Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Area
2.3. Study Design, Procedure, and Sample Collection
2.4. Parasite and Salivary Antigens
2.5. Enzyme-Linked Immunosorbent Assay: Human Antibody Response to P. falciparum Antigens, gSG6-P1 and Nterm–34 kDa Salivary Peptides
2.6. Immunological Data Analysis
2.7. Covariates
2.8. Statistical Analysis
3. Results
3.1. Population Baseline Characteristics
3.2. Human IgG Response to P. falciparum and Mosquito Salivary Antigens during Follow-Up
3.3. Dynamics of IgG Responses to P. falciparum According to Anopheles and Aedes Exposure
3.4. Human-, Parasite-, and Environment-Related Factors Associated with the Evolution of Immune Responses to Plasmodium
3.5. Multivariate Analysis: Final Models
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabchareon, A.; Burnouf, T.; Ouattara, D.; Attanath, P.; Bouharoun-Tayoun, H.; Chantavanich, P.; Foucault, C.; Chongsuphajaisiddhi, T.; Druilhe, P. Parasitologic and Clinical Human Response to Immunoglobulin Administration in Falciparum Malaria. Am. J. Trop. Med. Hyg. 1991, 45, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; McGREGOR, I.A.; Carrington, S. Gamma-Globulin and Acquired Immunity to Human Malaria. Nature 1961, 192, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Stanisic, D.I.; Fowkes, F.J.I.; Koinari, M.; Javati, S.; Lin, E.; Kiniboro, B.; Richards, J.S.; Robinson, L.J.; Schofield, L.; Kazura, J.W.; et al. Acquisition of Antibodies against Plasmodium Falciparum Merozoites and Malaria Immunity in Young Children and the Influence of Age, Force of Infection, and Magnitude of Response. Infect. Immun. 2015, 83, 646–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpogheneta, O.J.; Dunyo, S.; Pinder, M.; Conway, D.J. Boosting Antibody Responses to Plasmodium Falciparum Merozoite Antigens in Children with Highly Seasonal Exposure to Infection. Parasite Immunol. 2010, 32, 296–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhao, Z.; Zhang, X.; Li, X.; Zhu, M.; Li, P.; Yang, Z.; Wang, Y.; Yan, G.; Shang, H.; et al. Naturally Acquired Antibody Responses to Plasmodium Vivax and Plasmodium Falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 KDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. PLoS ONE 2016, 11, e0151900. [Google Scholar] [CrossRef]
- Murungi, L.M.; Kamuyu, G.; Lowe, B.; Bejon, P.; Theisen, M.; Kinyanjui, S.M.; Marsh, K.; Osier, F.H.A. A Threshold Concentration of Anti-Merozoite Antibodies Is Required for Protection from Clinical Episodes of Malaria. Vaccine 2013, 31, 3936–3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roussilhon, C.; Oeuvray, C.; Müller-Graf, C.; Tall, A.; Rogier, C.; Trape, J.-F.; Theisen, M.; Balde, A.; Pérignon, J.-L.; Druilhe, P. Long-Term Clinical Protection from Falciparum Malaria Is Strongly Associated with IgG3 Antibodies to Merozoite Surface Protein 3. PLoS Med. 2007, 4, e320. [Google Scholar] [CrossRef] [PubMed]
- Courtin, D.; Oesterholt, M.; Huismans, H.; Kusi, K.; Milet, J.; Badaut, C.; Gaye, O.; Roeffen, W.; Remarque, E.J.; Sauerwein, R.; et al. The Quantity and Quality of African Children’s IgG Responses to Merozoite Surface Antigens Reflect Protection against Plasmodium Falciparum Malaria. PLoS ONE 2009, 4, e7590. [Google Scholar] [CrossRef] [Green Version]
- Reiling, L.; Boyle, M.J.; White, M.T.; Wilson, D.W.; Feng, G.; Weaver, R.; Opi, D.H.; Persson, K.E.M.; Richards, J.S.; Siba, P.M.; et al. Targets of Complement-Fixing Antibodies in Protective Immunity against Malaria in Children. Nat. Commun. 2019, 10, 610. [Google Scholar] [CrossRef] [Green Version]
- Yman, V.; White, M.T.; Asghar, M.; Sundling, C.; Sondén, K.; Draper, S.J.; Osier, F.H.A.; Färnert, A. Antibody Responses to Merozoite Antigens after Natural Plasmodium Falciparum Infection: Kinetics and Longevity in Absence of Re-Exposure. BMC Med. 2019, 17, 22. [Google Scholar] [CrossRef] [Green Version]
- Kinyanjui, S.M.; Conway, D.J.; Lanar, D.E.; Marsh, K. IgG Antibody Responses to Plasmodium Falciparum Merozoite Antigens in Kenyan Children Have a Short Half-Life. Malar J. 2007, 6, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proietti, C.; Verra, F.; Bretscher, M.T.; Stone, W.; Kanoi, B.N.; Balikagala, B.; Egwang, T.G.; Corran, P.; Ronca, R.; Arcà, B.; et al. Influence of Infection on Malaria-Specific Antibody Dynamics in a Cohort Exposed to Intense Malaria Transmission in Northern Uganda. Parasite Immunol. 2013, 35, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Akpogheneta, O.J.; Duah, N.O.; Tetteh, K.K.A.; Dunyo, S.; Lanar, D.E.; Pinder, M.; Conway, D.J. Duration of Naturally Acquired Antibody Responses to Blood-Stage Plasmodium Falciparum Is Age Dependent and Antigen Specific. Infect. Immun. 2008, 76, 1748–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dechavanne, C.; Sadissou, I.; Bouraima, A.; Ahouangninou, C.; Amoussa, R.; Milet, J.; Moutairou, K.; Massougbodji, A.; Theisen, M.; Remarque, E.J.; et al. Acquisition of Natural Humoral Immunity to P. Falciparum in Early Life in Benin: Impact of Clinical, Environmental and Host Factors. Sci. Rep. 2016, 6, 33961. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.M.; Lima, N.F.; Ferreira, M.U. Parasite Virulence, Co-Infections and Cytokine Balance in Malaria. Pathog. Glob. Health 2014, 108, 173–178. [Google Scholar] [CrossRef]
- Fillol, F.; Sarr, J.B.; Boulanger, D.; Cisse, B.; Sokhna, C.; Riveau, G.; Simondon, K.B.; Remoué, F. Impact of Child Malnutrition on the Specific Anti-Plasmodium Falciparum Antibody Response. Malar. J. 2009, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Hogh, B.; Petersen, E.; Crandall, I.; Gottschau, A.; Sherman, I.W. Immune Responses to Band 3 Neoantigens on Plasmodium Falciparum-Infected Erythrocytes in Subjects Living in an Area of Intense Malaria Transmission Are Associated with Low Parasite Density and High Hematocrit Value. Infect. Immun. 1994, 62, 4362–4366. [Google Scholar] [CrossRef] [Green Version]
- Ter Horst, R.; Jaeger, M.; Smeekens, S.P.; Oosting, M.; Swertz, M.A.; Li, Y.; Kumar, V.; Diavatopoulos, D.A.; Jansen, A.F.M.; Lemmers, H.; et al. Host and Environmental Factors Influencing Individual Human Cytokine Responses. Cell 2016, 167, 1111–1124.e13. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.M. Role of Saliva in Blood-Feeding by Arthropods. Annu. Rev. Entomol. 1987, 32, 463–478. [Google Scholar] [CrossRef]
- Fontaine, A.; Diouf, I.; Bakkali, N.; Missé, D.; Pagès, F.; Fusai, T.; Rogier, C.; Almeras, L. Implication of Haematophagous Arthropod Salivary Proteins in Host-Vector Interactions. Parasit Vectors 2011, 4, 187. [Google Scholar] [CrossRef] [Green Version]
- Depinay, N.; Hacini, F.; Beghdadi, W.; Peronet, R.; Mécheri, S. Mast Cell-Dependent down-Regulation of Antigen-Specific Immune Responses by Mosquito Bites. J. Immunol. 2006, 176, 4141–4146. [Google Scholar] [CrossRef] [Green Version]
- Wanasen, N.; Nussenzveig, R.H.; Champagne, D.E.; Soong, L.; Higgs, S. Differential Modulation of Murine Host Immune Response by Salivary Gland Extracts from the Mosquitoes Aedes Aegypti and Culex Quinquefasciatus. Med. Vet. Entomol. 2004, 18, 191–199. [Google Scholar] [CrossRef]
- Schneider, B.S.; Soong, L.; Zeidner, N.S.; Higgs, S. Aedes aegypti salivary gland extract modulate anti-viral and TH1/TH2 cytokine responses to sindbis virus infection. Viral. Immunol. 2004, 17, 565–573. [Google Scholar] [CrossRef]
- Schneider, B.S.; Higgs, S. The Enhancement of Arbovirus Transmission and Disease by Mosquito Saliva Is Associated with Modulation of the Host Immune Response. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 400–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeidner, N.S.; Higgs, S.; Happ, C.M.; Beaty, B.J.; Miller, B.R. Mosquito Feeding Modulates Th1 and Th2 Cytokines in Flavivirus Susceptible Mice: An Effect Mimicked by Injection of Sialokinins, but Not Demonstrated in Flavivirus Resistant Mice. Parasite Immunol. 1999, 21, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Vogt, M.B.; Lahon, A.; Arya, R.P.; Kneubehl, A.R.; Spencer Clinton, J.L.; Paust, S.; Rico-Hesse, R. Mosquito Saliva Alone Has Profound Effects on the Human Immune System. PLoS Negl. Trop Dis. 2018, 12, e0006439. [Google Scholar] [CrossRef] [PubMed]
- Demeure, C.E.; Brahimi, K.; Hacini, F.; Marchand, F.; Péronet, R.; Huerre, M.; St-Mezard, P.; Nicolas, J.-F.; Brey, P.; Delespesse, G.; et al. Anopheles Mosquito Bites Activate Cutaneous Mast Cells Leading to a Local Inflammatory Response and Lymph Node Hyperplasia. J. Immunol. 2005, 174, 3932–3940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, M.J.; Messmore, A.S.; Scrafford, D.A.; Sacks, D.L.; Kamhawi, S.; McDowell, M.A. Uninfected Mosquito Bites Confer Protection against Infection with Malaria Parasites. Infect. Immun. 2007, 75, 2523–2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, T.; Leitao, R.; Galan-Rodriguez, C.; Wong, K.A.; Rodriguez, A. Daily Plasmodium Yoelii Infective Mosquito Bites Do Not Generate Protection or Suppress Previous Immunity against the Liver Stage. Malar J. 2011, 10, 97. [Google Scholar] [CrossRef] [Green Version]
- Kebaier, C.; Voza, T.; Vanderberg, J. Neither Mosquito Saliva nor Immunity to Saliva Has a Detectable Effect on the Infectivity of Plasmodium Sporozoites Injected into Mice. Infect. Immun 2010, 78, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Menten-Dedoyart, C.; Couvreur, B.; Thellin, O.; Drion, P.V.; Herry, M.; Jolois, O.; Heinen, E. Influence of the Ixodes Ricinus Tick Blood-Feeding on the Antigen-Specific Antibody Response in Vivo. Vaccine 2008, 26, 6956–6964. [Google Scholar] [CrossRef]
- Sarr, J.B.; Samb, B.; Sagna, A.B.; Fortin, S.; Doucoure, S.; Sow, C.; Senghor, S.; Gaayeb, L.; Guindo, S.; Schacht, A.-M.; et al. Differential Acquisition of Human Antibody Responses to Plasmodium Falciparum According to Intensity of Exposure to Anopheles Bites. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 460–467. [Google Scholar] [CrossRef]
- Aka, K.G.; Traoré, D.F.; Sagna, A.B.; Zoh, D.D.; Assi, S.B.; Tchiekoi, B.N.; Adja, A.M.; Remoue, F.; Poinsignon, A. Pattern of Antibody Responses to Plasmodium Falciparum Antigens in Individuals Differentially Exposed to Anopheles Bites. Malar J. 2020, 19, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosino, E.; Dumoulin, C.; Orlandi-Pradines, E.; Remoue, F.; Toure-Baldé, A.; Tall, A.; Sarr, J.B.; Poinsignon, A.; Sokhna, C.; Puget, K.; et al. A Multiplex Assay for the Simultaneous Detection of Antibodies against 15 Plasmodium Falciparum and Anopheles Gambiae Saliva Antigens. Malar. J. 2010, 9, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drakeley, C.J.; Corran, P.H.; Coleman, P.G.; Tongren, J.E.; McDonald, S.L.R.; Carneiro, I.; Malima, R.; Lusingu, J.; Manjurano, A.; Nkya, W.M.M.; et al. Estimating Medium- and Long-Term Trends in Malaria Transmission by Using Serological Markers of Malaria Exposure. Proc. Natl. Acad. Sci. USA 2005, 102, 5108–5113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crompton, P.D.; Pierce, S.K.; Miller, L.H. Advances and Challenges in Malaria Vaccine Development. J. Clin. Investig. 2010, 120, 4168–4178. [Google Scholar] [CrossRef] [PubMed]
- Sagna, A.B.; Yobo, M.C.; Elanga Ndille, E.; Remoue, F. New Immuno-Epidemiological Biomarker of Human Exposure to Aedes Vector Bites: From Concept to Applications. Trop Med. Infect. Dis. 2018, 3, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagna, A.; Poinsignon, A.; Remoue, F. Epidemiological applications of assessing mosquito exposure in a malaria-endemic area. In Arthropod Vector: Controller of Disease Transmission; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 209–229. ISBN 978-0-12-805360-7. [Google Scholar]
- Traoré, D.F.; Sagna, A.B.; Adja, A.M.; Zoh, D.D.; Adou, K.A.; Lingué, K.N.; Coulibaly, I.; Tchiekoi, N.B.; Assi, S.B.; Poinsignon, A.; et al. Exploring the Heterogeneity of Human Exposure to Malaria Vectors in an Urban Setting, Bouaké, Côte d’Ivoire, Using an Immuno-Epidemiological Biomarker. Malar. J. 2019, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Sagna, A.B.; Kassié, D.; Couvray, A.; Adja, A.M.; Hermann, E.; Riveau, G.; Salem, G.; Fournet, F.; Remoue, F. Spatial Assessment of Contact between Humans and Anopheles and Aedes Mosquitoes in a Medium-Sized African Urban Setting, Using Salivary Antibody–Based Biomarkers. J. Infect. Dis. 2019, 220, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Traoré, D.F.; Sagna, A.B.; Adja, A.M.; Zoh, D.D.; Lingué, K.N.; Coulibaly, I.; N’Cho Tchiekoi, B.; Assi, S.B.; Poinsignon, A.; Dagnogo, M.; et al. Evaluation of Malaria Urban Risk Using an Immuno-Epidemiological Biomarker of Human Exposure to Anopheles Bites. Am. J. Trop. Med. Hyg. 2018, 98, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Toure, O.A.; Assi, S.B.; N’Guessan, T.L.; Adji, G.E.; Ako, A.B.; Brou, M.J.; Ehouman, M.F.; Gnamien, L.A.; Coulibaly, M.A.A.; Coulibaly, B.; et al. Open-Label, Randomized, Non-Inferiority Clinical Trial of Artesunate-Amodiaquine versus Artemether-Lumefantrine Fixed-Dose Combinations in Children and Adults with Uncomplicated Falciparum Malaria in Côte d’Ivoire. Malar. J. 2014, 13, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoh, D.D.; Yapi, A.; Adja, M.A.; Guindo-Coulibaly, N.; Kpan, D.M.S.; Sagna, A.B.; Adou, A.K.; Cornelie, S.; Brengues, C.; Poinsignon, A.; et al. Role of Anopheles Gambiae s.s. and Anopheles Coluzzii (Diptera: Culicidae) in Human Malaria Transmission in Rural Areas of Bouaké, in Côte d’Ivoire. J. Med. Entomol. 2020, 57, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Koffi, A.A.; Ahoua Alou, L.P.; Adja, M.A.; Chandre, F.; Pennetier, C. Insecticide Resistance Status of Anopheles Gambiae s.s Population from M’Bé: A WHOPES-Labelled Experimental Hut Station, 10 Years after the Political Crisis in Côte d’Ivoire. Malar J. 2013, 12, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toure, O.A.; Landry, T.N.; Assi, S.B.; Kone, A.A.; Gbessi, E.A.; Ako, B.A.; Coulibaly, B.; Kone, B.; Ouattara, O.; Beourou, S.; et al. Malaria Parasite Clearance from Patients Following Artemisinin-Based Combination Therapy in Côte d’Ivoire. Infect. Drug Resist. 2018, 11, 2031–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, S.; Pêtres, S.; Holm, I.; Fontaine, T.; Rosario, S.; Roth, C.; Longacre, S. Soluble and Glyco-Lipid Modified Baculovirus Plasmodium Falciparum C-Terminal Merozoite Surface Protein 1, Two Forms of a Leading Malaria Vaccine Candidate. Vaccine 2006, 24, 5997–6008. [Google Scholar] [CrossRef] [PubMed]
- Faber, B.W.; Remarque, E.J.; Kocken, C.H.M.; Cheront, P.; Cingolani, D.; Xhonneux, F.; Jurado, M.; Haumont, M.; Jepsen, S.; Leroy, O.; et al. Production, Quality Control, Stability and Pharmacotoxicity of CGMP-Produced Plasmodium Falciparum AMA1 FVO Strain Ectodomain Expressed in Pichia Pastoris. Vaccine 2008, 26, 6143–6150. [Google Scholar] [CrossRef] [PubMed]
- Theisen, M.; Vuust, J.; Gottschau, A.; Jepsen, S.; Høgh, B. Antigenicity and Immunogenicity of Recombinant Glutamate-Rich Protein of Plasmodium Falciparum Expressed in Escherichia Coli. Clin. Diagn. Lab. Immunol. 1995, 2, 30–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoah, L.E.; Acquah, F.K.; Ayanful-Torgby, R.; Oppong, A.; Abankwa, J.; Obboh, E.K.; Singh, S.K.; Theisen, M. Dynamics of Anti-MSP3 and Pfs230 Antibody Responses and Multiplicity of Infection in Asymptomatic Children from Southern Ghana. Parasites Vectors 2018, 11, 13. [Google Scholar] [CrossRef]
- Niass, O.; Saint-Pierre, P.; Niang, M.; Diop, F.; Diouf, B.; Faye, M.M.; Sarr, F.D.; Faye, J.; Diagne, N.; Sokhna, C.; et al. Modelling Dynamic Change of Malaria Transmission in Holoendemic Setting (Dielmo, Senegal) Using Longitudinal Measures of Antibody Prevalence to Plasmodium Falciparum Crude Schizonts Extract. Malar J. 2017, 16, 409. [Google Scholar] [CrossRef] [Green Version]
- Elanga Ndille, E.; Doucoure, S.; Damien, G.; Mouchet, F.; Drame, P.M.; Cornelie, S.; Noukpo, H.; Yamadjako, S.; Djenontin, A.; Moiroux, N.; et al. First Attempt to Validate Human IgG Antibody Response to Nterm-34kDa Salivary Peptide as Biomarker for Evaluating Exposure to Aedes Aegypti Bites. PLoS Negl. Trop Dis. 2012, 6, e1905. [Google Scholar] [CrossRef] [Green Version]
- Poinsignon, A.; Cornelie, S.; Mestres-Simon, M.; Lanfrancotti, A.; Rossignol, M.; Boulanger, D.; Cisse, B.; Sokhna, C.; Arcà, B.; Simondon, F.; et al. Novel Peptide Marker Corresponding to Salivary Protein GSG6 Potentially Identifies Exposure to Anopheles Bites. PLoS ONE 2008, 3, e2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drame, P.M.; Poinsignon, A.; Besnard, P.; Cornelie, S.; Le Mire, J.; Toto, J.-C.; Foumane, V.; Dos-Santos, M.A.; Sembène, M.; Fortes, F.; et al. Human Antibody Responses to the Anopheles Salivary GSG6-P1 Peptide: A Novel Tool for Evaluating the Efficacy of ITNs in Malaria Vector Control. PLoS ONE 2010, 5, e15596. [Google Scholar] [CrossRef] [PubMed]
- Boutlis, C.S.; Fagan, P.K.; Gowda, D.C.; Lagog, M.; Mgone, C.S.; Bockarie, M.J.; Anstey, N.M. Immunoglobulin G (IgG) Responses to Plasmodium Falciparum Glycosylphosphatidylinositols Are Short-Lived and Predominantly of the IgG3 Subclass. J. Infect. Dis. 2003, 187, 862–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, D.R.; Elhassan, I.M.; Roper, C.; Robinson, V.J.; Giha, H.; Holder, A.A.; Hviid, L.; Theander, T.G.; Arnot, D.E.; McBride, J.S. A Longitudinal Study of Type-Specific Antibody Responses to Plasmodium Falciparum Merozoite Surface Protein-1 in an Area of Unstable Malaria in Sudan. J. Immunol. 1998, 161, 347–359. [Google Scholar] [PubMed]
- Fowkes, F.J.I.; McGready, R.; Cross, N.J.; Hommel, M.; Simpson, J.A.; Elliott, S.R.; Richards, J.S.; Lackovic, K.; Viladpai-Nguen, J.; Narum, D.; et al. New Insights into Acquisition, Boosting, and Longevity of Immunity to Malaria in Pregnant Women. J. Infect. Dis. 2012, 206, 1612–1621. [Google Scholar] [CrossRef]
- Ya-Umphan, P.; Cerqueira, D.; Parker, D.M.; Cottrell, G.; Poinsignon, A.; Remoue, F.; Brengues, C.; Chareonviriyaphap, T.; Nosten, F.; Corbel, V. Use of an Anopheles Salivary Biomarker to Assess Malaria Transmission Risk along the Thailand-Myanmar Border. J. Infect. Dis. 2017, 215, 396–404. [Google Scholar] [CrossRef]
- Drame, P.M.; Diallo, A.; Poinsignon, A.; Boussari, O.; Dos Santos, S.; Machault, V.; Lalou, R.; Cornelie, S.; LeHesran, J.-Y.; Remoue, F. Evaluation of the Effectiveness of Malaria Vector Control Measures in Urban Settings of Dakar by a Specific Anopheles Salivary Biomarker. PLoS ONE 2013, 8, e66354. [Google Scholar] [CrossRef] [Green Version]
- Doucoure, S.; Mouchet, F.; Cornelie, S.; Drame, P.M.; D’Ortenzio, E.; DeHecq, J.S.; Remoue, F. Human Antibody Response to Aedes Albopictus Salivary Proteins: A Potential Biomarker to Evaluate the Efficacy of Vector Control in an Area of Chikungunya and Dengue Virus Transmission. Biomed. Res. Int. 2014, 2014, 746509. [Google Scholar] [CrossRef]
- King, C.L.; Davies, D.H.; Felgner, P.; Baum, E.; Jain, A.; Randall, A.; Tetteh, K.; Drakeley, C.J.; Greenhouse, B. Biosignatures of Exposure/Transmission and Immunity. Am. J. Trop Med. Hyg. 2015, 93, 16–27. [Google Scholar] [CrossRef] [Green Version]
- McCallum, F.J.; Persson, K.E.M.; Fowkes, F.J.I.; Reiling, L.; Mugyenyi, C.K.; Richards, J.S.; Simpson, J.A.; Williams, T.N.; Gilson, P.R.; Hodder, A.N.; et al. Differing Rates of Antibody Acquisition to Merozoite Antigens in Malaria: Implications for Immunity and Surveillance. J. Leukoc Biol. 2017, 101, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Hu, Z.; Yu, X. Accelerator or Brake: Immune Regulators in Malaria. Front. Cell Infect. Microbiol. 2020, 10, 610121. [Google Scholar] [CrossRef] [PubMed]
- Adler, G.; Steeg, C.; Pfeffer, K.; Murphy, T.L.; Murphy, K.M.; Langhorne, J.; Jacobs, T. B and T Lymphocyte Attenuator Restricts the Protective Immune Response against Experimental Malaria. J. Immunol. 2011, 187, 5310–5319. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Brown, N.K.; Ruddy, M.J.; Miller, M.L.; Lee, Y.; Wang, Y.; Murphy, K.M.; Pfeffer, K.; Chen, L.; Kaye, J.; et al. B and T Lymphocyte Attenuator Tempers Early Infection Immunity. J. Immunol. 2009, 183, 1946–1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarr, J.B.; Remoue, F.; Samb, B.; Dia, I.; Guindo, S.; Sow, C.; Maiga, S.; Tine, S.; Thiam, C.; Schacht, A.-M.; et al. Evaluation of Antibody Response to Plasmodium Falciparum in Children According to Exposure of Anopheles Gambiae s.l or Anopheles Funestus Vectors. Malar J. 2007, 6, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, E.; Sanchez-Vargas, I.; Favreau, A.J.; Barbian, K.D.; Pham, V.M.; Olson, K.E.; Ribeiro, J.M. An Insight into the Sialotranscriptome of the West Nile Mosquito Vector, Culex Tarsalis. BMC Genom. 2010, 11, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, J.M.C.; Charlab, R.; Pham, V.M.; Garfield, M.; Valenzuela, J.G. An Insight into the Salivary Transcriptome and Proteome of the Adult Female Mosquito Culex Pipiens Quinquefasciatus. Insect Biochem Mol. Biol. 2004, 34, 543–563. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.S.; Lara, P.G.; Fonseca, M.T.; Moretti, E.H.; Filgueiras, L.R.; Martins, J.O.; Capurro, M.L.; Steiner, A.A.; Sá-Nunes, A. Aedes Aegypti Saliva Impairs M1-Associated Proinflammatory Phenotype without Promoting or Affecting M2 Polarization of Murine Macrophages. Parasit Vectors 2019, 12, 239. [Google Scholar] [CrossRef] [PubMed]
- Bizzarro, B.; Barros, M.S.; Maciel, C.; Gueroni, D.I.; Lino, C.N.; Campopiano, J.; Kotsyfakis, M.; Amarante-Mendes, G.P.; Calvo, E.; Capurro, M.L.; et al. Effects of Aedes Aegypti Salivary Components on Dendritic Cell and Lymphocyte Biology. Parasit Vectors 2013, 6, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
D0 | D42 | p Value b | |||
---|---|---|---|---|---|
IgG Prevalence a (%) | Median (IQR) | IgG Prevalence (%) | Median (IQR) | ||
PfAMA1 | 70.58 | 5.78 (0.43–1.28) | 73.52% | 2.64 (0.70–9.53) | 0.110 |
PfGLURP-R0 | 70.58 | 0.20 (0.02–0.64) | 17.65% | 0.04 (0–0.12) | <0.001 |
PfMSP1 | 61.76 | 1.95 (0.30–25.0) | 51.47% | 2.27 (0.40–9.65) | 0.541 |
PfMSP3 | 82.35 | 0.13 (0–0.37) | 61.76% | 0.12 (0–0.50) | 0.987 |
PfSchz | 100 | 1.15 (0.78–1.76) | 100% | 2.09 (1.31–2.85) | <0.0001 |
gSG6-P1 | 100 | 1.32 (1.12–1.60) | 100% | 1.41 (1.07–1.61) | 0.760 |
Nterm–34 kDa | 100 | 1.06 (0.91–1.25) | 100% | 1.1 (0.86–1.31) | 0.638 |
Covariate Factors | Antigens | ΔCPf D42−D0 (ng/mL) | p Value |
---|---|---|---|
Gender (female/male) a | PfSchz | 968.6 (178.2;1544)/561.3 (92.68;1213) | 0.250 |
PfAMA1 | −1151 (−6045;525.5)/413.2 (−9406;3340) | 0.322 | |
PfMSP1 | −480.2 (−14,723;1322)/−267 (−3129;442.8) | 0.744 | |
PfMSP3 | 0 (−165.8;154.5)/0 (−181.5;300.1) | 0.970 | |
PfGLURP-R0 | −109.6(−349.6;17.33)/−118.8(−750.8;0) | 0.408 | |
Age (years) b | PfSchz | 0.240 | 0.049 |
PfAMA1 | −0.013 | 0.051 | |
PfMSP1 | −0.208 | 0.088 | |
PfMSP3 | 0.055 | 0.653 | |
PfGLURP-R0 | −0.162 | 0.186 | |
Weight (kg) b | PfSchz | 0.252 | 0.037 |
PfAMA1 | 0.405 | 0.006 | |
PfMSP1 | −0.128 | 0.298 | |
PfMSP3 | 0.084 | 0.495 | |
PfGLURP-R0 | −0.173 | 0.158 | |
Hemoglobin (D42) b | PfSchz | −0.123 | 0.330 |
PfAMA1 | −0.125 | 0.317 | |
PfMSP1 | −0.112 | 0.273 | |
PfMSP3 | −0.141 | 0.261 | |
PfGLURP-R0 | −0.344 | 0.061 | |
Treatment (ASAQ/AL) a | PfSchz | 725.2 (178.2;1544)/704.3 (92.68;1213) | 0.840 |
PfAMA1 | −224.0 (−6045;525.5)/−793.9 (−9406;3340) | 0.888 | |
PfMSP1 | −414.6 (−14,723;1322)/−237.0 (−3129;442.8) | 0.577 | |
PfMSP3 | −100.2 (−165.8;154.5)/20.53 (−181.5;300.1) | 0.021 | |
PfGLURP-R0 | −152.7 (−349.6;17.33)/−92.63 (−750.8;0) | 0.535 | |
Parasite density on D0 b | PfSchz | 0.176 | 0.149 |
PfAMA1 | 0.096 | 0.433 | |
PfMSP1 | 0.050 | 0.692 | |
PfMSP3 | 0.053 | 0.670 | |
PfGLURP-R0 | 0.036 | 0.768 | |
IgG concentration on D0 (ng/mL) b | PfSchz | −0.361 | 0.002 |
PfAMA1 | −0.360 | 0.002 | |
PfMSP1 | −0.625 | <0.001 | |
PfMSP3 | −0.540 | <0.001 | |
PfGLURP-R0 | −0.851 | <0.001 | |
anti-gSG6-P1 IgG b(Anopheles exposure) | PfSchz | 0.405 | <0.001 |
PfAMA1 | −0.069 | 0.574 | |
PfMSP1 | −0.043 | 0.727 | |
PfMSP3 | −0.060 | 0.623 | |
PfGLURP-R0 | −0.129 | 0.294 | |
anti Nterm-34 kDaIgG b(Aedes exposure) | PfSchz | 0.389 | 0.001 |
PfAMA1 | 0.055 | 0.652 | |
PfMSP1 | −0.164 | 0.180 | |
PfMSP3 | −0.140 | 0.251 | |
PfGLURP-R0 | −0.228 | 0.060 |
Variation in Anti-PfSchz IgG | Variation in Anti-PfGLURP−R0 IgG | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | β1 | Sd Error | p Value | R2 | Variables | β1 | Sd Error | p Value | R2 |
0.60 | 0.81 | ||||||||
Age | 49.30 | 16.32 | <0.01 | Age | 29.723 | 7.566 | <0.01 | ||
Weight | - | - | - | Weight | - | - | - | ||
Parasite density on D0 | 0.004 | 0.001 | <0.001 | Hemoglobin | - | - | - | ||
Anti-PfSchzIgG on D0 (ng/mL) | −0.753 | 0.100 | <0.001 | Anti-PfGLURP-R0 IgG on D0 (ng/mL) | −0.806 | 0.049 | <0.01 | ||
Anti−Nterm-34 kDa IgG | 1185 | 277.3 | <0.001 | Anti-Nterm-34 kDa IgG | −276.11 | 132.261 | <0.05 | ||
Anti-gSG6-P1 IgG | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aka, K.G.; Yao, S.S.; Gbessi, E.A.; Adja, A.M.; Corbel, V.; Koffi, A.A.; Rogier, C.; Assi, S.B.; Toure, O.A.; Remoue, F.; et al. Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens. Trop. Med. Infect. Dis. 2021, 6, 185. https://doi.org/10.3390/tropicalmed6040185
Aka KG, Yao SS, Gbessi EA, Adja AM, Corbel V, Koffi AA, Rogier C, Assi SB, Toure OA, Remoue F, et al. Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens. Tropical Medicine and Infectious Disease. 2021; 6(4):185. https://doi.org/10.3390/tropicalmed6040185
Chicago/Turabian StyleAka, Kakou G., Serge S. Yao, Eric A. Gbessi, Akré M. Adja, Vincent Corbel, Alphonsine A. Koffi, Christophe Rogier, Serge B. Assi, Offianan A. Toure, Franck Remoue, and et al. 2021. "Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens" Tropical Medicine and Infectious Disease 6, no. 4: 185. https://doi.org/10.3390/tropicalmed6040185
APA StyleAka, K. G., Yao, S. S., Gbessi, E. A., Adja, A. M., Corbel, V., Koffi, A. A., Rogier, C., Assi, S. B., Toure, O. A., Remoue, F., & Poinsignon, A. (2021). Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens. Tropical Medicine and Infectious Disease, 6(4), 185. https://doi.org/10.3390/tropicalmed6040185