New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections—A Narrative Mini-Review on Challenges in the Tropics
Abstract
:1. Introduction
2. Methods
3. Pre-Analytics–on Storage and Transport Conditions
4. Nucleic Acid Extraction–Challenges for a “One-Size-Fits-All” Solution
5. The Choice of the Assay and Validation-Associated Issues
6. Post-Analytics–the “Infection or Colonization” Decision
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mullis, K.B.; Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987, 155, 335–350. [Google Scholar] [PubMed]
- Lüscher, D.; Altwegg, M. Detection of shigellae, enteroinvasive and enterotoxigenic Escherichia coli using the polymerase chain reaction (PCR) in patients returning from tropical countries. Mol. Cell. Probes 1994, 8, 285–290. [Google Scholar] [CrossRef]
- Van Lint, P.; De Witte, E.; Ursi, J.P.; Van Herendael, B.; Van Schaeren, J. A screening algorithm for diagnosing bacterial gastroenteritis by real-time PCR in combination with guided culture. Diagn. Microbiol. Infect. Dis. 2016, 85, 255–259. [Google Scholar] [CrossRef]
- Beal, S.G.; Tremblay, E.E.; Toffel, S.; Velez, L.; Rand, K.H. A Gastrointestinal PCR Panel Improves Clinical Management and Lowers Health Care Costs. J. Clin. Microbiol. 2017, 56. [Google Scholar] [CrossRef] [Green Version]
- Wiemer, D.; Schwarz, N.G.; Burchard, G.D.; Frickmann, H.; Loderstaedt, U.; Hagen, R.M. Surveillance of enteropathogenic bacteria, protozoa and helminths in travellers returning from the tropics. Eur. J. Microbiol. Immunol. 2020, 10, 147–155. [Google Scholar] [CrossRef]
- Antikainen, J.; Kantele, A.; Pakkanen, S.H.; Lääveri, T.; Riutta, J.; Vaara, M.; Kirveskari, J. A quantitative polymerase chain reaction assay for rapid detection of 9 pathogens directly from stools of travelers with diarrhea. Clin. Gastroenterol. Hepatol. 2013, 11, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Eibach, D.; Krumkamp, R.; Hahn, A.; Sarpong, N.; Adu-Sarkodie, Y.; Leva, A.; Käsmaier, J.; Panning, M.; May, J.; Tannich, E. Application of a multiplex PCR assay for the detection of gastrointestinal pathogens in a rural African setting. BMC Infect. Dis. 2016, 16, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, B.A.; Martin, G.J.; Riddle, M.S. Use of the Multiplex Diagnostic PCR Panel in Diarrheal Disease: Expert Guidance on the Interpretation of Results with a Focus on Travelers’ Diarrhea. Am. J. Gastroenterol. 2020, 115, 1553–1555. [Google Scholar] [CrossRef] [PubMed]
- Gautret, P.; Schlagenhauf, P.; Gaudart, J.; Castelli, F.; Brouqui, P.; von Sonnenburg, F.; Loutan, L.; Parola, P. GeoSentinel Surveillance Network. Multicenter EuroTravNet/GeoSentinel study of travel-related infectious diseases in Europe. Emerg. Infect. Dis. 2009, 15, 1783–1790. [Google Scholar] [CrossRef]
- Leder, K.; Torresi, J.; Libman, M.D.; Cramer, J.P.; Castelli, F.; Schlagenhauf, P.; Wilder-Smith, A.; Wilson, M.E.; Keystone, J.S.; Schwartz, E.; et al. GeoSentinel Surveillance Network. GeoSentinel surveillance of illness in returned travelers, 2007–2011. Ann. Intern. Med. 2013, 158, 456–468. [Google Scholar] [CrossRef] [Green Version]
- Frickmann, H.; Warnke, P.; Frey, C.; Schmidt, S.; Janke, C.; Erkens, K.; Schotte, U.; Köller, T.; Maaßen, W.; Podbielski, A.; et al. Surveillance of Food- and Smear-Transmitted Pathogens in European Soldiers with Diarrhea on Deployment in the Tropics: Experience from the European Union Training Mission (EUTM) Mali. Biomed. Res. Int. 2015, 2015, 573904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachiya, M.; Kikuchi, H.; Mizoue, T. Descriptive epidemiology of travel-associated diarrhea based on surveillance data at Narita International Airport. J. Travel Med. 2010, 17, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Krumkamp, R.; Sarpong, N.; Schwarz, N.G.; Adlkofer, J.; Loag, W.; Eibach, D.; Hagen, R.M.; Adu-Sarkodie, Y.; Tannich, E.; May, J. Gastrointestinal infections and diarrheal disease in Ghanaian infants and children: An outpatient case-control study. PLoS Negl. Trop. Dis. 2015, 9, e0003568. [Google Scholar]
- Becker, S.L.; Chatigre, J.K.; Gohou, J.P.; Coulibaly, J.T.; Leuppi, R.; Polman, K.; Chappuis, F.; Mertens, P.; Herrmann, M.; N’Goran, E.K.; et al. Combined stool-based multiplex PCR and microscopy for enhanced pathogen detection in patients with persistent diarrhoea and asymptomatic controls from Côte d’Ivoire. Clin. Microbiol. Infect. 2015, 21, e1–e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schawaller, M.; Wiemer, D.; Hagen, R.M.; Frickmann, H. Infectious diseases in German military personnel after predominantly tropical deployments: A retrospective assessment over 13 years. BMJ Mil. Health 2020. [Google Scholar] [CrossRef] [PubMed]
- Halfter, M.; Müseler, U.; Hagen, R.M.; Frickmann, H. Enteric pathogens in German police officers after predominantly tropical deployments—A retrospective assessment over 5 years. Eur. J. Microbiol. Immunol. 2020, 10, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Kann, S.; Bruennert, D.; Hansen, J.; Mendoza, G.A.C.; Gonzalez, J.J.C.; Quintero, C.L.A.; Hanke, M.; Hagen, R.M.; Backhaus, J.; Frickmann, H. High Prevalence of Intestinal Pathogens in Indigenous in Colombia. J. Clin. Med. 2020, 9, 2786. [Google Scholar] [CrossRef]
- Maaßen, W.; Wiemer, D.; Frey, C.; Kreuzberg, C.; Tannich, E.; Hinz, R.; Wille, A.; Fritsch, A.; Hagen, R.M.; Frickmann, H. Microbiological screenings for infection control in unaccompanied minor refugees: The German Armed Forces Medical Service’s experience. Mil. Med. Res. 2017, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Frickmann, H.; Schwarz, N.G.; Rakotozandrindrainy, R.; May, J.; Hagen, R.M. PCR for enteric pathogens in high-prevalence settings. What does a positive signal tell us? Infect. Dis. 2015, 47, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Hanke, M.; Hahn, A.; Schwarz, N.G.; Landt, O.; Moter, A.; Kikhney, J.; Hinz, R.; Rojak, S.; Dekker, D.; et al. Detection of Tropheryma whipplei in stool samples by one commercial and two in-house real-time PCR assays. Trop. Med. Int. Health 2019, 24, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Vinnemeier, C.D.; Klupp, E.M.; Krumkamp, R.; Rolling, T.; Fischer, N.; Owusu-Dabo, E.; Addo, M.M.; Adu-Sarkodie, Y.; Käsmaier, J.; Aepfelbacher, M.; et al. Tropheryma whipplei in children with diarrhoea in rural Ghana. Clin. Microbiol. Infect. 2016, 22, e1–e65. [Google Scholar] [CrossRef]
- Chandrasekhar, M.R.; Krishna, B.V.; Patil, A.B. Changing characteristics of Vibrio cholerae: Emergence of multidrug resistance and non-O1, non-O139 serogroups. Southeast Asian J. Trop. Med. Public Health 2008, 39, 1092–1097. [Google Scholar] [PubMed]
- Becker, S.L.; Chatigre, J.K.; Coulibaly, J.T.; Mertens, P.; Bonfoh, B.; Herrmann, M.; Kuijper, E.J.; N’Goran, E.K.; Utzinger, J.; von Müller, L. Molecular and culture-based diagnosis of Clostridium difficile isolates from Côte d’Ivoire after prolonged storage at disrupted cold chain conditions. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.R.; Tan, R.; Al-Rawahi, G.N.; Thomas, E.; Tilley, P. Short-term stability of pathogen-specific nucleic acid targets in clinical samples. J. Clin. Microbiol. 2012, 50, 4147–4150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajendram, D.; Ayenza, R.; Holder, F.M.; Moran, B.; Long, T.; Shah, H.N. Long-term storage and safe retrieval of DNA from microorganisms for molecular analysis using FTA matrix cards. J. Microbiol. Methods 2006, 67, 582–592. [Google Scholar] [CrossRef]
- Lalani, T.; Tisdale, M.D.; Maguire, J.D.; Wongsrichanalai, C.; Riddle, M.S.; Tribble, D.R. Detection of enteropathogens associated with travelers’ diarrhea using a multiplex Luminex-based assay performed on stool samples smeared on Whatman FTA Elute cards. Diagn. Microbiol. Infect. Dis. 2015, 83, 18–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natarajan, G.; Kabir, M.; Perin, J.; Hossain, B.; Debes, A.; Haque, R.; George, C.M. Whatman Protein Saver Cards for Storage and Detection of Parasitic Enteropathogens. Am. J. Trop. Med. Hyg. 2018, 99, 1613–1618. [Google Scholar] [CrossRef]
- Silbert, S.; Gostnell, A.; Kubasek, C.; Widen, R. Evaluation of the New FecalSwab System for Maintaining Stability of Stool Samples Submitted for Molecular Tests. J. Clin. Microbiol. 2017, 55, 1588–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, C.R.; Lechiile, K.; Mokomane, M.; Steenhoff, A.P.; Arscott-Mills, T.; Pernica, J.M.; Goldfarb, D.M. Evaluation of Anatomically Designed Flocked Rectal Swabs for Use with the BioFire FilmArray Gastrointestinal Panel for Detection of Enteric Pathogens in Children Admitted to Hospital with Severe Gastroenteritis. J. Clin. Microbiol. 2019, 57, e00962-19. [Google Scholar] [CrossRef]
- Schotte, U.; Hoffmann, T.; Schwarz, N.G.; Rojak, S.; Lusingu, J.; Minja, D.; Kaseka, J.; Mbwana, J.; Gesase, S.; May, J.; et al. Study of enteric pathogens among children in the tropics and effects of prolonged storage of stool samples. Lett. Appl. Microbiol. 2021. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Rådström, P.; Knutsson, R.; Wolffs, P.; Lövenklev, M.; Löfström, C. Pre-PCR processing: Strategies to generate PCR-compatible samples. Mol. Biotechnol. 2004, 26, 133–146. [Google Scholar] [CrossRef]
- Khelaifia, S.; Ramonet, P.Y.; Bedotto Buffet, M.; Drancourt, M. A semi-automated protocol for Archaea DNA extraction from stools. BMC Res. Notes 2013, 6, 186. [Google Scholar] [CrossRef] [Green Version]
- Persson, S.; de Boer, R.F.; Kooistra-Smid, A.M.; Olsen, K.E. Five commercial DNA extraction systems tested and compared on a stool sample collection. Diagn. Microbiol. Infect. Dis. 2011, 69, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Hinz, R.; Hagen, R.M. Comparison of an automated nucleic acid extraction system with the column-based procedure. Eur. J. Microbiol. Immunol. 2015, 5, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niesters, H.G. Quantitation of viral load using real-time amplification techniques. Methods 2001, 25, 419–429. [Google Scholar] [CrossRef]
- Roperch, J.P.; Benzekri, K.; Mansour, H.; Incitti, R. Improved amplification efficiency on stool samples by addition of spermidine and its use for non-invasive detection of colorectal cancer. BMC Biotechnol. 2015, 15, 41. [Google Scholar] [CrossRef] [Green Version]
- Ramakers, C.; Ruijter, J.M.; Deprez, R.H.; Moorman, A.F. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 2003, 339, 62–66. [Google Scholar] [CrossRef]
- Lantz, P.G.; Matsson, M.; Wadström, T.; Rådstrom, P. Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. J. Microbiol. Methods 1997, 28, 159–167. [Google Scholar] [CrossRef]
- Nagasaka, T.; Tanaka, N.; Cullings, H.M.; Sun, D.S.; Sasamoto, H.; Uchida, T.; Koi, M.; Nishida, N.; Naomoto, Y.; Boland, C.R.; et al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J. Natl. Cancer Inst. 2009, 101, 1244–1258. [Google Scholar] [CrossRef]
- Monteiro, L.; Bonnemaison, D.; Vekris, A.; Petry, K.G.; Bonnet, J.; Vidal, R.; Cabrita, J.; Mégraud, F. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J. Clin. Microbiol. 1997, 35, 995–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makristathis, A.; Barousch, W.; Pasching, E.; Binder, C.; Kuderna, C.; Apfalter, P.; Rotter, M.L.; Hirschl, A.M. Two enzyme immunoassays and PCR for detection of Helicobacter pylori in stool specimens from pediatric patients before and after eradication therapy. J. Clin. Microbiol. 2000, 38, 3710–3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, C.; Debruyne, R.; Kuch, M.; Schwarz, C.; Poinar, H. A quantitative approach to detect and overcome PCR inhibition in ancient DNA extracts. BioTechniques 2009, 47, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63, 3741–3751. [Google Scholar] [CrossRef] [Green Version]
- Olive, D.M. Detection of enterotoxigenic Escherichia coli after polymerase chain reaction amplification with a thermostable DNA polymerase. J. Clin. Microbiol. 1989, 27, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Dowd, S.E.; Gerba, C.P.; Enriquez, F.J.; Pepper, I.L. PCR amplification and species determination of microsporidia in formalin-fixed feces after immunomagnetic separation. Appl. Environ. Microbiol. 1998, 64, 333–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlquist, D.A.; Skoletsky, J.E.; Boynton, K.A.; Harrington, J.J.; Mahoney, D.W.; Pierceall, W.E.; Thibodeau, S.N.; Shuber, A.P. Colorectal cancer screening by detection of altered human DNA in stool: Feasibility of a multitarget assay panel. Gastroenterology 2000, 119, 1219–1227. [Google Scholar] [CrossRef]
- Ahokas, H.; Erkkilä, M.J. Interference of PCR amplification by the polyamines, spermine and spermidine. PCR Methods Appl. 1993, 3, 65–68. [Google Scholar] [CrossRef]
- Kikuchi, A.; Sawamura, T.; Kawase, N.; Kitajima, Y.; Yoshida, T.; Daimaru, O.; Nakakita, T.; Itoh, S. Utility of spermidine in PCR amplification of stool samples. Biochem. Genet. 2010, 48, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Dekker, D.; Boahen, K.; Acquah, S.; Sarpong, N.; Adu-Sarkodie, Y.; Schwarz, N.G.; May, J.; Marks, F.; Poppert, S.; et al. Increased detection of invasive enteropathogenic bacteria in pre-incubated blood culture materials by real-time PCR in comparison with automated incubation in Sub-Saharan Africa. Scand. J. Infect. Dis. 2013, 45, 616–622. [Google Scholar] [CrossRef]
- Rojak, S.; Wiemer, D.F.; Wille, A.; Loderstädt, U.; Wassill, L.; Hinz, R.; Hagen, R.M.; Frickmann, H. Loop-mediated isothermal amplification for paratyphoid fever—A proof-of-principle analysis. Lett. Appl. Microbiol. 2019, 68, 509–513. [Google Scholar] [CrossRef]
- Hernández, C.; Durán, C.; Ulloa, M.T.; Prado, V. Evaluación pre-analítica de dos métodos de extracción de ADN para la amplificación del gen de la pneumolisina (PLY) de Streptococcus pneumoniae, en muestras de hemocultivo [Assessment of two DNA extraction methods to amplify the pneumolysin gene (PLY) from blood culture samples of Streptococcus pneumoniae]. Rev. Med. Chil. 2004, 132, 533–538. [Google Scholar]
- Dai, Y.; Xu, X.; Yan, X.; Li, D.; Cao, W.; Tang, L.; Hu, M.; Jiang, C. Evaluation of a Rapid and Simplified Protocol for Direct Identification of Microorganisms from Positive Blood Cultures by Using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Front. Cell. Infect. Microbiol. 2021, 11, 632679. [Google Scholar] [CrossRef] [PubMed]
- Noll, C.; Nasruddin-Yekta, A.; Sternisek, P.; Weig, M.; Groß, U.; Schilling, A.F.; Beil, F.T.; Bader, O. Rapid direct detection of pathogens for diagnosis of joint infections by MALDI-TOF MS after liquid enrichment in the BacT/Alert blood culture system. PLoS ONE 2020, 15, e0243790. [Google Scholar] [CrossRef]
- Almuhayawi, M.S.; Wong, A.Y.W.; Kynning, M.; Lüthje, P.; Ullberg, M.; Özenci, V. Identification of microorganisms directly from blood culture bottles with polymicrobial growth: Comparison of FilmArray and direct MALDI-TOF MS. APMIS 2021, 129, 178–185. [Google Scholar] [CrossRef]
- Harms, G.; Dörner, F.; Bienzle, U.; Stark, K. Infektionen und Erkrankungen nach Fernreisen [Infections and diseases after travelling]. Dtsch. Med. Wochenschr. 2002, 127, 1748–1753. [Google Scholar] [CrossRef] [PubMed]
- Ten Hove, R.J.; van Esbroeck, M.; Vervoort, T.; van den Ende, J.; van Lieshout, L.; Verweij, J.J. Molecular diagnostics of intestinal parasites in returning travellers. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1045–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soonawala, D.; van Lieshout, L.; den Boer, M.A.; Claas, E.C.; Verweij, J.J.; Godkewitsch, A.; Ratering, M.; Visser, L.G. Post-travel screening of asymptomatic long-term travelers to the tropics for intestinal parasites using molecular diagnostics. Am. J. Trop. Med. Hyg. 2014, 90, 835–839. [Google Scholar] [CrossRef] [Green Version]
- Moundounga, H.K.; Adegnika, A.A.; Nkoma, A.-M.; Ateba-Ngoa, U.; Mbong, M.; Zinsou, J.; Lell, B.; Verweij, J.J. Impact of Short-Time Urine Freezing on the Sensitivity of an Established Schistosoma Real-Time PCR Assay. Am. J. Trop. Med. Hyg. 2014, 90, 1153–1155. [Google Scholar]
- Kaisar, M.M.M.; Brienen, E.A.T.; Djuardi, Y.; Sartono, E.; Yazdanbakhsh, M.; Verweij, J.J.; Supali, T.; Van Lieshout, L. Improved diagnosis of Trichuris trichiura by using a bead-beating procedure on ethanol preserved stool samples prior to DNA isolation and the performance of multiplex real-time PCR for intestinal parasites. Parasitology 2017, 144, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Ayana, M.; Cools, P.; Mekonnen, Z.; Biruksew, A.; Dana, D.; Rashwan, N.; Prichard, R.; Vlaminck, J.; Verweij, J.J.; Levecke, B. Comparison of four DNA extraction and three preservation protocols for the molecular detection and quantification of soil-transmitted helminths in stool. PLoS Negl. Trop. Dis. 2019, 13, e0007778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, T.; Hahn, A.; Verweij, J.J.; Leboulle, G.; Landt, O.; Strube, C.; Kann, S.; Dekker, D.; May, J.; Frickmann, H.; et al. Differing Effects of Standard and Harsh Nucleic Acid Extraction Procedures on Diagnostic Helminth Real-Time PCRs Applied to Human Stool Samples. Pathogens 2021, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.A.; Gordy, J.; Snyder, R.A. Effective concentration and detection of cryptosporidium, giardia, and the microsporidia from environmental matrices. J. Pathog. 2014, 2014, 408204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menu, E.; Mary, C.; Toga, I.; Raoult, D.; Ranque, S.; Bittar, F. Evaluation of two DNA extraction methods for the PCR-based detection of eukaryotic enteric pathogens in fecal samples. BMC Res. Notes 2018, 11, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frickmann, H.; Hoffmann, T.; Köller, T.; Hahn, A.; Podbielski, A.; Landt, O.; Loderstädt, U.; Tannich, E. Comparison of five commercial real-time PCRs for in-vitro diagnosis of Entamoeba histolytica, Giardia duodenalis, Cryptosporidium spp., Cyclospora cayetanensis, and Dientamoeba fragilis in human stool samples. Travel Med. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Collier, M.C.; Stock, F.; DeGirolami, P.C.; Samore, M.H.; Cartwright, C.P. Comparison of PCR-based approaches to molecular epidemiologic analysis of Clostridium difficile. J. Clin. Microbiol. 1996, 34, 1153–1157. [Google Scholar] [CrossRef] [Green Version]
- Stamper, P.D.; Alcabasa, R.; Aird, D.; Babiker, W.; Wehrlin, J.; Ikpeama, I.; Carroll, K.C. Comparison of a commercial real-time PCR assay for tcdB detection to a cell culture cytotoxicity assay and toxigenic culture for direct detection of toxin-producing Clostridium difficile in clinical samples. J. Clin. Microbiol. 2009, 47, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, K.; Else, P.; Charlett, A.; Wilcox, M. Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture Methods. J. Clin. Microbiol. 2009, 47, 3211–3217. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Weintraub, A.; Fang, H.; Nord, C.E. Comparison of a commercial multiplex real-time PCR to the cell cytotoxicity neutralization assay for diagnosis of clostridium difficile infections. J. Clin. Microbiol. 2009, 47, 3729–3731. [Google Scholar] [CrossRef] [Green Version]
- Kvach, E.J.; Ferguson, D.; Riska, P.F.; Landry, M.L. Comparison of BD GeneOhm Cdiff real-time PCR assay with a two-step algorithm and a toxin A/B enzyme-linked immunosorbent assay for diagnosis of toxigenic Clostridium difficile infection. J. Clin. Microbiol. 2010, 48, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Larson, A.M.; Fung, A.M.; Fang, F.C. Evaluation of tcdB real-time PCR in a three-step diagnostic algorithm for detection of toxigenic Clostridium difficile. J. Clin. Microbiol. 2010, 48, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Crobach, M.J.; Dekkers, O.M.; Wilcox, M.H.; Kuijper, E.J. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): Data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin. Microbiol. Infect. 2009, 15, 1053–1066. [Google Scholar] [CrossRef] [Green Version]
- Chapin, K.C.; Dickenson, R.A.; Wu, F.; Andrea, S.B. Comparison of five assays for detection of Clostridium difficile toxin. J. Mol. Diagn. 2011, 13, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.A.; Berry, C.E.; Morris, K.A.; Smith, R.; Young, S.; Davis, T.E.; Fuller, D.D.; Buckner, R.J.; Wilcox, M.H. Comparison of the Vidas C. difficile GDH Automated Enzyme-Linked Fluorescence Immunoassay (ELFA) with Another Commercial Enzyme Immunoassay (EIA) (Quik Chek-60), Two Selective Media, and a PCR Assay for gluD for Detection of Clostridium difficile in Fecal Samples. J. Clin. Microbiol. 2015, 53, 1931–1934. [Google Scholar] [PubMed] [Green Version]
- Sandlund, J.; Mills, R.; Griego-Fullbright, C.; Wagner, A.; Estis, J.; Bartolome, A.; Almazan, A.; Tam, S.; Biscocho, S.; Abusali, S.; et al. Laboratory comparison between cell cytotoxicity neutralization assay and ultrasensitive single molecule counting technology for detection of Clostridioides difficile toxins A and B, PCR, enzyme immunoassays, and multistep algorithms. Diagn. Microbiol. Infect. Dis. 2019, 95, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Kouhsari, E.; Douraghi, M.; Barati, M.; Yaseri, H.F.; Talebi, M.; Abbasian, S.; Moqarabzadeh, V.; Amirmozafari, N. Rapid Simultaneous Molecular Stool-Based Detection of Toxigenic Clostridioides difficile by Quantitative TaqMan Real-Time PCR Assay. Clin. Lab. 2019, 65, 4. [Google Scholar] [CrossRef] [PubMed]
- Sloan, L.M.; Duresko, B.J.; Gustafson, D.R.; Rosenblatt, J.E. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J. Clin. Microbiol. 2008, 46, 1996–2001. [Google Scholar] [CrossRef] [Green Version]
- Lawson, A.J.; Shafi, M.S.; Pathak, K.; Stanley, J. Detection of campylobacter in gastroenteritis: Comparison of direct PCR assay of faecal samples with selective culture. Epidemiol. Infect. 1998, 121, 547–553. [Google Scholar] [CrossRef]
- Al Amri, A.; Senok, A.C.; Ismaeel, A.Y.; Al-Mahmeed, A.E.; Botta, G.A. Multiplex PCR for direct identification of Campylobacter spp. in human and chicken stools. J. Med. Microbiol. 2007, 56 Pt 10, 1350–1355. [Google Scholar] [CrossRef]
- Shiramaru, S.; Asakura, M.; Inoue, H.; Nagita, A.; Matsuhisa, A.; Yamasaki, S. A cytolethal distending toxin gene-based multiplex PCR assay for detection of Campylobacter spp. in stool specimens and comparison with culture method. J. Vet. Med. Sci. 2012, 74, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Kabir, S.M.L.; Chowdhury, N.; Asakura, M.; Shiramaru, S.; Kikuchi, K.; Hinenoya, A.; Neogi, S.B.; Yamasaki, S. Comparison of Established PCR Assays for Accurate Identification of Campylobacter jejuni and Campylobacter coli. Jpn. J. Infect. Dis. 2019, 72, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, S.; Chatterjee, A.; Dutta, P.; Rajendran, K.; Roy, S.; Pramanik, K.C.; Bhattacharya, S.K. Sensitivity and performance characteristics of a direct PCR with stool samples in comparison to conventional techniques for diagnosis of Shigella and enteroinvasive Escherichia coli infection in children with acute diarrhoea in Calcutta, India. J. Med. Microbiol. 2001, 50, 667–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiemer, D.; Loderstaedt, U.; von Wulffen, H.; Priesnitz, S.; Fischer, M.; Tannich, E.; Hagen, R.M. Real-time multiplex PCR for simultaneous detection of Campylobacter jejuni, Salmonella, Shigella and Yersinia species in fecal samples. Int. J. Med. Microbiol. 2011, 301, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Van Lint, P.; De Witte, E.; De Henau, H.; De Muynck, A.; Verstraeten, L.; Van Herendael, B.; Weekx, S. Evaluation of a real-time multiplex PCR for the simultaneous detection of Campylobacter jejuni, Salmonella spp., Shigella spp./EIEC, and Yersinia enterocolitica in fecal samples. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 535–542. [Google Scholar] [CrossRef]
- Schaumburg, F.; Froböse, N.; Köck, R. A comparison of two multiplex-PCR assays for the diagnosis of traveller’s diarrhoea. BMC Infect. Dis. 2021, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- Kabayiza, J.C.; Andersson, M.E.; Welinder-Olsson, C.; Bergström, T.; Muhirwa, G.; Lindh, M. Comparison of rectal swabs and faeces for real-time PCR detection of enteric agents in Rwandan children with gastroenteritis. BMC Infect. Dis. 2013, 13, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruijnesteijn van Coppenraet, L.E.; Dullaert-de Boer, M.; Ruijs, G.J.; van der Reijden, W.A.; van der Zanden, A.G.; Weel, J.F.; Schuurs, T.A. Case-control comparison of bacterial and protozoan microorganisms associated with gastroenteritis: Application of molecular detection. Clin. Microbiol. Infect. 2015, 21, e9–e19. [Google Scholar] [CrossRef] [Green Version]
- Kellner, T.; Parsons, B.; Chui, L.; Berenger, B.M.; Xie, J.; Burnham, C.A.; Tarr, P.I.; Lee, B.E.; Nettel-Aguirre, A.; Szelewicki, J.; et al. Comparative Evaluation of Enteric Bacterial Culture and a Molecular Multiplex Syndromic Panel in Children with Acute Gastroenteritis. J. Clin. Microbiol. 2019, 57, e00205–e00219. [Google Scholar] [CrossRef] [Green Version]
- Amrud, K.; Slinger, R.; Sant, N.; Desjardins, M.; Toye, B. A comparison of the Allplex™ bacterial and viral assays to conventional methods for detection of gastroenteritis agents. BMC Res. Notes 2018, 11, 514. [Google Scholar] [CrossRef]
- Deng, J.; Luo, X.; Wang, R.; Jiang, L.; Ding, X.; Hao, W.; Peng, Y.; Jiang, C.; Yu, N.; Che, X. A comparison of Luminex xTAG® Gastrointestinal Pathogen Panel (xTAG GPP) and routine tests for the detection of enteropathogens circulating in Southern China. Diagn. Microbiol. Infect. Dis. 2015, 83, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Tanida, K.; Hahn, A.; Frickmann, H. Comparison of two commercial and one in-house real-time PCR assays for the diagnosis of bacterial gastroenteritis. Eur. J. Microbiol. Immunol. 2020, 10, 210–216. [Google Scholar] [CrossRef]
- Buss, S.N.; Leber, A.; Chapin, K.; Fey, P.D.; Bankowski, M.J.; Jones, M.K.; Rogatcheva, M.; Kanack, K.J.; Bourzac, K.M. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J. Clin. Microbiol. 2015, 53, 915–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grys, T.E.; Sloan, L.M.; Rosenblatt, J.E.; Patel, R. Rapid and sensitive detection of Shiga toxin-producing Escherichia coli from nonenriched stool specimens by real-time PCR in comparison to enzyme immunoassay and culture. J. Clin. Microbiol. 2009, 47, 2008–2012. [Google Scholar] [CrossRef] [Green Version]
- Hahn, A.; Luetgehetmann, M.; Landt, O.; Schwarz, N.G.; Frickmann, H. Comparison of one commercial and two in-house TaqMan multiplex real-time PCR assays for detection of enteropathogenic, enterotoxigenic and enteroaggregative Escherichia coli. Trop. Med. Int. Health 2017, 22, 1371–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reischl, U.; Drosten, C.; Geißdörfer, W.; Göbel, U.; Hoffmann, K.S.; Mauch, H.; Meyer, T.; Moter, A.; von Müller, L.; Panning, M.; et al. MiQ 1: Nukleinsäure-Amplifikationstechniken (NAT), 3rd ed.; Urban & Fisher: Stuttgart/Jena/Lübeck/Ulm, Germany, 2011; pp. 1–74. [Google Scholar]
- German Medical Association. Revision of the “Guideline of the German Medical Association on Quality Assurance in Medical Laboratory Examinations—RiliBÄK” (unauthorized translation). J. Lab. Med. 2015, 39, 26–69. [Google Scholar]
- Hahn, A.; Meyer, C.G.; Frickmann, H. Impact of diagnostic methods on efficacy estimation—A proof-of-principle based on historical examples. Trop. Med. Int. Health 2020, 25, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Rabenau, H.F.; Kessler, H.H.; Kortenbusch, M.; Steinhorst, A.; Raggam, R.B.; Berger, A. Verification and validation of diagnostic laboratory tests in clinical virology. J. Clin. Virol. 2007, 40, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Koplan, J.P.; Fineberg, H.V.; Ferraro, M.J.; Rosenberg, M.L. Value of stool cultures. Lancet 1980, 2, 413–416. [Google Scholar] [CrossRef]
- Hoshiko, M. Laboratory diagnosis of infectious diarrhea. Pediatr. Ann. 1994, 23, 570–574. [Google Scholar] [CrossRef]
- Lee, J.Y.; Cho, S.Y.; Hwang, H.S.H.; Ryu, J.Y.; Lee, J.; Song, I.D.; Kim, B.J.; Kim, J.W.; Chang, S.K.; Choi, C.H. Diagnostic yield of stool culture and predictive factors for positive culture in patients with diarrheal illness. Medicine 2017, 96, e7641. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Podbielski, A.; Meyer, T.; Zautner, A.E.; Loderstädt, U.; Schwarz, N.G.; Krüger, A.; Cadar, D.; Frickmann, H. On detection thresholds-a review on diagnostic approaches in the infectious disease laboratory and the interpretation of their results. Acta Trop. 2020, 205, 105377. [Google Scholar] [CrossRef]
- Schwarz, N.G.; Rakotozandrindrainy, R.; Heriniaina, J.N.; Randriamampionona, N.; Hahn, A.; Hogan, B.; Frickmann, H.; Dekker, D.; Poppert, S.; Razafindrabe, T.; et al. Schistosoma mansoni in schoolchildren in a Madagascan highland school assessed by PCR and sedimentation microscopy and Bayesian estimation of sensitivities and specificities. Acta Trop. 2014, 134, 89–94. [Google Scholar] [CrossRef]
- Hahn, A.; Schwarz, N.G.; Frickmann, H. Comparison of screening tests without a gold standard—A pragmatic approach with virtual reference testing. Acta Trop. 2019, 199, 105118. [Google Scholar] [CrossRef]
- Qu, Y.; Tan, M.; Kutner, M.H. Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics 1996, 52, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Leeflang, M.M.G.; Allerberger, F. How to: Evaluate a diagnostic test. Clin. Microbiol. Infect. 2019, 25, 54–59. [Google Scholar] [CrossRef] [Green Version]
- EUR-Lex—32017R0746—EN. Available online: https://eur-lex.europa.eu/eli/reg/2017/746/oj (accessed on 9 April 2021).
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogan, W.J.; Gladen, B. Estimating prevalence from the results of a screening test. Am. J. Epidemiol. 1978, 107, 71–76. [Google Scholar] [CrossRef]
- Flor, M.; Weiß, M.; Selhorst, T.; Müller-Graf, C.; Greiner, M. Comparison of Bayesian and frequentist methods for prevalence estimation under misclassification. BMC Public Health 2020, 20, 1135. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, C.; Heininger, U.; Marti, H.; Hirsch, H.H. Gastrointestinal pathogens detected by multiplex nucleic acid amplification testing in stools of pediatric patients and patients returning from the tropics. Infection 2014, 42, 961–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frickmann, H.; Schwarz, N.G.; Wiemer, D.F.; Fischer, M.; Tannich, E.; Scheid, P.L.; Müller, M.; Schotte, U.; Bock, W.; Hagen, R.M. Food and drinking water hygiene and intestinal protozoa in deployed German soldiers. Eur. J. Microbiol. Immunol. 2013, 3, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Mejia, R.; Vicuña, Y.; Broncano, N.; Sandoval, C.; Vaca, M.; Chico, M.; Cooper, P.J.; Nutman, T.B. A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. Am. J. Trop. Med. Hyg. 2013, 88, 1041–1047. [Google Scholar] [CrossRef]
- Bonham, C.T.; Pallett, S.J.C.; Holland, T.J. OP TRENTON 3: An analysis of primary care presentations to a deployed role 1 in support of a United Nation peacekeeping operation. BMJ Mil. Health 2019. [Google Scholar] [CrossRef]
- Frickmann, H.; Alker, J.; Hansen, J.; Dib, J.C.; Aristizabal, A.; Concha, G.; Schotte, U.; Kann, S. Seasonal Differences in Cyclospora cayetanensis Prevalence in Colombian Indigenous People. Microorganisms 2021, 9, 627. [Google Scholar] [CrossRef] [PubMed]
- Zautner, A.E.; Groß, U.; Emele, M.F.; Hagen, R.M.; Frickmann, H. More Pathogenicity or Just More Pathogens?—On the Interpretation Problem of Multiple Pathogen Detections with Diagnostic Multiplex Assays. Front. Microbiol. 2017, 8, 1210. [Google Scholar] [CrossRef] [PubMed]
- Van den Bijllaardt, W.; Overdevest, I.T.; Buiting, A.G.; Verweij, J.J. Rapid clearance of Giardia lamblia DNA from the gut after successful treatment. Clin. Microbiol. Infect. 2014, 20, O972–O974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, B.; Ochieng, J.B.; Ikumapayi, U.N.; Toure, A.; Ahmed, D.; Li, S.; Panchalingam, S.; Levine, M.M.; Kotloff, K.; Rasko, D.A.; et al. Quantitative PCR for detection of Shigella improves ascertainment of Shigella burden in children with moderate-to-severe diarrhea in low-income countries. J. Clin. Microbiol. 2013, 51, 1740–1746. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kabir, F.; Manneh, J.; Lertsethtakarn, P.; Begum, S.; Gratz, J.; Becker, S.M.; Operario, D.J.; Taniuchi, M.; Janaki, L.; et al. Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: A multicentre study. Lancet Infect. Dis. 2014, 14, 716–724. [Google Scholar] [CrossRef]
- Platts-Mills, J.A.; Gratz, J.; Mduma, E.; Svensen, E.; Amour, C.; Liu, J.; Maro, A.; Saidi, Q.; Swai, N.; Kumburu, H.; et al. Association between stool enteropathogen quantity and disease in Tanzanian children using TaqMan array cards: A nested case-control study. Am. J. Trop. Med. Hyg. 2014, 90, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanderraj, R.; Dickson, R.P. Rethinking pneumonia: A paradigm shift with practical utility. Proc. Natl. Acad. Sci. USA 2018, 115, 13148–13150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol. Concepts. 2018, 9, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Langelier, C.; Kalantar, K.L.; Moazed, F.; Wilson, M.R.; Crawford, E.D.; Deiss, T.; Belzer, A.; Bolourchi, S.; Caldera, S.; Fung, M.; et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc. Natl. Acad. Sci. USA 2018, 115, E12353–E12362. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, T.E.; Perumal, T.M.; Henao, R.; Nichols, M.; Howrylak, J.A.; Choi, A.M.; Bermejo-Martin, J.F.; Almansa, R.; Tamayo, E.; Davenport, E.E.; et al. A community approach to mortality prediction in sepsis via gene expression analysis. Nat. Commun. 2018, 9, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, T.E.; Shidham, A.; Wong, H.R.; Khatri, P. A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci. Transl. Med. 2015, 7, 287ra71. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, T.E.; Wong, H.R.; Khatri, P. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci. Transl. Med. 2016, 8, 346ra91. [Google Scholar] [CrossRef] [Green Version]
- Jensenius, M.; Han, P.V.; Schlagenhauf, P.; Schwartz, E.; Parola, P.; Castelli, F.; von Sonnenburg, F.; Loutan, L.; Leder, K.; Freedman, D.O. Acute and potentially life-threatening tropical diseases in western travelers—A GeoSentinel multicenter study, 1996–2011. Am. J. Trop. Med. Hyg. 2013, 88, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Frickmann, H.; Hagen, R.M.; Geiselbrechtinger, F.; Hoysal, N. Infectious diseases during the European Union training mission Mali (EUTM MLI)—A four-year experience. Mil. Med. Res. 2018, 5, 19. [Google Scholar] [CrossRef]
- Cordeiro-Santos, M.; Pinheiro, J.D.S.; Spener-Gomes, R.; Souza, A.B.; Rodrigues, M.G.A.; Silva, J.M.P.D.; Jesus, J.S.; Sacramento, D.S.; Brito, A.C.; Bastos, M.L.S.; et al. Feasibility of GeneXpert® Edge for Tuberculosis Diagnosis in Difficult-to-Reach Populations: Preliminary Results of a Proof-of-Concept Study. Am. J. Trop. Med. Hyg. 2020, 103, 1065–1066. [Google Scholar] [CrossRef]
- Tiamiyu, A.B.; Iliyasu, G.; Dayyab, F.M.; Habib, Z.G.; Tambuwal, S.H.; Galadanci, H.; Bwala, S.A.; Lawson, L.; Habib, A.G. Evaluation of GeneXpert MTB/RIF as a diagnostic tool in patients with sputum smear-negative TB in a high HIV burden region in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Reza, T.F.; Nalugwa, T.; Farr, K.; Nantale, M.; Oyuku, D.; Nakaweesa, A.; Musinguzi, J.; Vangala, M.; Shete, P.B.; Tucker, A.; et al. Study protocol: A cluster randomized trial to evaluate the effectiveness and implementation of onsite GeneXpert testing at community health centers in Uganda (XPEL-TB). Implement. Sci. 2020, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Rabna, P.; Ramos, J.; Ponce, G.; Sanca, L.; Mané, M.; Armada, A.; Machado, D.; Vieira, F.; Gomes, V.F.; Martins, E.; et al. Direct Detection by the Xpert MTB/RIF Assay and Characterization of Multi and Poly Drug-Resistant Tuberculosis in Guinea-Bissau, West Africa. PLoS ONE 2015, 10, e0127536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köller, T.; Hahn, A.; Altangerel, E.; Verweij, J.J.; Landt, O.; Kann, S.; Dekker, D.; May, J.; Loderstädt, U.; Podbielski, A.; et al. Comparison of commercial and in-house real-time PCR platforms for 15 parasites and microsporidia in human stool samples without a gold standard. Acta Trop. 2020, 207, 105516. [Google Scholar] [CrossRef] [PubMed]
- Nalugwa, T.; Shete, P.B.; Nantale, M.; Farr, K.; Ojok, C.; Ochom, E.; Mugabe, F.; Joloba, M.; Dowdy, D.W.; Moore, D.A.J.; et al. Challenges with scale-up of GeneXpert MTB/RIF® in Uganda: A health systems perspective. BMC Health Serv. Res. 2020, 20, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdurrahman, S.T.; Emenyonu, N.; Obasanya, O.J.; Lawson, L.; Dacombe, R.; Muhammad, M.; Oladimeji, O.; Cuevas, L.E. The hidden costs of installing Xpert machines in a tuberculosis high-burden country: Experiences from Nigeria. Pan. Afr. Med. J. 2014, 18, 277. [Google Scholar] [CrossRef] [PubMed]
- Fischer, N.; Indenbirken, D.; Meyer, T.; Lütgehetmann, M.; Lellek, H.; Spohn, M.; Aepfelbacher, M.; Alawi, M.; Grundhoff, A. Evaluation of Unbiased Next-Generation Sequencing of RNA (RNA-seq) as a Diagnostic Method in Influenza Virus-Positive Respiratory Samples. J. Clin. Microbiol. 2015, 53, 2238–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frickmann, H.; Künne, C.; Hagen, R.M.; Podbielski, A.; Normann, J.; Poppert, S.; Looso, M.; Kreikemeyer, B. Next-generation sequencing for hypothesis-free genomic detection of invasive tropical infections in poly-microbially contaminated, formalin-fixed, paraffin-embedded tissue samples—A proof-of-principle assessment. BMC Microbiol. 2019, 19, 75. [Google Scholar] [CrossRef]
- Frickmann, H.; Tenner-Racz, K.; Eggert, P.; Schwarz, N.G.; Poppert, S.; Tannich, E.; Hagen, R.M. Influence of parasite density and sample storage time on the reliability of Entamoeba histolytica-specific PCR from formalin-fixed and paraffin-embedded tissues. Diagn. Mol. Pathol. 2013, 22, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Dekker, D.; Schwarz, N.G.; Hahn, A.; Boahen, K.; Sarpong, N.; Adu-Sarkodie, Y.; Halbgewachs, E.; Marks, F.; von Kalckreuth, V.; et al. 16S rRNA Gene Sequence-Based Identification of Bacteria in Automatically Incubated Blood Culture Materials from Tropical Sub-Saharan Africa. PLoS ONE 2015, 10, e0135923. [Google Scholar] [CrossRef] [Green Version]
- Frickmann, H.; Lunardon, L.M.; Hahn, A.; Loderstädt, U.; Lindner, A.K.; Becker, S.L.; Mockenhaupt, F.P.; Weber, C.; Tannich, E. Evaluation of a duplex real-time PCR in human serum for simultaneous detection and differentiation of Schistosoma mansoni and Schistosoma haematobium infections-cross-sectional study. Travel. Med. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Tariverdi, M.; Farahbakhsh, N.; Gouklani, H.; Khosravifar, F.; Tamaddondar, M. Dysentery as the only presentation of COVID-19 in a child: A case report. J. Med. Case. Rep. 2021, 15, 65. [Google Scholar] [CrossRef]
Stage of the Diagnostic Process | Challenge |
---|---|
Pre-analytic stage | Lacking definition of minimum standards regarding sample acquisition, storage and transport (time) for diagnostic analyses in the tropics. |
Diagnostic stage–nucleic acid extraction | Lacking agreement on nucleic acid extraction standards which allow an optimum detection of all types of pathogens which may be responsible for gastroenteritis in the tropics. |
Diagnostic stage–PCR | Lacking internationally accepted validation standards to ensure comparable quality of applied diagnostic assays. |
Post-analytic stage–result interpretation | Lacking cut-offs for a reliable discrimination of infection and mere colonization in areas where semi-immunity due to repeated exposition associated with poor hygiene conditions has to be expected. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loderstädt, U.; Hagen, R.M.; Hahn, A.; Frickmann, H. New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections—A Narrative Mini-Review on Challenges in the Tropics. Trop. Med. Infect. Dis. 2021, 6, 96. https://doi.org/10.3390/tropicalmed6020096
Loderstädt U, Hagen RM, Hahn A, Frickmann H. New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections—A Narrative Mini-Review on Challenges in the Tropics. Tropical Medicine and Infectious Disease. 2021; 6(2):96. https://doi.org/10.3390/tropicalmed6020096
Chicago/Turabian StyleLoderstädt, Ulrike, Ralf Matthias Hagen, Andreas Hahn, and Hagen Frickmann. 2021. "New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections—A Narrative Mini-Review on Challenges in the Tropics" Tropical Medicine and Infectious Disease 6, no. 2: 96. https://doi.org/10.3390/tropicalmed6020096
APA StyleLoderstädt, U., Hagen, R. M., Hahn, A., & Frickmann, H. (2021). New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections—A Narrative Mini-Review on Challenges in the Tropics. Tropical Medicine and Infectious Disease, 6(2), 96. https://doi.org/10.3390/tropicalmed6020096