Evolution of Rabies in South America and Inter-Species Dynamics (2009–2018)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Databases Used and Species Categorization
2.3. Source of Infection for Human Cases
2.4. Dynamics of the Regional Number of Rabies Cases in South American Countries in Time
2.5. Rabies Case Report Rate at Administrative Divisions Level
2.6. Quantitative Analysis of Risk Factors Associated with Human Cases Using Poisson Generalized Linear Mixed Model (GLMMs)
3. Results
3.1. Dynamics of the Regional Number of Rabies Cases in Latin America Countries in Time
3.2. Rabies Case Report Rate at Administrative Divisions Level
3.3. Source of Infection for Human Cases
3.4. Quantitative Analysis of Risk Factors Associated with Human Cases Using POISSON Generalized Linear Mixed Models (GLMMs)
4. Discussion
4.1. Rabies as a Public Health Threat
4.2. Rabies in Livestock, a Burden for Agriculture
4.3. Rabies in Wildlife Including Bats and Its Relation with Human Cases
4.4. Prevention and Control Measures
4.5. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- International Committee on Taxonomy of Viruses (ICTV). Available online: https://talk.ictvonline.org/ (accessed on 3 June 2021).
- Belotto, A.; Leanes, L.; Schneider, M.; Tamayo, H.; Correa, E. Overview of rabies in the Americas. Virus Res. 2005, 111, 5–12. [Google Scholar] [CrossRef]
- Singh, R.; Singh, K.P.; Cherian, S.; Saminathan, M.; Kapoor, S.; Reddy, G.M.; Panda, S.; Dhama, K. Rabies—Epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: A comprehensive review. Veter. Q. 2017, 37, 212–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, A.T. Rabies virus vectors and reservoir species. Rev. Sci. Tech. 2018, 37, 371–384. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). International Health Regulations 2005, 2nd. ed; WHO: Geneva, Switzerland, 2008; Available online: https://www.who.int/publications/i/item/9789241580410 (accessed on 27 May 2021).
- Northeast Wildlife Disease Cooperative (NWDC). Disease Fact Sheets. Last updated 11/08/2020. Available online: https://www.fws.gov/northeast/ (accessed on 18 May 2021).
- Bergner, L.M.; Orton, R.J.; Benavides, J.A.; Becker, D.J.; Tello, C.; Biek, R.; Streicker, D.G. Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol. Ecol. 2020, 29, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.N.; Papes, M.; Bussche, R.A.V.D. Present and Potential Future Distribution of Common Vampire Bats in the Americas and the Associated Risk to Cattle. PLoS ONE 2012, 7, e42466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan American Health Organization (PAHO/WHO). The Regional Information System for The Epidemiological Surveillance of Rabies (SIRVERA). Available online: https://sirvera.panaftosa.org.br/ (accessed on 23 May 2021).
- Velasco-Villa, A.; Mauldin, M.R.; Shi, M.; Escobar, L.E.; Gallardo-Romero, N.F.; Damon, I.; Olson, V.A.; Streicker, D.G.; Emerson, G. The history of rabies in the Western Hemisphere. Antivir. Res. 2017, 146, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization (PAHO/WHO). Plan of Action for the Elimination of Neglected Infectious Diseases and Post-Elimination Actions 2016–2022. 2016. Available online: https://iris.paho.org/handle/10665.2/31434 (accessed on 13 April 2019).
- Greenhall, A.M.; Joermann, G.; Schmidt, U. Desmodus rotundus. Mamm. Species 1983, 202, 1–6. [Google Scholar] [CrossRef]
- Vilas, V.J.D.R.; De Carvalho, M.J.F.; Vigilato, M.A.N.; Rocha, F.; Vokaty, A.; Pompei, J.A.; Flores, B.M.; Fenelon, N.; Cosivi, O. Tribulations of the Last Mile: Sides from a Regional Program. Front. Veter. Sci. 2017, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Rocha, F.; Dias, R.A. The common vampire bat Desmodus rotundus (Chiroptera: Phyllostomidae) and the transmission of the rabies virus to livestock: A contact network approach and recommendations for surveillance and control. Prev. Vet. Med. 2020, 174, 104809. [Google Scholar] [CrossRef]
- Johnson, N.; Aréchiga-Ceballos, N.; Aguilar-Setien, A. Vampire bat rabies: Ecology, epidemiology and control. Viruses 2014, 6, 1911–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R. Recent outbreak of rabies infections in Brazil transmitted by vampire bats. Wkly. Releases (1997–2007) 2005, 10, 2831. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId = 2831 (accessed on 11 April 2018). [CrossRef]
- Nuñez, G.B.; Becker, D.J.; Lawrence, R.L.; Plowright, R.K. Synergistic effects of grassland fragmentation and temperature on bovine rabies emergence. EcoHealth 2020, 17, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Streicker, D.G.; Winternitz, J.; Satterfield, D.A.; Condori-Condori, R.E.; Broos, A.; Tello, C.; Recuenco, S.; Velasco-Villa, A.; Altizer, S.; Valderrama, W. Host–pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 2016, 113, 10926–10931. [Google Scholar] [CrossRef] [Green Version]
- Berger, F.; Desplanches, N.; Baillargeaux, S.; Joubert, M.; Miller, M.; Ribadeau-Dumas, F.; Spiegel, A.; Bourhy, H. Rabies Risk: Difficulties encountered during management of grouped cases of bat bites in 2 isolated villages in French Guiana. PLoS Neglected Trop. Dis. 2013, 7, e2258. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (1924). Organic Statutes of the Office International des Epizooties. OIE-Listed Diseases 2021. OIE, Paris. Available online: https://www.oie.int/en/who-we-are/structure/framework/basic-texts/organic-statutes; https://www.oie.int/en/what-we-do/animal-health-and-welfare/animal-diseases/ (accessed on 27 May 2021).
- Fanelli, A.; Tizzani, P.; Buonavoglia, D. Crimean–Congo Haemorrhagic Fever (CCHF) in animals: Global characterization and evolution from 2006 to 2019. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, L.; Awada, L.; Tizzani, P.; Cáceres, P.; Casal, J. Characterization and evolution of countries affected by bovine brucellosis (1996–2014). Transbound. Emerg. Dis. 2019, 66, 1280–1290. [Google Scholar] [CrossRef]
- Fanelli, A.; Tizzani, P. Spatial and temporal analysis of varroosis from 2005 to 2018. Res. Veter. Sci. 2020, 131, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, E.C.; Glickman, L.T.; Spencer, P.A.; Wiktor, T.J. Epidemiology of rabies virus variants. Differentiation using monoclonal antibodies and discriminant analysis. Am. J. Epidemiol. 1987, 126, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Villa, A.; Orciari, L.A.; Juárez-Islas, V.; Gómez-Sierra, M.; Padilla-Medina, I.; Flisser, A.; Souza, V.; Castillo, A.; Franka, R.; Escalante-Mañe, M.; et al. Molecular diversity of rabies viruses associated with bats in Mexico and other countries of the Americas. J. Clin. Microbiol. 2006, 44, 1697–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 13 April 2019).
- QGIS Development Team. QGIS Geographic Information System. Open-Source Geospatial Foundation. 2017. Available online: http://qgis.osgeo.org (accessed on 11 April 2021).
- Soetens, L.; Hahné, S.; Wallinga, J. Dot map cartograms for detection of infectious disease outbreaks: An application to Q fever, the Netherlands and pertussis, Germany. Euro Surveill. 2017, 22, 39562. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, A.; Buonavoglia, D.; Pleite, C.M.C.; Tizzani, P. Paratuberculosis at European scale: An overview from 2010 to 2017. Vet. Ital. 2020, 56, 13–21. [Google Scholar]
- Fanelli, A.; Tizzani, P.; Belleau, E. Gastrointestinal parasitic infestation in the Rock ptarmigan Lagopus muta in the French Alps and French Pyrenees based on long-term sampling (1987–2018). Parasitology 2020, 147, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Mayen, F. Haematophagous Bats in Brazil, their role in rabies transmission, impact on public health, livestock industry and alternatives to an indiscriminate reduction of bat population. J. Vet. Med. Ser. B 2003, 50, 469–472. [Google Scholar] [CrossRef]
- Warner, C.K.; Zaki, S.R.; Shieh, W.-J.; Whitfield, S.G.; Smith, J.S.; Orciari, L.A.; Shaddock, J.H.; Niezgoda, M.; Wright, C.W.; Goldsmith, C.S.; et al. Laboratory investigation of human deaths from vampire bat rabies in Peru. Am. J. Trop Med. Hyg. 1999, 60, 502–507. [Google Scholar] [CrossRef] [Green Version]
- De Mattos, C.A.; De Mattos, C.C.; Smith, J.S.; Miller, E.T.; Papo, S.; Utrera, A.; Osburn, B.I. Genetic characterization of rabies field isolates from Venezuela. J. Clin. Microbiol. 1996, 34, 1553–1558. [Google Scholar] [CrossRef] [Green Version]
- Rupprecht, C.E.; Hanlon, C.A.; Hemachudha, T. Rabies re-examined. Lancet Infect. Dis. 2002, 2, 327–343. [Google Scholar] [CrossRef]
- Schneider, M.C.; Belotto, A.; Leanes, L.F.; Correa, E.; Tamayo, H.; Medina, G.; Rodríguez, M.J. Situación epidemiológica de la rabia humana transmitida por perros en América Latina en 2004. Bol. Epidemiol. OPS. 2005, 26, 2–4. [Google Scholar]
- Álvarez, L.M.; Sáenz, J.R.; Buitrago, J.D.R. Análisis del programa de prevención y control de rabia de origen silvestre y su papel en el número de focos bovinos en el periodo 2001–2011. Rev. CES Med. Vet. Zootec. 2014, 9, 203–217. [Google Scholar]
- World Organisation for Animal Health OIE. Bulletin n°—32014. La Rage Continue de Tuer -Qu’attendons-Nous Pour Agir? Available online: https://www.oie.int/fileadmin/Home/fr/Publications_%20%26_Documentation/docs/pdf/bulletin/Bull_2014-3-FRA.pdf (accessed on 27 May 2021).
- Pan American Health Organization. Action Plan for the Prevention and Control of Rabies in the Americas, 2005–2009; Pan American Health Organization: Washington, DC, USA, 2006; Available online: https://www.paho.org/English/AD/DPC/VP/rabia-plan-05-09.htm (accessed on 10 May 2013).
- Rocha, S.M.; De Oliveira, S.V.; Heinemann, M.B.; Gonçalves, V.S.P. Epidemiological Profile of Wild Rabies in Brazil (2002–2012). Transbound. Emerg. Dis. 2015, 64, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, M.I.; Rupprecht, C.E. A review of the economics of the prevention and control of rabies. Part 2: Rabies in dogs, livestock and wildlife. Pharmacoeconomics 1998, 14, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Castilho, J.G.; De Souza, D.N.; Oliveira, R.N.; Carnieli, P.; Batista, H.B.C.R.; Pereira, P.M.C.; Achkar, S.M.; Macedo, C.I. The Epidemiological Importance of Bats in the Transmission of Rabies to Dogs and Cats in the State of São Paulo, Brazil, Between 2005 and 2014. Zoonoses Public Heal. 2016, 64, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Yoshito Wada, M.; Rocha, S.M.; Siccierolli Moraes, D.; Ferreira de Lima, F., Jr. Epidemiological situation of rabies in Brazil. In Proceedings of the Rabies in the Americas Conference 2020 (RITA 2020), Pereira, Columbia, 28–30 October 2020. [Google Scholar]
- World Health Organization. Rabies Vaccine: WHO Position Paper, Abril 2018—Recommendations. Vaccine; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Recuenco, S. Emerging scenarios for VBR response in the Amazon Basin due to the COVID-19 pandemic: Challenges and opportunities. In Proceedings of the Rabies in the Americas Conference 2020 (RITA 2020), Pereira, Colombia, 28–30 October 2020. [Google Scholar]
- Da Silva, F.; Wesley, N. Clinical-epidemiological profile of antirabic care with regard to indigenous race/color in the State of Pará, Amazonian Region, Brazil, from 2007 to 2019. In Proceedings of the Rabies in the Americas Conference 2020 (RITA 2020), Pereira, Columbia, 28–30 October 2020. [Google Scholar]
- Vargas, A.; Pecego Martins Romano, A.; Merchán-Hamann, E. Human rabies in Brazil: A descriptive study, 2000–2017. Epidemiol. Serv. Saude Brasília 2019, 28, e2018275. [Google Scholar]
- Medeiros, R.; Jusot, V.; Houillon, G.; Rasuli, A.; Martorelli, L.; Kataoka, A.P.; Ben Mechlia, M.; Le Guern, A.-S.; Rodrigues, L.; Assef, R.; et al. Persistence of Rabies Virus-Neutralizing Antibodies after Vaccination of Rural Population following Vampire Bat Rabies Outbreak in Brazil. PLoS Neglected Trop. Dis. 2016, 10, e0004920. [Google Scholar] [CrossRef]
- Gilbert, A.T.; Petersen, B.W.; Recuenco, S.; Niezgoda, M.; Gómez, J.; Laguna-Torres, V.A.; Rupprecht, C. Evidence of Rabies Virus Exposure among Humans in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2012, 87, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Estrada, A.; Coates-Estrada, R. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas. Mexico Biol. Conserv. 2002, 103, 237–245. [Google Scholar] [CrossRef]
- Todo Campo Actualidad Journal. La Rabia y Las Personas en un País Ganadero. Available online: http://www.todoelcampo.com.uy/espanol/la-rabia-y-las-personas-en-un-pais-ganadero-15?nid=1 (accessed on 4 May 2018).
- Braga, G.B.; Grisi-Filho, J.H.H.; Leite, B.M.; De Sena, E.F.; Dias, R.A. Predictive qualitative risk model of bovine rabies occurrence in Brazil. Prev. Veter Med. 2014, 113, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Ulloa-Stanojlovic, F.M.; Dias, R.A. Spatio—Temporal description of bovine rabies cases in Peru, 2003–2017. Transbound. Emerg. Dis. 2020, 67, 1688–1696. [Google Scholar] [CrossRef]
- Del Pietro, H.A.; Nader, A.J. Rabies of herbivores transmitted by vampire bats in North-eastern Argentina. Prev. Vet. Med. 1992, 14, 13–20. [Google Scholar]
- Bobrowiec, P.E.D.; Lemes, M.R.; Gribel, R. Prey preference of the common vampire bat (Desmodus rotundus, Chiroptera) using molecular analysis. J. Mammal. 2015, 96, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Zortéa, M.; Silva, D.A.; Calaça, A.M. Susceptibility of targets to the vampire bat Desmodus rotundus are proportional to their abundance in Atlantic Forest fragments? Iheringia Série Zool. 2018, 108, 2018037. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, T.J.; Cryan, P.M.; Hayman, D.T.; Plowright, R.K.; Streicker, D.G. Multiple mortality events in bats: A global review. Mammal. Rev. 2016, 46, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Streicker, D.G.; Recuenco, S.; Valderrama, W.; Gomez Benavides, J.; Vargas, I.; Pacheco, V.; Altizer, S. Ecological and anthropogenic drivers of rabies exposure in vampire bats: Implications for transmission and control. Proc. R. Soc. B Biol. Sci. 2012, 279, 3384–3392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, M.C.; Romijn, P.C.; Uieda, W.; Tamayo, H.; da Silva, D.F.; Belotto, A.; da Silva, J.B.; Leanes, L.F. Rabies transmitted by vampire bats to humans: An emerging zoonotic disease in Latin America? Rev. Panam. Salud. Publica 2009, 25, 260–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallum, P.; Almeida, M.; Massad, E. Rabies seroprevalence of street dogs from São Paulo City, Brazil. Prev. Veter Med. 2000, 44, 131–139. [Google Scholar] [CrossRef]
- Mindekem, R.; Lechenne, M.S.; Oussiguéré, A.; Kebkiba, B.; Moto, D.D.; Alfaroukh, I.O.; Zinsstag, J. Cost description and comparative cost efficiency of post-exposure prophylaxis and canine mass vaccination against rabies in N’Djamena, Chad. Front. Vet. Sci. 2017, 4, 38. [Google Scholar] [CrossRef]
- Da Rosa, E.S.; Kotait, I.; Barbosa, T.F.; Carrieri, M.L.; Brandão, P.E.; Pinheiro, A.S.; Vasconcelos, P.F. Bat-transmitted human rabies outbreaks, Brazilian Amazon. Emerg. Infect. Dis. 2006, 12, 1197. [Google Scholar] [CrossRef]
- Organización Panamericana de la Salud. Consulta de Expertos De OPS/OMS Sobre Rabia Transmitida por Murciélagos Hematófagos en la Amazonia (Brasilia, 10–11 Oct 2006). Available online: https://iris.Warner.org/handle/10665.2/51223?show=full&locale-attribute=en (accessed on 3 June 2021).
- Rocha, F.; Vigilato, M.A.N.; Zanette, L.C.; Molina-Flores, B.; Pompei, J.C.; Cosivi, O. A regional perspective upon domestic herbivore rabies mediated by hematophagous bat (D. rotundus) in the Americas. In Proceedings of the. Rabies in the Americas Conference 2020 (RITA 2020), Pereira, Columbia, 28–30 October 2020. [Google Scholar]
- Blackwood, J.C.; Streicker, D.G.; Altizer, S.; Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl. Acad. Sci. USA 2013, 110, 20837–20842. [Google Scholar] [CrossRef] [Green Version]
- Hayman, D.T.S.; Bowen, R.A.; Cryan, P.M.; McCracken, G.; O’Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.N. Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions. Zoonoses Public Heal. 2012, 60, 2–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Epidemiological Cycle | Antigenic Variant | Characteristics of the Virus | Main Carrier or Host-Reservoir Species |
---|---|---|---|
Terrestrial cycle | 1 | Urban cycle | Dogs-Cats |
2 | Sylvatic cycle | Dogs-Foxes | |
Aerial Cycle | 3 | Paralytic rabies | hematophagous bats (vampire bats) |
4 | Non-hematophagous bats viruses | Tadarida spp. | |
6 | Lasiurus spp. | ||
Others | Histiotus spp. | ||
Myotis spp. | |||
Eptesicus spp. |
Occurrence in livestock Number of semesters with cases in livestock: It is the number of semesters when cases in livestock were reported (20 semesters: from 2009 to 2018). Data source: OIE-WAHIS |
Occurrence in wildlife Number of semesters with cases in wildlife: It is the number of semesters when cases in wildlife species, excluding in bats were reported (20 semesters: from 2009 to 2018). Data source: OIE-WAHIS |
Occurrence in pets Number of semesters with cases in pets (cats and dogs) (2009–2018): It is the number of semesters when cases in pets (dogs and cats) were reported (20 semesters: from 2009 to 2018). Data source: OIE-WAHIS and SIRVERA |
Occurrence in bats Number of semesters with cases in bats (vampire bats + others) (2009–2018): It is the number of semesters when cases in bats were reported (20 semesters: from 2009 to 2018). Data source: OIE-WAHIS. |
Family | Genus | Common Name |
---|---|---|
Phyllostomidae | Desmodus rotundus | Common vampire bat |
Artibus lituratus | Great fruit-eating bat | |
Molossidae | Tadarida brasiliensis | Brazilian free-tailed bat |
unidentified | ||
Vespertilionidae | Eptesicus brasiliensis | Brazilian brown bat |
incognita/unidentified | ||
Canidae | Lycalopex griseus | South American gray fox |
Lycalopex vetulus | Hoary fox | |
Lycalopex spp. | ||
Cerdocyon thous | Crab-eating fox | |
Vulpes vulpes | Red fox | |
Procyonidae | Potus flavus | Kikanjou |
Nasua nasua | Coati | |
Cebidae | Saimiri sciureus | Guianan squirrel monkey |
unidentified | ||
Callitrichidae | unidentified | |
Camelidae | unidentified | |
Cervidae | unidentified | |
Leporidae | Lepus spp. |
Country | Number of Rabies (Cases in Humans) | Predominant Cycle with Regards to the Main Source of Infection (Percentage of Human Cases Due to the Main Reservoir in the Specific Cycle) | Percentage of Administrative Divisions with Human Rabies Cases (Number of Affected Administrative Divisions in Brackets) |
---|---|---|---|
Peru | 90 | Aerial cycle: 93.3% (84) Terrestrial cycle 6.7% (6) | 40% (10) |
Brazil | 38 | Aerial cycle: 76% (29) Terrestrial cycle: 24% (9) | 52% (14) |
Bolivia | 40 | Terrestrial cycle: 100% (40) | 66% (6) |
Ecuador | 12 | Aerial cycle: 91.6% (11) Terrestrial cycle 8.3% (1) | 8.7% (2) |
Colombia | 9 | Aerial cycle 100% (9) | 15% (5) |
Venezuela | 2 | Terrestrial cycle: 100% (2) | 4% (1) |
Chile | 1 | Aerial cycle: 100% (1) | 6.6% (1) |
Total | 192 | Aerial cycle: 70% (134) Terrestrial cycle: 30% (58) | 16.3% (39) |
GLMM with Poisson Distribution for the Total Number of Human Cases of Rabies per Each Administrative Division during the Study Period | ||
Fixed Variable | Relative Risk (95% CI) | p-Value |
Occurrence in Livestock | 1.21 (1.15–1.26) | 2.0 × 10−15 |
Occurrence in pets | 1.18 (1.12–1.24) | 3.8 × 10−9 |
Occurrence in bats | 0.93 (0.84–1.02) | 0.14 |
Random Effect | Variance | S.D. |
Country | 16.20 | 4.02 |
Pseudo-R2 | Marginal | Conditional |
0.09 | 0.98 | |
GLMM with Poisson Distribution for the Number of Human Cases of Rabies per Each Administrative Division Due to Terrestrial Variants during the Study Period | ||
Fixed Variable | Relative Risk (95% CI) | p-Value |
Occurrence in livestock | 1.08 (0.99–1.16) | 0.056 |
Occurrence in pets | 1.76 (1.53–2.02) | 2.21 × 10−15 |
Occurrence in bats | 0.51 (0.24–1.10) | 0.087 |
Random Effect | Variance | S.D. |
Country | 1.45 | 1.20 |
Pseudo-R2 | Marginal | Conditional |
0.58 | 0.88 | |
GLMM with Poisson Distribution for the Number of Human Cases of Rabies per Each Administrative Division Due to Aerial Variants During the Study Period | ||
Fixed Variable | Relative Risk (95% CI) | p-Value |
Occurrence in livestock | 1.20 (1.15–1.26) | 2.74 × 10−15 |
Occurrence in pets | 0.87 (0.75–1) | 0.06 |
Occurrence in wildlife other than bats | 1.16 (1.02–1.34) | 0.02 |
Random Effect | Variance | S.D. |
Country | 27.5 | 5.24 |
Pseudo-R2 | Marginal | Conditional |
0.05 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meske, M.; Fanelli, A.; Rocha, F.; Awada, L.; Soto, P.C.; Mapitse, N.; Tizzani, P. Evolution of Rabies in South America and Inter-Species Dynamics (2009–2018). Trop. Med. Infect. Dis. 2021, 6, 98. https://doi.org/10.3390/tropicalmed6020098
Meske M, Fanelli A, Rocha F, Awada L, Soto PC, Mapitse N, Tizzani P. Evolution of Rabies in South America and Inter-Species Dynamics (2009–2018). Tropical Medicine and Infectious Disease. 2021; 6(2):98. https://doi.org/10.3390/tropicalmed6020098
Chicago/Turabian StyleMeske, Mauro, Angela Fanelli, Felipe Rocha, Lina Awada, Paula Caceres Soto, Neo Mapitse, and Paolo Tizzani. 2021. "Evolution of Rabies in South America and Inter-Species Dynamics (2009–2018)" Tropical Medicine and Infectious Disease 6, no. 2: 98. https://doi.org/10.3390/tropicalmed6020098
APA StyleMeske, M., Fanelli, A., Rocha, F., Awada, L., Soto, P. C., Mapitse, N., & Tizzani, P. (2021). Evolution of Rabies in South America and Inter-Species Dynamics (2009–2018). Tropical Medicine and Infectious Disease, 6(2), 98. https://doi.org/10.3390/tropicalmed6020098