Systemic, Mucosal, and Memory Immune Responses following Cholera
Abstract
:1. Introduction
2. V. cholerae-Antigen Repertoire
V. cholerae O-Specific Polysaccharide (Lipopolysaccharide)
3. Protein Antigens
4. Correlates of Protection
4.1. Vibriocidal Response-Pros/cons
4.2. Memory B-Cells
5. Innate Immune Responses to Cholera
6. Interaction between Microbiota and Cholera Immunity
7. Mucosal-Associated Invariant T (MAIT) Cells
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ali, M.; Nelson, A.R.; Lopez, A.L.; Sack, D.A. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 2015, 9, e0003832. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Cholera vaccines: WHO position paper—August 2017. Wkly. Epidemiol. Rec. 2017, 92, 477–498. [Google Scholar]
- Bi, Q.; Ferreras, E.; Pezzoli, L.; Legros, D.; Ivers, L.C.; Date, K.; Qadri, F.; Digilio, L.; Sack, D.A.; Ali, M.; et al. Protection against cholera from killed whole-cell oral cholera vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 1080–1088. [Google Scholar] [CrossRef] [Green Version]
- Koelle, K.; Rodo, X.; Pascual, M.; Yunus, M.; Mostafa, G. Refractory periods and climate forcing in cholera dynamics. Nature 2005, 436, 696–700. [Google Scholar] [CrossRef]
- Albert, M.J.; Alam, K.; Rahman, A.S.; Huda, S.; Sack, R.B. Lack of cross-protection against diarrhea due to Vibrio cholerae O1 after oral immunization of rabbits with V. cholerae O139 Bengal. J. Infect. Dis. 1994, 169, 709–710. [Google Scholar] [CrossRef] [PubMed]
- Waldor, M.K.; Colwell, R.; Mekalanos, J.J. The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc. Natl. Acad. Sci. USA 1994, 91, 11388–11392. [Google Scholar] [CrossRef] [Green Version]
- Qadri, F.; Wenneras, C.; Albert, M.J.; Hossain, J.; Mannoor, K.; Begum, Y.A.; Mohi, G.; Salam, M.A.; Sack, R.B.; Svennerholm, A.M. Comparison of immune responses in patients infected with Vibrio cholerae O139 and O1. Infect. Immun. 1997, 65, 3571–3576. [Google Scholar] [CrossRef] [Green Version]
- Losonsky, G.A.; Yunyongying, J.; Lim, V.; Reymann, M.; Lim, Y.L.; Wasserman, S.S.; Levine, M.M. Factors influencing secondary vibriocidal immune responses: Relevance for understanding immunity to cholera. Infect. Immun. 1996, 64, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.A.; Uddin, T.; Aktar, A.; Mohasin, M.; Alam, M.M.; Chowdhury, F.; Harris, J.B.; LaRocque, R.C.; Bufano, M.K.; Yu, Y.; et al. Comparison of immune responses to the O-specific polysaccharide and lipopolysaccharide of Vibrio cholerae O1 in Bangladeshi adult patients with cholera. Clin. Vaccine Immunol. 2012, 19, 1712–1721. [Google Scholar] [CrossRef]
- Rahman, A.; Rashu, R.; Bhuiyan, T.R.; Chowdhury, F.; Khan, A.I.; Islam, K.; LaRocque, R.C.; Ryan, E.T.; Wrammert, J.; Calderwood, S.B.; et al. Antibody-secreting cell responses after Vibrio cholerae O1 infection and oral cholera vaccination in adults in Bangladesh. Clin. Vaccine Immunol. CVI 2013, 20, 1592–1598. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, R.C.; Bhuiyan, T.R.; Nakajima, R.; Mayo-Smith, L.M.; Rashu, R.; Hoq, M.R.; Chowdhury, F.; Khan, A.I.; Rahman, A.; Bhaumik, S.K.; et al. Single-cell analysis of the plasmablast response to Vibrio cholerae demonstrates expansion of cross-reactive memory B cells. mBio 2016, 7, e02021-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.B.; Larocque, R.C.; Chowdhury, F.; Khan, A.I.; Logvinenko, T.; Faruque, A.S.; Ryan, E.T.; Qadri, F.; Calderwood, S.B. Susceptibility to Vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl. Trop. Dis. 2008, 2, e221. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.T.; Rahman, M.A.; Mohasin, M.; Riyadh, M.A.; Patel, S.M.; Alam, M.M.; Chowdhury, F.; Khan, A.I.; Kalivoda, E.J.; Aktar, A.; et al. Comparison of memory B cell, antibody-secreting cell, and plasma antibody responses in young children, older children, and adults with infection caused by Vibrio cholerae O1 El Tor Ogawa in Bangladesh. Clin. Vaccine Immunol. CVI 2011, 18, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.M.; Rahman, M.A.; Mohasin, M.; Riyadh, M.A.; Leung, D.T.; Alam, M.M.; Chowdhury, F.; Khan, A.I.; Weil, A.A.; Aktar, A.; et al. Memory B cell responses to Vibrio cholerae O1 lipopolysaccharide are associated with protection against infection from household contacts of patients with cholera in Bangladesh. Clin. Vaccine Immunol. CVI 2012, 19, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.T.; Rahman, M.A.; Mohasin, M.; Patel, S.M.; Aktar, A.; Khanam, F.; Uddin, T.; Riyadh, M.A.; Saha, A.; Alam, M.M.; et al. Memory B cell and other immune responses in children receiving two doses of an oral killed cholera vaccine compared to responses following natural cholera infection in Bangladesh. Clin. Vaccine Immunol. CVI 2012, 19, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.T.; Uddin, T.; Xu, P.; Aktar, A.; Johnson, R.A.; Rahman, M.A.; Alam, M.M.; Bufano, M.K.; Eckhoff, G.; Wu-Freeman, Y.; et al. Immune responses to the O-specific polysaccharide antigen in children who received a killed oral cholera vaccine compared to responses following natural cholera infection in Bangladesh. Clin. Vaccine Immunol. CVI 2013, 20, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Charles, R.C.; Nakajima, R.; Liang, L.; Jasinskas, A.; Berger, A.; Leung, D.T.; Kelly, M.; Xu, P.; Kovac, P.; Giffen, S.R.; et al. The plasma and mucosal IgM, IgA, and IgG responses to the Vibrio cholerae O1 protein immunome in adults with cholera in Bangladesh. J. Infect. Dis. 2017, 216, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Uddin, T.; Aktar, A.; Xu, P.; Johnson, R.A.; Rahman, M.A.; Leung, D.T.; Afrin, S.; Akter, A.; Alam, M.M.; Rahman, A.; et al. Immune responses to O-specific polysaccharide and lipopolysaccharide of Vibrio cholerae O1 Ogawa in adult Bangladeshi recipients of an oral killed cholera vaccine and comparison to responses in patients with cholera. Am. J. Trop. Med. Hyg. 2014, 90, 873–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktar, A.; Rahman, M.A.; Afrin, S.; Faruk, M.O.; Uddin, T.; Akter, A.; Sami, M.I.; Yasmin, T.; Chowdhury, F.; Khan, A.I.; et al. O-specific polysaccharide-specific memory B cell responses in young children, older children, and adults infected with Vibrio cholerae O1 Ogawa in Bangladesh. Clin. Vaccine Immunol. CVI 2016, 23, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.M.; Leung, D.T.; Akhtar, M.; Nazim, M.; Akter, S.; Uddin, T.; Khanam, F.; Mahbuba, D.A.; Ahmad, S.M.; Bhuiyan, T.R.; et al. Antibody avidity in humoral immune responses in Bangladeshi children and adults following administration of an oral killed cholera vaccine. Clin. Vaccine Immunol. CVI 2013, 20, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lazinski, D.W.; Camilli, A. Immunity provided by an outer membrane vesicle cholera vaccine is due to O-antigen-specific antibodies inhibiting bacterial motility. Infect. Immun. 2016, 85, e00626-16. [Google Scholar] [CrossRef] [Green Version]
- Bishop, A.L.; Schild, S.; Patimalla, B.; Klein, B.; Camilli, A. Mucosal immunization with Vibrio cholerae outer membrane vesicles provides maternal protection mediated by antilipopolysaccharide antibodies that inhibit bacterial motility. Infect. Immun. 2010, 78, 4402–4420. [Google Scholar] [CrossRef] [Green Version]
- Levinson, K.J.; De Jesus, M.; Mantis, N.J. Rapid effects of a protective O-polysaccharide-specific monoclonal IgA on Vibrio cholerae agglutination, motility, and surface morphology. Infect. Immun. 2015, 83, 1674–1683. [Google Scholar] [CrossRef] [Green Version]
- Levinson, K.J.; Baranova, D.E.; Mantis, N.J. A monoclonal antibody that targets the conserved core/lipid A region of lipopolysaccharide affects motility and reduces intestinal colonization of both classical and El Tor Vibrio cholerae biotypes. Vaccine 2016, 34, 5833–5836. [Google Scholar] [CrossRef] [Green Version]
- Charles, R.C.; Kelly, M.; Tam, J.M.; Akter, A.; Hossain, M.; Islam, K.; Biswas, R.; Kamruzzaman, M.; Chowdhury, F.; Khan, A.I.; et al. Humans surviving cholera develop antibodies against Vibrio cholerae O-specific polysaccharide that inhibit pathogen motility. mBio 2020, 11, e02847-20. [Google Scholar] [CrossRef]
- Kauffman, R.C.; Adekunle, O.; Yu, H.; Cho, A.; Nyhoff, L.E.; Kelly, M.; Harris, J.B.; Bhuiyan, T.R.; Qadri, F.; Calderwood, S.B.; et al. Impact of immunoglobulin isotype and epitope on the functional properties of Vibrio cholerae O-specific polysaccharide-specific monoclonal antibodies. mBio 2021, 12, e03679-20. [Google Scholar] [CrossRef]
- Gill, D.M. The arrangement of subunits in cholera toxin. Biochemistry 1976, 15, 1242–1248. [Google Scholar] [CrossRef]
- Herrington, D.A.; Hall, R.H.; Losonsky, G.; Mekalanos, J.J.; Taylor, R.K.; Levine, M.M. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 1988, 168, 1487–1492. [Google Scholar] [CrossRef]
- Debellis, L.; Diana, A.; Arcidiacono, D.; Fiorotto, R.; Portincasa, P.; Altomare, D.F.; Spirli, C.; de Bernard, M. The Vibrio cholerae cytolysin promotes chloride secretion from intact human intestinal mucosa. PLoS ONE 2009, 4, e5074. [Google Scholar] [CrossRef]
- Saka, H.A.; Bidinost, C.; Sola, C.; Carranza, P.; Collino, C.; Ortiz, S.; Echenique, J.R.; Bocco, J.L. Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain. Microb. Pathog. 2008, 44, 118–128. [Google Scholar] [CrossRef]
- Weil, A.A.; Arifuzzaman, M.; Bhuiyan, T.R.; Larocque, R.C.; Harris, A.M.; Kendall, E.A.; Hossain, A.; Tarique, A.A.; Sheikh, A.; Chowdhury, F.; et al. Memory T cell responses to Vibrio cholerae O1 infection. Infect. Immun. 2009, 77, 5090–5096. [Google Scholar] [CrossRef] [Green Version]
- Jayasekera, C.R.; Harris, J.B.; Bhuiyan, S.; Chowdhury, F.; Khan, A.I.; Faruque, A.S.; Larocque, R.C.; Ryan, E.T.; Ahmed, R.; Qadri, F.; et al. Cholera toxin-specific memory B cell responses are induced in patients with dehydrating diarrhea caused by Vibrio cholerae O1. J. Infect. Dis. 2008, 198, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.M.; Bhuiyan, M.S.; Chowdhury, F.; Khan, A.I.; Hossain, A.; Kendall, E.A.; Rahman, A.; LaRocque, R.C.; Wrammert, J.; Ryan, E.T.; et al. Antigen-specific memory B-cell responses to Vibrio cholerae O1 infection in Bangladesh. Infect. Immun. 2009, 77, 3850–3856. [Google Scholar] [CrossRef] [Green Version]
- Uddin, T.; Harris, J.B.; Bhuiyan, T.R.; Shirin, T.; Uddin, M.I.; Khan, A.I.; Chowdhury, F.; Larocque, R.C.; Alam, N.H.; Ryan, E.T.; et al. Mucosal immunologic responses in cholera patients in Bangladesh. Clin. Vaccine Immunol. CVI 2011, 18, 506–512. [Google Scholar] [CrossRef] [Green Version]
- Qadri, F.; Ryan, E.T.; Faruque, A.S.; Ahmed, F.; Khan, A.I.; Islam, M.M.; Akramuzzaman, S.M.; Sack, D.A.; Calderwood, S.B. Antigen-specific immunoglobulin A antibodies secreted from circulating B cells are an effective marker for recent local immune responses in patients with cholera: Comparison to antibody-secreting cell responses and other immunological markers. Infect. Immun. 2003, 71, 4808–4814. [Google Scholar] [CrossRef] [Green Version]
- Kaisar, M.H.; Bhuiyan, M.S.; Akter, A.; Saleem, D.; Iyer, A.S.; Dash, P.; Hakim, A.; Chowdhury, F.; Khan, A.I.; Calderwood, S.B.; et al. Vibrio cholerae sialidase-specific immune responses are associated with protection against cholera. mSphere 2021, 6, e01232-20. [Google Scholar] [CrossRef]
- Galen, J.E.; Ketley, J.M.; Fasano, A.; Richardson, S.H.; Wasserman, S.S.; Kaper, J.B. Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect. Immun. 1992, 60, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Halstensen, T.S.; Hvatum, M.; Scott, H.; Fausa, O.; Brandtzaeg, P. Association of subepithelial deposition of activated complement and immunoglobulin G and M response to gluten in celiac disease. Gastroenterology 1992, 102, 751–759. [Google Scholar] [CrossRef]
- Halstensen, T.S.; Mollnes, T.E.; Garred, P.; Fausa, O.; Brandtzaeg, P. Epithelial deposition of immunoglobulin G1 and activated complement (C3b and terminal complement complex) in ulcerative colitis. Gastroenterology 1990, 98, 1264–1271. [Google Scholar] [CrossRef]
- Halstensen, T.S.; Mollnes, T.E.; Fausa, O.; Brandtzaeg, P. Deposits of terminal complement complex (TCC) in muscularis mucosae and submucosal vessels in ulcerative colitis and Crohn’s disease of the colon. Gut 1989, 30, 361–366. [Google Scholar] [CrossRef]
- Griffiss, J.M.; Goroff, D.K. IgA blocks IgM and IgG-initiated immune lysis by separate molecular mechanisms. J. Immunol. 1983, 130, 2882–2885. [Google Scholar] [PubMed]
- Hiemstra, P.S.; Biewenga, J.; Gorter, A.; Stuurman, M.E.; Faber, A.; van Es, L.A.; Daha, M.R. Activation of complement by human serum IgA, secretory IgA and IgA1 fragments. Mol. Immunol. 1988, 25, 527–533. [Google Scholar] [CrossRef]
- Woof, J.M.; Russell, M.W. Structure and function relationships in IgA. Mucosal Immunol. 2011, 4, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Saha, D.; LaRocque, R.C.; Khan, A.I.; Harris, J.B.; Begum, Y.A.; Akramuzzaman, S.M.; Faruque, A.S.; Ryan, E.T.; Qadri, F.; Calderwood, S.B. Incomplete correlation of serum vibriocidal antibody titer with protection from Vibrio cholerae infection in urban Bangladesh. J. Infect. Dis. 2004, 189, 2318–2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qadri, F.; Mohi, G.; Hossain, J.; Azim, T.; Khan, A.M.; Salam, M.A.; Sack, R.B.; Albert, M.J.; Svennerholm, A.M. Comparison of the vibriocidal antibody response in cholera due to Vibrio cholerae O139 Bengal with the response in cholera due to Vibrio cholerae O1. Clin. Diagn. Lab. Immunol. 1995, 2, 685–688. [Google Scholar] [CrossRef] [Green Version]
- Glass, R.I.; Svennerholm, A.M.; Khan, M.R.; Huda, S.; Huq, M.I.; Holmgren, J. Seroepidemiological studies of El Tor cholera in Bangladesh: Association of serum antibody levels with protection. J. Infect. Dis. 1985, 151, 236–242. [Google Scholar] [CrossRef]
- Azman, A.S.; Lessler, J.; Luquero, F.J.; Bhuiyan, T.R.; Khan, A.I.; Chowdhury, F.; Kabir, A.; Gurwith, M.; Weil, A.A.; Harris, J.B.; et al. Estimating cholera incidence with cross-sectional serology. Sci. Transl. Med. 2019, 11, 6242. [Google Scholar] [CrossRef] [Green Version]
- Richie, E.E.; Punjabi, N.H.; Sidharta, Y.Y.; Peetosutan, K.K.; Sukandar, M.M.; Wasserman, S.S.; Lesmana, M.M.; Wangsasaputra, F.F.; Pandam, S.S.; Levine, M.M.; et al. Efficacy trial of single-dose live oral cholera vaccine CVD 103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine 2000, 18, 2399–2410. [Google Scholar] [CrossRef]
- Ali, M.; Emch, M.; Park, J.K.; Yunus, M.; Clemens, J. Natural cholera infection-derived immunity in an endemic setting. J. Infect. Dis. 2011, 204, 912–918. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.M.; Black, R.E.; Clements, M.L.; Cisneros, L.; Nalin, D.R.; Young, C.R. Duration of infection-derived immunity to cholera. J. Infect. Dis. 1981, 143, 818–820. [Google Scholar] [CrossRef]
- Clements, M.L.; Levine, M.M.; Young, C.R.; Black, R.E.; Lim, Y.L.; Robins-Browne, R.M.; Craig, J.P. Magnitude, kinetics, and duration of vibriocidal antibody responses in North Americans after ingestion of Vibrio cholerae. J. Infect. Dis. 1982, 145, 465–473. [Google Scholar] [CrossRef]
- Tacket, C.O.; Losonsky, G.; Nataro, J.P.; Cryz, S.J.; Edelman, R.; Kaper, J.B.; Levine, M.M. Onset and duration of protective immunity in challenged volunteers after vaccination with live oral cholera vaccine CVD 103-HgR. J. Infect. Dis. 1992, 166, 837–841. [Google Scholar] [CrossRef]
- Clemens, J.D.; van Loon, F.; Sack, D.A.; Chakraborty, J.; Rao, M.R.; Ahmed, F.; Harris, J.R.; Khan, M.R.; Yunus, M.; Huda, S. Field trial of oral cholera vaccines in Bangladesh: Serum vibriocidal and antitoxic antibodies as markers of the risk of cholera. J. Infect. Dis. 1991, 163, 1235–1242. [Google Scholar] [CrossRef]
- Hossain, M.; Islam, K.; Kelly, M.; Mayo Smith, L.M.; Charles, R.C.; Weil, A.A.; Bhuiyan, T.R.; Kovac, P.; Xu, P.; Calderwood, S.B.; et al. Immune responses to O-specific polysaccharide (OSP) in North American adults infected with Vibrio cholerae O1 Inaba. PLoS Negl. Trop. Dis. 2019, 13, e0007874. [Google Scholar] [CrossRef] [PubMed]
- Moor, K.; Diard, M.; Sellin, M.E.; Felmy, B.; Wotzka, S.Y.; Toska, A.; Bakkeren, E.; Arnoldini, M.; Bansept, F.; Co, A.D.; et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 2017, 544, 498–502. [Google Scholar] [CrossRef]
- Akkaya, M.; Kwak, K.; Pierce, S.K. B cell memory: Building two walls of protection against pathogens. Nat. Rev. Immunol. 2020, 20, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Aktar, A.; Rahman, M.A.; Afrin, S.; Akter, A.; Uddin, T.; Yasmin, T.; Sami, M.I.N.; Dash, P.; Jahan, S.R.; Chowdhury, F.; et al. Plasma and memory B cell responses targeting O-specific polysaccharide (OSP) are associated with protection against Vibrio cholerae O1 infection among household contacts of cholera patients in Bangladesh. PLoS Negl. Trop. Dis. 2018, 12, e0006399. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.M.; Riyadh, M.A.; Fatema, K.; Rahman, M.A.; Akhtar, N.; Ahmed, T.; Chowdhury, M.I.; Chowdhury, F.; Calderwood, S.B.; Harris, J.B.; et al. Antigen-specific memory B-cell responses in bangladeshi adults after one- or two-dose oral killed cholera vaccination and comparison with responses in patients with naturally acquired cholera. Clin. Vaccine Immunol. CVI 2011, 18, 844–850. [Google Scholar] [CrossRef]
- McCarty, J.M.; Cassie, D.; Bedell, L.; Lock, M.D.; Bennett, S. Long-term immunogenicity of live oral cholera vaccine CVD 103-HgR in adolescents aged 12–17 years in the United States. Am. J. Trop. Med. Hyg. 2021, 104, 1758–1760. [Google Scholar] [CrossRef]
- Adekunle, O.; Dretler, A.; Kauffman, R.C.; Cho, A.; Rouphael, N.; Wrammert, J. Longitudinal analysis of human humoral responses after vaccination with a live attenuated V. cholerae vaccine. PLoS Negl. Trop. Dis. 2021, 15, e0009743. [Google Scholar] [CrossRef] [PubMed]
- Haney, D.J.; Lock, M.D.; Gurwith, M.; Simon, J.K.; Ishioka, G.; Cohen, M.B.; Kirkpatrick, B.D.; Lyon, C.E.; Chen, W.H.; Sztein, M.B.; et al. Lipopolysaccharide-specific memory B cell responses to an attenuated live cholera vaccine are associated with protection against Vibrio cholerae infection. Vaccine 2018, 36, 2768–2773. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.M. Immunogenicity and efficacy of oral vaccines in developing countries: Lessons from a live cholera vaccine. BMC Biol. 2010, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, P.; Curtis, N. Factors that influence the immune response to vaccination. Clin. Microbiol. Rev. 2019, 32, e00084–18. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.I.; Islam, S.; Nishat, N.S.; Hossain, M.; Rafique, T.A.; Rashu, R.; Hoq, M.R.; Zhang, Y.; Saha, A.; Harris, J.B.; et al. Biomarkers of environmental enteropathy are positively associated with immune responses to an oral cholera vaccine in Bangladeshi children. PLoS Negl. Trop. Dis. 2016, 10, e0005039. [Google Scholar] [CrossRef]
- Savy, M.; Edmond, K.; Fine, P.E.; Hall, A.; Hennig, B.J.; Moore, S.E.; Mulholland, K.; Schaible, U.; Prentice, A.M. Landscape analysis of interactions between nutrition and vaccine responses in children. J. Nutr. 2009, 139, 2154S–2218S. [Google Scholar] [CrossRef] [Green Version]
- Weil, A.A.; Becker, R.L.; Harris, J.B. Vibrio cholerae at the intersection of immunity and the microbiome. mSphere 2019, 4, e00597–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, K.; Hossain, M.; Kelly, M.; Mayo Smith, L.M.; Charles, R.C.; Bhuiyan, T.R.; Kovac, P.; Xu, P.; LaRocque, R.C.; Calderwood, S.B.; et al. Anti-O-specific polysaccharide (OSP) immune responses following vaccination with oral cholera vaccine CVD 103-HgR correlate with protection against cholera after infection with wild-type Vibrio cholerae O1 El Tor Inaba in North American volunteers. PLoS Negl. Trop. Dis. 2018, 12, e0006376. [Google Scholar] [CrossRef] [Green Version]
- Haney, D.J.; Lock, M.D.; Simon, J.K.; Harris, J.; Gurwith, M. Antibody-based correlates of protection against cholera analysis of a challenge study in a cholera-naive population. Clin. Vaccine Immunol. CVI 2017, 24, e00098-17. [Google Scholar] [CrossRef] [Green Version]
- Mathan, M.M.; Chandy, G.; Mathan, V.I. Ultrastructural changes in the upper small intestinal mucosa in patients with cholera. Gastroenterology 1995, 109, 422–430. [Google Scholar] [CrossRef]
- Qadri, F.; Raqib, R.; Ahmed, F.; Rahman, T.; Wenneras, C.; Das, S.K.; Alam, N.H.; Mathan, M.M.; Svennerholm, A.M. Increased levels of inflammatory mediators in children and adults infected with Vibrio cholerae O1 and O139. Clin. Diagn. Lab. Immunol. 2002, 9, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Flach, C.F.; Qadri, F.; Bhuiyan, T.R.; Alam, N.H.; Jennische, E.; Lonnroth, I.; Holmgren, J. Broad up-regulation of innate defense factors during acute cholera. Infect. Immun. 2007, 75, 2343–2350. [Google Scholar] [CrossRef] [Green Version]
- Ellis, C.N.; LaRocque, R.C.; Uddin, T.; Krastins, B.; Mayo-Smith, L.M.; Sarracino, D.; Karlsson, E.K.; Rahman, A.; Shirin, T.; Bhuiyan, T.R.; et al. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera. Infect. Immun. 2015, 83, 1089–1103. [Google Scholar] [CrossRef] [Green Version]
- Bourque, D.L.; Bhuiyan, T.R.; Genereux, D.P.; Rashu, R.; Ellis, C.N.; Chowdhury, F.; Khan, A.I.; Alam, N.H.; Paul, A.; Hossain, L.; et al. Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways. Infect. Immun. 2018, 86, e00594-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weil, A.A.; Ellis, C.N.; Debela, M.D.; Bhuiyan, T.R.; Rashu, R.; Bourque, D.L.; Khan, A.I.; Chowdhury, F.; LaRocque, R.C.; Charles, R.C.; et al. Posttranslational Regulation of IL-23 Production Distinguishes the Innate Immune Responses to Live Toxigenic versus Heat-Inactivated Vibrio cholerae. mSphere 2019, 4, e00206-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhlmann, F.M.; Santhanam, S.; Kumar, P.; Luo, Q.; Ciorba, M.A.; Fleckenstein, J.M. Blood Group O-Dependent Cellular Responses to Cholera Toxin: Parallel Clinical and Epidemiological Links to Severe Cholera. Am. J. Trop. Med. Hyg. 2016, 95, 440–443. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.B.; LaRocque, R.C. Cholera and ABO Blood Group: Understanding an Ancient Association. Am. J. Trop. Med. Hyg. 2016, 95, 263–264. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, E.K.; Harris, J.B.; Tabrizi, S.; Rahman, A.; Shlyakhter, I.; Patterson, N.; O’Dushlaine, C.; Schaffner, S.F.; Gupta, S.; Chowdhury, F.; et al. Natural selection in a bangladeshi population from the cholera-endemic ganges river delta. Sci. Transl. Med. 2013, 5, 192ra186. [Google Scholar] [CrossRef] [Green Version]
- Midani, F.S.; Weil, A.A.; Chowdhury, F.; Begum, Y.A.; Khan, A.I.; Debela, M.D.; Durand, H.K.; Reese, A.T.; Nimmagadda, S.N.; Silverman, J.D.; et al. Human gut microbiota predicts susceptibility to Vibrio cholerae infection. J. Infect. Dis. 2018, 218, 645–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levade, I.; Saber, M.M.; Midani, F.S.; Chowdhury, F.; Khan, A.I.; Begum, Y.A.; Ryan, E.T.; David, L.A.; Calderwood, S.B.; Harris, J.B.; et al. Predicting Vibrio cholerae infection and disease severity using metagenomics in a prospective cohort study. J. Infect. Dis. 2021, 223, 342–351. [Google Scholar] [CrossRef]
- Payne, S.M.; Mey, A.R.; Wyckoff, E.E. Vibrio iron transport: Evolutionary adaptation to life in multiple environments. Microbiol. Mol. Biol. Rev. 2016, 80, 69–90. [Google Scholar] [CrossRef] [Green Version]
- Mey, A.R.; Wyckoff, E.E.; Kanukurthy, V.; Fisher, C.R.; Payne, S.M. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect. Immun. 2005, 73, 8167–8178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyckoff, E.E.; Mey, A.R.; Payne, S.M. Iron acquisition in Vibrio cholerae. Biometals 2007, 20, 405–416. [Google Scholar] [CrossRef]
- Alavi, S.; Mitchell, J.D.; Cho, J.Y.; Liu, R.; Macbeth, J.C.; Hsiao, A. Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell 2020, 181, 1533–1546.e3. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Z.; Hughes, C.; Stern, A.M.; Wang, H.; Zhong, Z.; Kan, B.; Fenical, W.; Zhu, J. Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence. Proc. Natl. Acad. Sci. USA 2013, 110, 2348–2353. [Google Scholar] [CrossRef] [Green Version]
- Tilloy, F.; Treiner, E.; Park, S.H.; Garcia, C.; Lemonnier, F.; de la Salle, H.; Bendelac, A.; Bonneville, M.; Lantz, O. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J. Exp. Med. 1999, 189, 1907–1921. [Google Scholar] [CrossRef]
- Reantragoon, R.; Corbett, A.J.; Sakala, I.G.; Gherardin, N.A.; Furness, J.B.; Chen, Z.; Eckle, S.B.; Uldrich, A.P.; Birkinshaw, R.W.; Patel, O.; et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 2013, 210, 2305–2320. [Google Scholar] [CrossRef]
- Lepore, M.; Kalinichenko, A.; Colone, A.; Paleja, B.; Singhal, A.; Tschumi, A.; Lee, B.; Poidinger, M.; Zolezzi, F.; Quagliata, L.; et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRbeta repertoire. Nat. Commun. 2014, 5, 3866. [Google Scholar] [CrossRef] [Green Version]
- Kjer-Nielsen, L.; Patel, O.; Corbett, A.J.; Le Nours, J.; Meehan, B.; Liu, L.; Bhati, M.; Chen, Z.; Kostenko, L.; Reantragoon, R.; et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012, 491, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Dusseaux, M.; Martin, E.; Serriari, N.; Peguillet, I.; Premel, V.; Louis, D.; Milder, M.; Le Bourhis, L.; Soudais, C.; Treiner, E.; et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011, 117, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Sobkowiak, M.J.; Davanian, H.; Heymann, R.; Gibbs, A.; Emgard, J.; Dias, J.; Aleman, S.; Kruger-Weiner, C.; Moll, M.; Tjernlund, A.; et al. Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17. Eur. J. Immunol. 2019, 49, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Booth, J.S.; Salerno-Goncalves, R.; Blanchard, T.G.; Patil, S.A.; Kader, H.A.; Safta, A.M.; Morningstar, L.M.; Czinn, S.J.; Greenwald, B.D.; Sztein, M.B. Mucosal-Associated Invariant T Cells in the Human Gastric Mucosa and Blood: Role in Helicobacter pylori Infection. Front. Immunol. 2015, 6, 466. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, A.; Leeansyah, E.; Introini, A.; Paquin-Proulx, D.; Hasselrot, K.; Andersson, E.; Broliden, K.; Sandberg, J.K.; Tjernlund, A. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal. Immunol. 2017, 10, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Reantragoon, R.; Kostenko, L.; Corbett, A.J.; Varigos, G.; Carbone, F.R. The frequency of mucosal-associated invariant T cells is selectively increased in dermatitis herpetiformis. Australas. J. Derm. 2017, 58, 200–204. [Google Scholar] [CrossRef]
- Meierovics, A.; Yankelevich, W.J.; Cowley, S.C. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc. Natl. Acad. Sci. USA 2013, 110, E3119–E3128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgel, P.; Radosavljevic, M.; Macquin, C.; Bahram, S. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol. Immunol. 2011, 48, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, H.; D’Souza, C.; Sun, S.; Kostenko, L.; Eckle, S.B.; Meehan, B.S.; Jackson, D.C.; Strugnell, R.A.; Cao, H.; et al. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal. Immunol. 2017, 10, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; D’Souza, C.; Lim, X.Y.; Kostenko, L.; Pediongco, T.J.; Eckle, S.B.G.; Meehan, B.S.; Shi, M.; Wang, N.; Li, S.; et al. MAIT cells protect against pulmonary Legionella longbeachae infection. Nat. Commun. 2018, 9, 3350. [Google Scholar] [CrossRef] [Green Version]
- Salerno-Goncalves, R.; Luo, D.; Fresnay, S.; Magder, L.; Darton, T.C.; Jones, C.; Waddington, C.S.; Blohmke, C.J.; Angus, B.; Levine, M.M.; et al. Challenge of Humans with Wild-type Salmonella enterica Serovar Typhi Elicits Changes in the Activation and Homing Characteristics of Mucosal-Associated Invariant T Cells. Front. Immunol. 2017, 8, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, Y.S.; Cho, Y.N.; Kim, M.J.; Jin, H.M.; Jung, H.J.; Kang, J.H.; Park, K.J.; Kim, T.J.; Kee, H.J.; Kim, N.; et al. Mucosal-associated invariant T cells are numerically and functionally deficient in patients with mycobacterial infection and reflect disease activity. Tuberculosis 2015, 95, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Liu, M.; Wang, J.; Fan, H.; Yang, D.; Zhang, L.; Gu, X.; Nie, J.; Chen, Z.; Corbett, A.J.; et al. IL-17 production by tissue-resident MAIT cells is locally induced in children with pneumonia. Mucosal. Immunol. 2020, 13, 824–835. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, C.; Ussher, J.E.; Rauch, A.; Gartner, K.; Kurioka, A.; Huhn, M.H.; Adelmann, K.; Kang, Y.H.; Fergusson, J.R.; Simmonds, P.; et al. Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection. Blood 2013, 121, 951–961. [Google Scholar] [CrossRef]
- Le Bourhis, L.; Dusseaux, M.; Bohineust, A.; Bessoles, S.; Martin, E.; Premel, V.; Core, M.; Sleurs, D.; Serriari, N.E.; Treiner, E.; et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 2013, 9, e1003681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorkas, C.K.; Wipperman, M.F.; Li, K.; Bean, J.; Bhattarai, S.K.; Adamow, M.; Wong, P.; Aube, J.; Juste, M.A.J.; Bucci, V.; et al. Mucosal-associated invariant and gammadelta T cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight 2018, 3, e121899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cisternas, I.S.; Torres, A.; Flores, A.F.; Angulo, V.A.G. Differential regulation of riboflavin supply genes in Vibrio cholerae. Gut Pathog. 2017, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbett, A.J.; Eckle, S.B.; Birkinshaw, R.W.; Liu, L.; Patel, O.; Mahony, J.; Chen, Z.; Reantragoon, R.; Meehan, B.; Cao, H.; et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 2014, 509, 361–365. [Google Scholar] [CrossRef]
- Leung, D.T.; Bhuiyan, T.R.; Nishat, N.S.; Hoq, M.R.; Aktar, A.; Rahman, M.A.; Uddin, T.; Khan, A.I.; Chowdhury, F.; Charles, R.C.; et al. Circulating mucosal associated invariant T cells are activated in Vibrio cholerae O1 infection and associated with lipopolysaccharide antibody responses. PLoS Negl. Trop. Dis. 2014, 8, e3076. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, T.R.; Rahman, M.A.; Trivedi, S.; Afroz, T.; Banna, H.A.; Hoq, M.R.; Pop, I.; Jensen, O.; Rashu, R.; Uddin, M.I.; et al. Mucosal-associated invariant T (MAIT) cells are highly activated in duodenal tissue of humans with Vibrio cholerae O1 infection. medRxiv 2021. [Google Scholar] [CrossRef]
- Jensen, O.; Trivedi, S.; Meier, J.D.; Fairfax, K.; Scott Hale, J.; Leung, D.T. A novel subset of follicular helper-like MAIT cells has capacity for B cell help and antibody production in the mucosa. bioRxiv 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, E.T.; Leung, D.T.; Jensen, O.; Weil, A.A.; Bhuiyan, T.R.; Khan, A.I.; Chowdhury, F.; LaRocque, R.C.; Harris, J.B.; Calderwood, S.B.; et al. Systemic, Mucosal, and Memory Immune Responses following Cholera. Trop. Med. Infect. Dis. 2021, 6, 192. https://doi.org/10.3390/tropicalmed6040192
Ryan ET, Leung DT, Jensen O, Weil AA, Bhuiyan TR, Khan AI, Chowdhury F, LaRocque RC, Harris JB, Calderwood SB, et al. Systemic, Mucosal, and Memory Immune Responses following Cholera. Tropical Medicine and Infectious Disease. 2021; 6(4):192. https://doi.org/10.3390/tropicalmed6040192
Chicago/Turabian StyleRyan, Edward T., Daniel T. Leung, Owen Jensen, Ana A. Weil, Taufiqur Rahman Bhuiyan, Ashraful Islam Khan, Fahima Chowdhury, Regina C. LaRocque, Jason B. Harris, Stephen B. Calderwood, and et al. 2021. "Systemic, Mucosal, and Memory Immune Responses following Cholera" Tropical Medicine and Infectious Disease 6, no. 4: 192. https://doi.org/10.3390/tropicalmed6040192
APA StyleRyan, E. T., Leung, D. T., Jensen, O., Weil, A. A., Bhuiyan, T. R., Khan, A. I., Chowdhury, F., LaRocque, R. C., Harris, J. B., Calderwood, S. B., Qadri, F., & Charles, R. C. (2021). Systemic, Mucosal, and Memory Immune Responses following Cholera. Tropical Medicine and Infectious Disease, 6(4), 192. https://doi.org/10.3390/tropicalmed6040192