Genetic Diversity of Human Host Genes Involved in Immune Response and the Binding of Malaria Parasite in Patients Residing along the Thai-Myanmar border
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Study Site
2.2. Preparation of Genomic DNA
2.3. Gene Amplification by Polymerase Chain Reaction (PCR)
2.4. Identification of SNPs and Genotypes by Restriction Fragment Length Polymorphism (RFLP)
2.5. Statistical Analysis
3. Results
3.1. Genotype and Allele Distribution
3.2. Association between Genotypes/Gene Alleles and Parasite Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2018; World Health Organisation: Geneva, Switzerland, 2018. [Google Scholar]
- World Health Organization. Severe malaria. Trop. Med. Int. Health 2014, 19 (Suppl. 1), 7–131. [Google Scholar] [CrossRef]
- Mathews, S.E.; Bhagwati, M.M.; Agnihotri, V. Clinical spectrum of Plasmodium vivax infection, from benign to severe malaria: A tertiary care prospective study in adults from Delhi, India. Trop. Parasitol. 2019, 9, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, M.J.; Mwangi, T.W.; Snow, R.W.; Marsh, K.; Williams, T.N. Heritability of malaria in Africa. PLoS Med. 2005, 2, e340. [Google Scholar] [CrossRef] [Green Version]
- Na-Bangchang, K.; Muhamad, P.; Ruaengweerayut, R.; Chaijaroenkul, W.; Karbwang, J. Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: Integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity. Malar. J. 2013, 12, 263. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Prasad, K.N.; Singh, K.; Sahu, R.N.; Ojha, B.K. Association of ICAM-1 (K469E) and MCP-1-2518 A > G gene polymorphism with brain abscess. J. Neuroimmunol. 2016, 292, 102–107. [Google Scholar] [CrossRef]
- Snounou, G.; Singh, B. Nested PCR analysis of Plasmodium parasites. Methods Mol. Med. 2002, 72, 189–203. [Google Scholar] [PubMed]
- World Health Organization. Basic Malaria Microscopy: Tutor’s Guide, 2nd ed.; WHO Press: Geneva, Switzerland, 2010; pp. 25–27. [Google Scholar]
- Vechvongvan, V.; Suthamdireklap, C.; Prathumthong, A.; Limtrakul, A.; Pumeechockchai, W.; Tangteerawatana, P. Distribution of TGF-β1 C-509T polymorphism in Thai population. J. Med. Health Sci. 2017, 24, 28–36. [Google Scholar]
- Ogawa, E.; Ruan, J.; Connett, J.E.; Anthonisen, N.R.; Paré, P.D.; Sandford, A.J. Transforming growth factor-beta1 polymorphisms, airway responsiveness and lung function decline in smokers. Respir. Med. 2007, 101, 938–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mombo, L.E.; Ntoumi, F.; Bisseye, C.; Ossari, S.; Lu, C.Y.; Nagel, R.L.; Krishnamoorthy, R. Human genetic polymorphisms and asymptomatic Plasmodium falciparum malaria in Gabonese schoolchildren. Am. J. Trop. Med. Hyg. 2003, 68, 186–190. [Google Scholar] [CrossRef]
- Cabantous, S.; Poudiougou, B.; Oumar, A.A.; Traore, A.; Barry, A.; Vitte, J.; Bongrand, P.; Marquet, S.; Doumbo, O.; Dessein, A.J. Genetic Evidence for the Aggravation ofPlasmodium falciparumMalaria by Interleukin 4. J. Infect. Dis. 2009, 200, 1530–1539. [Google Scholar] [CrossRef] [Green Version]
- Mout, R.; Willemze, R.; Landegent, J.E. Repeat polymorphisms in the interleukin-4 gene (IL4). Nucleic Acids Res. 1991, 19, 3763. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, V.R.R.; Souza, L.C.L.; Garcia, G.C.; Magalhães, B.M.L.; Lacerda, M.V.G.; Andrade, B.B.; Gonçalves, M.S.; Barral-Netto, M. DDX39B (BAT1), TNF and IL6 gene polymorphisms and association with clinical outcomes of patients with Plasmodium vivax malaria. Malar. J. 2014, 13, 278. [Google Scholar] [CrossRef] [Green Version]
- Yalçın, S.; Kayaaltı, Z.; Söylemezoğlu, T. Role of interleukin-6-174 G/C promoter polymorphism in trace metal levels of autopsy kidney and liver tissues. Int. J. Hyg. Environ. Health 2011, 214, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Domingues, W.; Kanunfre, K.A.; Rodrigues, J.C.; Teixeira, L.E.; Yamamoto, L.; Okay, T.S. Preliminary report on the putative association of IL10 -3575 T/A genetic polymorphism with malaria symptoms. Rev. Inst. Med. Trop. Sao. Paulo. 2016, 58, 30. [Google Scholar] [CrossRef] [Green Version]
- Iwalokun, B.A.; Oluwadun, A.; Iwalokun, S.O.; Agomo, P. Toll-like receptor (TLR4) Asp299Gly and Thr399Ile polymorphisms in relation to clinical falciparum malaria among Nigerian children: A multisite cross-sectional immunogenetic study in Lagos. Genes Environ. 2015, 37, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitman, T.J.; Cooper, L.D.; Norsworthy, P.; Wahid, F.N.; Gray, J.K.; Curtis, B.R.; McKeigue, P.M.; Kwiatkowski, D.; Greenwood, B.M.; Snow, R.; et al. Malaria susceptibility and CD36 mutation. Nat. Cell Biol. 2000, 405, 1015–1016. [Google Scholar] [CrossRef] [Green Version]
- Babiker, M.Y.; Mergani, A.; Elwali, N.-E.M. A Cd36 polymorphism associated with eight-times increased susceptibility to cerebral malaria in Central Sudan. Int. J. Med. Med. Sci. 2014, 6, 116–120. [Google Scholar]
- Peng, Z.; Zhan, L.; Chen, S.; Xu, E. Association of transforming growth factor-β1 gene C-509T and T869C polymorphisms with atherosclerotic cerebral infarction in the Chinese: A case-control study. Lipids Health Dis. 2011, 10, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanisch, B.R.; Bangirana, P.; Opoka, R.O.; Park, G.S.; John, C.C. Thrombocytopenia May Mediate Disease Severity in Plasmodium falciparum Malaria Through Reduced Transforming Growth Factor Beta-1 Regulation of Proinflammatory and Anti- inflammatory Cytokines. Pediatr. Infect. Dis. J. 2015, 34, 783–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grainger, D.J.; Heathcote, K.; Chiano, M.; Snieder, H.; Kemp, P.R.; Metcalfe, J.C.; Carter, N.D.; Spector, T.D. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum. Mol. Genet. 1999, 8, 93–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, K.; Negri, J.; Klinnert, M.; Rosenwasser, L.J.; Borish, L. Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. Am. J. Respir. Crit. Care Med. 1998, 158, 1958–1962. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Hurley, C.K.; Posch, P.E. A molecular mechanism for the differential regulation of TGF-beta1 expression due to the common SNP-509C-T (c.-1347C > T). Hum. Genet. 2006, 120, 461–469. [Google Scholar] [CrossRef]
- Greve, B.; Kremsner, P.G.; Lell, B.; Luckner, D.; Schmid, D. Malarial anaemia in African children associated with high oxygen-radical production. Lancet 2000, 355, 40–41. [Google Scholar]
- Mahanta, A.; Kakati, S.; Baruah, S. The association of IL-8-251T/A polymorphism with complicated malaria in Karbi Anglong district of Assam. Cytokine 2014, 65, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Perkins, D.J.; Weinberg, J.B.; Kremsner, P.G. Reduced interleukin-12 and transforming growth factor-beta1 in severe childhood malaria: Relationship of cytokine balance with disease severity. J. Infect. Dis. 2000, 182, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Sehgal, R.; Kumar, A.; Sehgal, A.; Bansal, D.; Sultan, A.A. Screening and identification of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria. J. Transl. Med. 2018, 16, 272. [Google Scholar] [CrossRef] [Green Version]
- Medina, T.S.; Costa, S.P.T.; Oliveira, M.D.; Ventura, A.M.; Souza, J.M.; Gomes, T.F.; Vallinoto, A.C.R.; Póvoa, M.M.; Silva, J.S.; Cunha, M.G.; et al. Increased interleukin-10 and interferon-γ levels in Plasmodium vivax malaria suggest a reciprocal regulation which is not altered by IL-10 gene promoter polymorphism. Malar. J. 2011, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, B.B.; Reis-Filho, A.; Souza-Neto, S.M.; Clarêncio, J.; Camargo, L.M.; Barral, A.; Barral-Netto, M. Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar. J. 2010, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N.; Nandy, S.; Kearns, J.K.; Bandyopadhyay, A.K.; Das, J.K.; Majumder, P.; Basu, S.; Banerjee, S.; Sau, T.J.; States, J.C.; et al. Polymorphisms in the TNF-α and IL10 gene promoters and risk of arsenic-induced skin lesions and other nondermatological health effects. J. Toxicol. Sci. 2011, 121, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.W.; Edberg, J.C.; Wu, J.; Westendorp, R.G.; Huizinga, T.W.; Kimberly, R.P. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J. Immunol. 2001, 166, 3915–3922. [Google Scholar] [CrossRef] [Green Version]
- Pattaradilokrat, S.; Li, J.; Wu, J.; Qi, Y.; Eastman, R.T.; Zilversmit, M.; Nair, S.C.; Huaman, M.C.; Quinones, M.; Jiang, H.; et al. Plasmodium genetic loci linked to host cytokine and chemokine responses. Genes Immun. 2014, 15, 145–152. [Google Scholar] [CrossRef]
- Ouma, C.; Davenport, G.C.; Were, T.; Otieno, M.F.; Hittner, J.B.; Vulule, J.M.; Martinson, J.; Ong’echa, J.M.; Ferrell, R.E.; Perkins, D.J. Haplotypes of IL-10 promoter variants are associated with susceptibility to severe malarial anemia and functional changes in IL-10 production. Hum. Genet. 2008, 124, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Rutz, S.; Crellin, N.K.; Valdez, P.A.; Hymowitz, S.G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 2011, 29, 71–109. [Google Scholar] [CrossRef]
- Hojo-Souza, N.S.; Pereira, D.B.; de Souza, F.S.H.; Mendes, T.A.d.; Cardoso, M.S.; Tada, M.S.; Zanini, G.M.; Bartholomeu, D.C.; Fujiwara, R.T.; Bueno, L.L. On the cytokine/chemokine network during Plasmodium vivax malaria: New insights to understand the disease. Malar. J. 2017, 16, 42. [Google Scholar] [CrossRef] [Green Version]
- Olliaro, P.L.; Barnwell, J.W.; Barry, A.; Mendis, K.; Mueller, I.; Reeder, J.C.; Shanks, G.D.; Snounou, G.; Wongsrichanalai, C. Implications of Plasmodium vivax Biology for Control, Elimination, and Research. Am. J. Trop. Med. Hyg. 2016, 95, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, J.; Naka, I.; Patarapotikul, J.; Hananantachai, H.; Looareesuwan, S.; Tokunaga, K. Absence of association between the allele coding methionine at position 29 in the N-terminal domain of ICAM-1 (ICAM-1(Kilifi)) and severe malaria in the northwest of Thailand. Jpn. J. Infect. Dis. 2001, 54, 114–116. [Google Scholar]
- Newbold, C.; Warn, P.; Black, G.; Berendt, A.; Craig, A.; Snow, B.; Msobo, M.; Peshu, N.; Marsh, K. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 1997, 57, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Heddini, A.; Chen, Q.; Obiero, J.; Kai, O.; Fernandez, V.; Marsh, K.; Muller, W.A.; Wahlgren, M. Binding of Plasmodium falciparum-infected erythrocytes to soluble platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): Frequent recognition by clinical isolates. Am. J. Trop. Med. Hyg. 2001, 65, 47–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, D.A.; Lin, J.W.; Brugat, T.; Jarra, W.; Tumwine, I.; Kushinga, G.; Ramesar, J.; Franke-Fayard, B.; Langhorne, J. ICAM-1 is a key receptor mediating cytoadherence and pathology in the Plasmodium chabaudi malaria model. Malar. J. 2017, 16, 185. [Google Scholar] [CrossRef]
- Fry, A.E.; Auburn, S.; Diakite, M.; Green, A.; Richardson, A.; Wilson, J.; Jallow, M.; Sisay-Joof, F.; Pinder, M.; Griffiths, M.J.; et al. Variation in the ICAM1 gene is not associated with severe malaria phenotypes. Genes Immun. 2008, 9, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Vinita, K.; Sripriya, S.; Prathiba, K.; Vaitheeswaran, K.; Sathyabaarathi, R.; Rajesh, M.; Amali, J.; Umashankar, V.; Kumaramanickavel, G.; Pal, S.S.; et al. ICAM-1 K469E polymorphism is a genetic determinant for the clinical risk factors of T2D subjects with retinopathy in Indians: A population-based case-control study. BMJ Open 2012, 2, e001036. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Reyes, D.; Craig, A.G.; Kyes, S.A.; Peshu, N.; Snow, R.W.; Berendt, A.R.; Marsh, K.; Newbold, C.I. A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Hum. Mol. Genet. 1997, 6, 1357–1360. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, B.O.; Lopes, S.; Nogueira, P.A.; Orlandi, P.P.; Bargieri, D.; Blanco, Y.C.; Mamoni, R.; Leite, J.A.; Rodrigues, M.M.; Soares, I.D.S.; et al. On the Cytoadhesion ofPlasmodium vivax–Infected Erythrocytes. J. Infect. Dis. 2010, 202, 638–647. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.T.M.; Lopes, S.C.P.; Ferrer, M.; Leite, J.A.; Martin-Jaular, L.; Bernabeu, M.; Nogueira, P.A.; Mourão, M.P.G.; Fernandez-Becerra, C.; Lacerda, M.V.G.; et al. On cytoadhesion of Plasmodium vivax: Raison d’être? Mem. Inst. Oswaldo Cruz 2011, 106, 79–84. [Google Scholar] [CrossRef] [Green Version]
- A Pereira, V.; Sánchez-Arcila, J.C.; Teva, A.; Perce-Da-Silva, D.S.; Vasconcelos, M.P.; Lima, C.A.; Aprígio, C.J.; Rodrigues-Da-Silva, R.N.; O Santos, D.; Banic, D.M.; et al. IL10A genotypic association with decreased IL-10 circulating levels in malaria infected individuals from endemic area of the Brazilian Amazon. Malar. J. 2015, 14, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarado-Arnez, L.E.; Amaral, E.P.; Sales-Marques, C.; Durães, S.M.; Cardoso, C.C.; Nunes Sarno, E.; Pacheco, A.G.; Lana, F.C.; Moraes, M.O. Association of IL10 Polymorphisms and Leprosy: A Meta-Analysis. PLoS ONE 2015, 10, e0136282. [Google Scholar]
- Abrams, E.T.; Brown, H.; Chensue, S.W.; Turner, G.D.H.; Tadesse, E.; Lema, V.M.; Molyneux, M.E.; Rochford, R.; Meshnick, S.R.; Rogerson, S.J. Host response to malaria during pregnancy: Placental monocyte recruitment is associated with elevated beta chemokine expression. J. Immunol. 2003, 170, 2759–2764. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.A.; Carvalho, L.J.; Zanini, G.M.; Ventura, A.M.; Souza, J.M.; Cotias, P.M.; Silva-Filho, I.L.; Daniel-Ribeiro, C.T. Similar cytokine responses and degrees of anemia in patients with Plasmodium falciparum and Plasmodium vivax infections in the Brazilian Amazon region. Clin. Vac. Immunol. 2008, 15, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Deroost, K.; Tyberghein, A.; Lays, N.; Noppen, S.; Schwarzer, E.; Vanstreels, E.; Komuta, M.; Prato, M.; Lin, J.-W.; Pamplona, A.; et al. Hemozoin Induces Lung Inflammation and Correlates with Malaria-Associated Acute Respiratory Distress Syndrome. Am. J. Respir. Cell Mol. Biol. 2013, 48, 589–600. [Google Scholar] [CrossRef]
- Ayimba, E.; Hegewald, J.; Ségbéna, A.Y.; Gantin, R.G.; Lechner, C.J.; Agosssoum, A.; Banla, M.; Soboslay, P.T. Proinflammatory and regulatory cytokines and chemokines in infants with uncomplicated and severe Plasmodium falciparum malaria. Clin. Exp. Immunol. 2011, 166, 218–226. [Google Scholar] [CrossRef]
- Fang, G.F.; Fan, X.Y.; Shen, F.H. The Relationship between Polymorphisms of Interleukin-4 Gene and Silicosis. Biomed. Environ. Sci. 2011, 24, 678–682. [Google Scholar] [PubMed]
- Sortica, V.A.; Cunha, M.G.; Ohnishi, M.D.O.; Souza, J.M.; Ribeiro-dos-Santos, Â.K.C.; Santos, S.E.B.; Hutz, M.H. Role of IL6, IL12B and VDR gene polymorphisms in Plasmodium vivax malaria severity, parasitemia and gametocytemia levels in an Amazonian Brazilian population. Cytokine 2014, 65, 42–47. [Google Scholar] [CrossRef]
- Mockenhaupt, F.; Cramer, J.P.; Hamann, L.; Stegemann, M.S.; Eckert, J.; Oh, N.-R.; Otchwemah, R.N.; Dietz, E.; Ehrhardt, S.; Schroder, N.W.J.; et al. Toll-like receptor (TLR) polymorphisms in African children: Common TLR-4 variants predispose to severe malaria. Proc. Natl. Acad. Sci. USA 2006, 103, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leoratti, F.M.; Farias, L.; Alves, F.P.; Suarez-Mútis, M.C.; Coura, J.R.; Kali, J.; Camargo, E.P.; Moraes, S.L.; Ramasawmy, R. Variants in the toll-like receptor signaling pathway and clinical outcomes of malaria. J. Infect. Dis. 2008, 198, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Das, T.K.; Sahu, U.; Das, B.P.; Kar, S.K.; Ranjit, M.R. CD36 T188G gene polymorphism and severe falciparum malaria in India. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 687–690. [Google Scholar] [CrossRef]
- Omi, K.; Ohashi, J.; Patarapotikul, J.; Hananantachai, H.; Naka, I.; Looareesuwan, S.; Tokunaga, K. CD36 polymorphism is associated with protection from cerebral malaria. Am. J. Hum. Genet. 2003, 72, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Damena, D.; Denis, A.; Golassa, L.; Chimusa, E.R. Genome-wide association studies of severe P. falciparum malaria susceptibility: Progress, pitfalls and prospects. BMC Med. Genom. 2019, 12, 120. [Google Scholar] [CrossRef] [Green Version]
- Malaria Genomic Epidemiology Network. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat. Commun. 2019, 10, 1. [Google Scholar]
- Ravenhall, M.; Campino, S.; Sepúlveda, N.; Manjurano, A.; Nadjm, B.; Mtove, G.; Wangai, H.; Maxwell, C.; Olomi, R.; Reyburn, H.; et al. Novel genetic polymorphisms associated with severe malaria and under selective pressure in North-eastern Tanzania. PLoS Gen. 2018, 30, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Gene | Amino Acid Position | Mutation | NCBI Number | Primer Sequence (5′–3′) | Restriction Enzyme | Genotype | Description | Fragment bp. | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | MCP-1 | −2518 | A > G | rs1024611 | Forward: 5′-CTTTCCCTTGTGTGTCCCC-3′ Reverse: 5′-TTACTCCTTTTCTCCCCAACC-3′ | PvuII | AA | Homozygous wild type | 940 | [6] |
AG | Heterozygous mutant | 940, 650, 290 | ||||||||
GG | Homozygous mutant | 650, 290 | ||||||||
2 | TGFβ-1 | −509 | C > T | rs1800469 | Forward: 5′-GTCCCTCTGGGCCCAGTTTC-3′ Reverse: 5′-GAGGGGGCAACAGGACACCTTA-3′ | Afl II | CC | Homozygous wild type | 178 | [9,10] |
CT | Heterozygous mutant | 178, 159, 19 | ||||||||
TT | Homozygous mutant | 159, 19 | ||||||||
3 | TNFα | −308 | G > A | rs1800629 | Forward: 5′-GGCAATAGGTTTTGAGGGCCATG-3′ Reverse: 5′-CACACTCCCCATCCTCCCTGATC-3′ | NcoI | GG | Homozygous wild type | 97, 20 | [11] |
GA | Heterozygous mutant | 117, 97, 20 | ||||||||
AA | Homozygous mutant | 117 | ||||||||
4 | IL4 VNTR | variable number of tandem repeat (VNTR) | 1 repeat | rs8179190 | Forward: 5′-TAGGCTGAAAGGGGGAAAGC-3′ Reverse: 5′-CTGTTCACCTCAACTGCTTCC-3′ | none | 1,1 | Homozygous variant | 253 | [12,13] |
2 repeats | 2,2 | Homozygous variant | 183 | |||||||
1, 2 repeats | 1,2 | Heterozygous variant | 253, 183 | |||||||
5 | IL-6 | −174 | G > C | rs1800795 | Forward: 5′-TTGTCAAGACATGCCAAAGTGCT-3′ Reverse: 5′-GCCTCAGACATCTCCAGTCC-3′ | NlaIII | G allele | Wild type allele | 233, 57, 13 | [14,15] |
C allele | Mutant allele | 122, 111, 57, 13 | ||||||||
6 | IL-10 | −3575 | T > A | rs1800890 | Forward: 5′-GGTTTTCCTTCATTTGCAGC-3′ Reverse: 5′-ACACTGTGAGCTTCTTGAGG-3′ | ApoI | TT | Homozygous wild type | 121, 107 | [16] |
TA | Heterozygous mutant | 228, 121, 107 | ||||||||
AA | Homozygous mutant | 228 | ||||||||
7 | TLR-4 | 299 * | A > G | rs4986790 | Forward: 5′-GATTAGCATACTTAGACTACTACCTCCATG-3′ Reverse: 5′-GATCAACTTCTGAAAAAGCATTCCCAC-3′ | NcoI | AA | Homozygous wild type | 249 | [17] |
AG | Heterozygous mutant | 223, 26 | ||||||||
GG | Homozygous mutant | 26 | ||||||||
8 | CD-36 | −188 | T > G | rs3211938 | Forward: 5′-CTATGCTGTATTTGAATCCGACG-3′ Reverse: 5′-ATGGACTGTGCTACTGAGGTTAT-3′ | NdeI | TT | Homozygous wild type | 148, 65 | [18,19] |
TG | Heterozygous mutant | 213, 148, 65 | ||||||||
GG | Homozygous mutant | 213 | ||||||||
9 | ICAM-1 | 469 ** | A > G | rs5498 | Forward: 5′-GGAACCCATTGCCCGAGC-3′ Reverse: 5′-GGTGAGGATTGCATTAGGTC-3′ | BstUI | KK (AA) | Homozygous wild type | 223 | [6] |
KE (AG) | Heterozygous mutant | 223, 136, 87 | ||||||||
EE (GG) | Homozygous mutant | 136, 87 |
Site | Total | P. falciparum | P. falciparum Parasitemia | P. vivax | P. vivax Parasitemia |
---|---|---|---|---|---|
N | n (%) | Median (Range) | n (%) | Median (Range) | |
Tak | 172 | 147 (82.6) | 828 (40–258,535) | 25 (12.0) | 6890 (2340–13,200) |
Kanchanaburi | 215 | 31 (17.4) | 9346 (232–109,874) | 184 (88.0) | 4532 (225–144,000) |
Total | 387 | 178 (46.0) | 1135.5 (40–258,535) | 209 (54.0) | 4870 (225–144,000) |
P. falciparum Infection. | |||||||
Gene Type | Gene | Polymorphism | Genotype | Gene Allele n (%) | |||
Homozygous Wild Type n (%) | Heterozygous Genotype n (%) | Homozygous Mutant n (%) | |||||
Immune functions | MCP1 | −2518 | AA: 14 (32.6) | AG:19 (44.2) | GG: 10 (23.3) | A: 47 (54.7) | G: 39 (45.3) |
TGFβ1 | −509 | CC: 125 (71.4) | CT: 50 (28.6) | TT: 0 (0.0) | C: 300 (85.7) | T:50 (14.3) | |
TNFα1 | −308 | GG: 92 (60.1) | GA: 58 (37.9) | AA: 3 (2.0) | G: 242 (79.1) | A: 64 (20.9) | |
IL6 | −174 | GG: 119 (100.0) | GC: 0 (0.0) | CC: 0 (0.0) | G: 238 (100.0) | C: 0 (0.0) | |
IL10 | −3575 | TT: 65 (38.9) | TA:64 (38.3) | AA: 38 (22.8) | T: 194 (58.1) | A: 140 (41.9) | |
IL4 | VNTR | 1,1 repeat: 8 (5.5) | 1,2 repeats: 44 (30.1) | 2,2 repeats: 94 (64.4) | - | - | |
Malaria parasite binding | TLR4 | 299 | AA: 167 (96.0) | AG: 7 (4.0) | GG: 0 (0.0) | A: 341 (98.0) | G: 7 (2.0) |
CD36 | −188 | TT: 78 (46.2) | TG: 91 (53.8) | GG: 0 (0.0) | T: 247 (73.1) | G: 91 (26.9) | |
ICAM1 | 469 | AA: 103 (57.9) | AG: 72 (40.4) | GG: 3 (1.7) | A: 278 (78.1) | G: 78 (21.9) | |
P. vivax Infection. | |||||||
Gene Type | Gene | Polymorphism | Genotype | Gene Allele n (%) | |||
Homozygous Wild Type n (%) | Heterozygous Genotype n (%) | Homozygous Mutant n (%) | |||||
Immune functions | MCP1 | −2518 | AA: 63 (40.4) | AG: 68 (43.6) | GG: 25 (16.0) | A: 194 (62.2) | G: 118 (37.8) |
TGFβ1 | −509 | CC: 170 (82.9) | CT: 35 (17.1) | TT: 0 (0.0) | C: 375 (91.5) | T: 35 (8.5) | |
TNFα1 | −308 | GG: 65 (36.7) | GA: 111 (62.7) | AA: 1 (0.6) | G: 241 (68.1) | A: 113 (31.9) | |
IL6 | −174 | GG: 181 (99.5) | GC: 1 (0.5) | CC: 0 (0.0) | G: 363 (99.7) | C: 1 (0.3) | |
IL10 | −3575 | TT: 76 (49.7) | TA: 27 (17.6) | AA: 50 (32.7) | T: 179 (58.5) | A: 127 (41.5) | |
IL4 | VNTR | 1,1 repeat: 9 (7.0) | 1,2 repeats: 42 (32.8) | 2,2 repeats: 77 (60.2) | - | - | |
Malaria parasite binding | TLR4 | 299 | AA: 157 (91.8) | AG: 14 (8.2) | GG: 0 (0.0) | A: 328 (95.9) | G: 14 (4.1) |
CD36 | −188 | TT: 140 (80.0) | TG: 33 (18.9) | GG: 2 (1.1) | T: 313 (89.4) | G: 37 (10.6) | |
ICAM1 | 469 | AA: 119 (56.9) | AG: 87 (41.6) | GG: 3 (1.4) | A: 325 (77.8) | G: 93 (22.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirisabhabhorn, K.; Chaijaroenkul, W.; Na-Bangchang, K. Genetic Diversity of Human Host Genes Involved in Immune Response and the Binding of Malaria Parasite in Patients Residing along the Thai-Myanmar border. Trop. Med. Infect. Dis. 2021, 6, 174. https://doi.org/10.3390/tropicalmed6040174
Sirisabhabhorn K, Chaijaroenkul W, Na-Bangchang K. Genetic Diversity of Human Host Genes Involved in Immune Response and the Binding of Malaria Parasite in Patients Residing along the Thai-Myanmar border. Tropical Medicine and Infectious Disease. 2021; 6(4):174. https://doi.org/10.3390/tropicalmed6040174
Chicago/Turabian StyleSirisabhabhorn, Kridsada, Wanna Chaijaroenkul, and Kesara Na-Bangchang. 2021. "Genetic Diversity of Human Host Genes Involved in Immune Response and the Binding of Malaria Parasite in Patients Residing along the Thai-Myanmar border" Tropical Medicine and Infectious Disease 6, no. 4: 174. https://doi.org/10.3390/tropicalmed6040174
APA StyleSirisabhabhorn, K., Chaijaroenkul, W., & Na-Bangchang, K. (2021). Genetic Diversity of Human Host Genes Involved in Immune Response and the Binding of Malaria Parasite in Patients Residing along the Thai-Myanmar border. Tropical Medicine and Infectious Disease, 6(4), 174. https://doi.org/10.3390/tropicalmed6040174