [CrossRef]
- Avcioglu, N.H.; Bilkay, I.S. Antibiotic resistance, multidrug resistance and enterobacterial repetitive intergenic consensus polymerase chain reaction profiles of clinically important Klebsiella species. Asian Biomed. 2016, 10, 41–47. [Google Scholar]
- Chukwu, M.O.; Abia, A.L.K.; Ubomba-Jaswa, E.; Obi, L.C.; Dewar, J.B. Antibiotic Resistance Profile and Clonality of E. coli Isolated from Water and Paediatric Stool Samples in the North-West, Province South Africa. J. Pure Appl. Microbiol. 2019, 13, 517–530. [Google Scholar] [CrossRef] [Green Version]
- Nygren, B.L.; Schilling, K.A.; Blanton, E.M.; Silk, B.J.; Cole, D.J.; Mintz, E.D. Foodborne outbreaks of shigellosis in the USA, 1998–2008. Epidemiol. Infect. 2013, 141, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahsay, A.G.; Muthupandian, S. A review on Sero diversity and antimicrobial resistance patterns of Shigella species in Africa, Asia and South America, 2001–2014. BMC Res. Notes 2016, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Khaghani, S.; Shamsizadeh, A.; Nikfar, R.; Hesami, A. Shigella flexneri: A three-year antimicrobial resistance monitoring of isolates in a Children Hospital, Ahvaz, Iran. Iran. J. Microbiol. 2014, 6, 225–229. [Google Scholar] [PubMed]
- Mulu, W.; Abera, B.; Yimer, M.; Hailu, T.; Ayele, H.; Abate, D. Bacterial agents and antibiotic resistance profiles of infections from different sites that occurred among patients at Debre Markos Referral Hospital, Ethiopia: A cross-sectional study. BMC Res. Notes 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, B.; Qiu, S.; Xia, Y.; Liang, B.; Yang, C.; Dong, N.; Li, Y.; Xiang, Y.; Wang, S.; et al. Dominant serotype distribution and antimicrobial resistance profile of Shigella spp. in Xinjiang, China. PLoS ONE 2018, 13, e0195259. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.; Sansonetti, P.J.; Marteyn, B.S. Shigella diversity and changing landscape: Insights for the twenty-first century. Front. Cell. Infect. Microbiol. 2016, 6, 45. [Google Scholar] [CrossRef]
- Mao, Y.; Cui, E.; Bao, C.; Liu, Z.; Chen, S.; Zhang, J.; Wang, H.; Zhang, C.; Zou, J.; Klena, J.D.; et al. Changing trends and serotype distribution of Shigella species in Beijing from 1994 to 2010. Gut Pathog. 2013, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Moosavian, M.; Ghaderiyan, G.H.; Shahin, M.; Navidifar, T. First investigation of the presence of SPATE genes in Shigella species isolated from children with diarrhea infection in Ahvaz, southwest Iran. Infect. Drug Resist. 2019, 12, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Winter, S.C.; Dreibelbis, R.; Dzombo, M.N.; Barchi, F. A mixed-methods study of women’s sanitation utilization in informal settlements in Kenya. PLoS ONE 2019, 14, e0214114. [Google Scholar] [CrossRef]
- Mhaske, M.S.; Pandve, H.T.; Kevin, F.; Khismatrao, D.S.; Kundap, R.P. Morbidity pattern and personal hygiene in children among private primary school in urban area: Are the trends changing? J. Fam. Med. Prim. Care 2013, 2, 266. [Google Scholar] [CrossRef]
- Kawakatsu, Y.; Tanaka, J.; Ogawa, K.; Ogendo, K.; Honda, S. Community unit performance: Factors associated with childhood diarrhea and appropriate treatment in Nyanza Province, Kenya. BMC Public Health 2017, 17, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puzari, M.; Sharma, M.; Chetia, P. Emergence of antibiotic resistant Shigella species: A matter of concern. J. Infect. Public Health 2018, 11, 451–454. [Google Scholar] [CrossRef]
- Surafel, K.; Geda, K.; Asefa, K. Prevalence of Shigella related diarrhea in Ambo Town and antibiotic susceptibility of the isolated strains. Greener J. Epidemiol. Public Health 2015, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Belay, A.; Ashagrie, M.; Seyoum, B.; Alemu, M.; Tsegaye, A. Prevalence of enteric pathogens, intestinal parasites and resistance profile of bacterial isolates among HIV infected and non-infected diarrheic patients in Dessie Town, Northeast Ethiopia. PLoS ONE 2020, 15, e0243479. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.; Chandler, C. Knowing antimicrobial resistance in practice: A multi-country qualitative study with human and animal healthcare professionals. Glob. Health Action 2019, 12, 1599560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegde, S.; Benoit, S.R.; Arvelo, W.; Lindblade, K.; López, B.; McCracken, J.P.; Bernart, C.; Roldan, A.; Bryan, J.P. Burden of laboratory-confirmed shigellosis infections in Guatemala 2007–2012: Results from a population-based surveillance system. BMC Public Health 2019, 19, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avakh Majalan, P.; Hajizade, A.; Nazarian, S.; Pourmand, M.R.; Siyavoshani, K.A. Investigating the prevalence of Shigella species and their antibiotic resistance pattern in children with acute diarrhea referred to selected hospitals in Tehran, Iran. J. Appl. Biotechnol. Rep. 2018, 5, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.S.; Rahman, M.; Islam, R.; Banik, A.; Amin, M.B.; Akter, F.; Talukder, K.A. Plasmid-mediated sulfamethoxazole resistance encoded by the sul2 gene in the multidrug-resistant Shigella flexneri 2a isolated from patients with acute diarrhea in Dhaka, Bangladesh. PLoS ONE 2014, 9, e85338. [Google Scholar] [CrossRef] [PubMed]
- Mattock, E.; Blocker, A.J. How do the virulence factors of Shigella work together to cause disease? Front. Cell. Infect. Microbiol. 2017, 7, 1–24. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Riddle, M.S.; Platts-Mills, J.A.; Pavlinac, P.; Zaidi, A.K.M. Shigellosis. Lancet 2018, 391, 801–812. [Google Scholar] [CrossRef]
- Shahnaij, M.; Latif, H.A.; Azmi, I.J.; Amin, M.B.; Luna, S.J.; Islam, M.A.; Talukder, K.A. Characterization of a serologically atypical Shigella flexneri Z isolated from diarrheal patients in Bangladesh and a proposed serological scheme for Shigella flexneri. PLoS ONE 2018, 13, e0202704. [Google Scholar] [CrossRef] [PubMed]
- Al-Maamory, E.H.; Al-Khafaji, J.K.; Al-Masoudi, H.K. Detection the virulence-associated genes in Shigella species isolated from diarrheal samples in Babylon Province. J. Pharm. Sci. Res. 2018, 10, 3201–3206. [Google Scholar]
- Venkatesan, M.M.; Buysse, J.M.; Kopecko, D.J. Characterization of invasion plasmid antigen genes (ipaBCD) from Shigella flexneri. Proc. Natl. Acad. Sci. USA 1988, 85, 9317–9321. [Google Scholar] [CrossRef] [Green Version]
- Pilla, G.; McVicker, G.; Tang, C.M. Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences. PLoS Genet. 2017, 13, e1007014. [Google Scholar] [CrossRef] [PubMed]
- Ruppitsch, W. Molecular typing of bacteria for epidemiological surveillance and outbreak investigation/Molekulare Typisierung von Bakterien für die epidemiologische Überwachung und Ausbruchsabklärung. Die Bodenkult. J. Land Manag. Food Environ. 2016, 67, 199–224. [Google Scholar] [CrossRef] [Green Version]
- Lluque, A.; Mosquito, S.; Gomes, C.; Riveros, M.; Durand, D.; Tilley, D.H.; Bernal, M.; Prada, A.; Ochoa, T.J.; Ruiz, J. Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru). Int. J. Med. Microbiol. 2015, 305, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Olortegui, M.P.; Hall, E.; Yori, P.P.; Gilman, R.H.; Burga, R.; Sanchez, G.M.; Bao, J.P.; Kosek, M.; Chavez, C.B.; Calderon, M.; et al. Facilitated molecular typing of Shigella isolates using ERIC-PCR. Am. J. Trop. Med. Hyg. 2012, 86, 1018–1025. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phiri, A.F.N.D.; Abia, A.L.K.; Amoako, D.G.; Mkakosya, R.; Sundsfjord, A.; Essack, S.Y.; Simonsen, G.S. Burden, Antibiotic Resistance, and Clonality of Shigella spp. Implicated in Community-Acquired Acute Diarrhoea in Lilongwe, Malawi. Trop. Med. Infect. Dis. 2021, 6, 63. https://doi.org/10.3390/tropicalmed6020063
Phiri AFND, Abia ALK, Amoako DG, Mkakosya R, Sundsfjord A, Essack SY, Simonsen GS. Burden, Antibiotic Resistance, and Clonality of Shigella spp. Implicated in Community-Acquired Acute Diarrhoea in Lilongwe, Malawi. Tropical Medicine and Infectious Disease. 2021; 6(2):63. https://doi.org/10.3390/tropicalmed6020063
Chicago/Turabian StylePhiri, Abel F.N.D., Akebe Luther King Abia, Daniel Gyamfi Amoako, Rajab Mkakosya, Arnfinn Sundsfjord, Sabiha Y. Essack, and Gunnar Skov Simonsen. 2021. "Burden, Antibiotic Resistance, and Clonality of Shigella spp. Implicated in Community-Acquired Acute Diarrhoea in Lilongwe, Malawi" Tropical Medicine and Infectious Disease 6, no. 2: 63. https://doi.org/10.3390/tropicalmed6020063
APA StylePhiri, A. F. N. D., Abia, A. L. K., Amoako, D. G., Mkakosya, R., Sundsfjord, A., Essack, S. Y., & Simonsen, G. S. (2021). Burden, Antibiotic Resistance, and Clonality of Shigella spp. Implicated in Community-Acquired Acute Diarrhoea in Lilongwe, Malawi. Tropical Medicine and Infectious Disease, 6(2), 63. https://doi.org/10.3390/tropicalmed6020063