Persistence of Schistosomiasis-Related Morbidity in Northeast Brazil: An Integrated Spatio-Temporal Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Statistical Analyses
2.4. Ethical Aspects
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/neglected_diseases/news/schisto-elimination-refocusing-snail-control-sustain-progress/en/ (accessed on 6 March 2020).
- Martins-Melo, F.R.; Carneiro, M.; Ramos, A.N., Jr.; Heukelbach, J.; Ribeiro, A.L.P.; Werneck, G.L. The burden of neglected tropical diseases in Brazil, 1990–2016: A subnational analysis from the global burden of disease study 2016. PLoS Negl. Trop. Dis. 2018, 12, 1–24. [Google Scholar] [CrossRef]
- Oliveira, E.C.A.; Pimentel, T.J.F.; Araujo, J.P.M.; Oliveira, L.C.D.S.; Fernando, V.C.N.; Loyo, R.M.; Gomes, E.C.S.; Moreira, R.S.; Barbosa, C.S. Investigation of schistosomiasis cases and deaths in the city of Recife, Pernambuco, Brazil, 2005–2013. Epidemiol. Serv. Saúde 2018, 27, e2017190. [Google Scholar]
- World Health Organization. Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases: A Roadmap for Implementation: Executive Summary. 2012. Available online: https://apps.who.int/iris/handle/10665/70809 (accessed on 5 December 2020).
- Casulli, A. New global targets for NTDs in the WHO roadmap 2021–2030. PLoS Negl. Trop. Dis. 2021, 15, e0009373. [Google Scholar] [CrossRef] [PubMed]
- Katz, N. Schistosomiasis control in Brazil. Mem. Inst. Oswaldo Cruz 1998, 93, 33–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollemberg, C.V.V.; Santos, C.M.B.; Silva, M.M.B.L.; Souza, A.M.B.; da Silva, A.M.; de Almeida, J.A.P.; de Almeida, R.P.; de Jesus, A.R. Epidemiological characteristics and geographical distribution of schistosomiasis and geohelminths, in the State of Sergipe, according to data from the Schistosomiasis Control Program in Sergipe. Rev. Soc. Bras. Med. Trop. 2011, 44, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.F.; Nunes, B.E.B.R.; Leal, T.C.; de Paiva, J.P.S.; Lemos, A.M.S.; de Araújo, L.M.M.; Araújo, M.D.; Machado, M.F.; Fraga, C.A.C.; Souza, C.D.F. Schistosomiasis mansoni in the northeast region of Brazil: Temporal modeling of positivity, hospitalization, and mortality rates. Rev. Soc. Bras. Med. Trop. 2019, 52, 1–6. [Google Scholar] [CrossRef]
- Brazil Ministry of Health. Vigilância da Esquistossomose Mansoni: Diretrizes Técnicas; Editora do Ministério da Saúde: Brasilia, Brazil, 2014. (In Portuguese) [Google Scholar]
- Gomes, A.C.L.; Galindo, J.M.; de Lima, N.N.; Silva, É.V.G. Prevalence and worm burden of Schistosomiasis mansoni before and after collective treatment in Jaboatão dos Guararapes, Pernambuco, Brazil. Epidemiol. Serv. Saúde 2016, 25, 243–250. [Google Scholar] [PubMed]
- De Souza, H.P.; de Oliveira, W.T.G.H.; Santos, J.; Toledo, J.P.; Ferreira, I.P.S.; de Sousa Esashika, S.N.G.; de Lima, T.F.P.; Delácio, A.D.S. Infectious and parasitic diseases in Brazil, 2010 to 2017: Considerations for surveillance enfermedades infecciosas y parasitarias en Brasil de 2010 a 2017: Aspectos para la vigilancia sanitaria. Rev. Panam. Salud Pública 2020, 44, e10. [Google Scholar] [CrossRef] [PubMed]
- Martins-Melo, F.R.; Pinheiro, M.C.C.; Ramos, A.N.; Alencar, C.H.; Bezerra, F.S.D.M.; Heukelbach, J. Spatiotemporal patterns of schistosomiasis-related deaths, Brazil, 2000–2011. Emerg. Infect. Dis. 2015, 21, 1820–1823. [Google Scholar] [CrossRef] [PubMed]
- Silva Filho, J.D.; Pinheiro, M.C.C.; Sousa, M.S.; Gomes, V.D.S.; de Castro, I.M.N.; Ramos, A.N., Jr.; Bezerra, F.S.M. Detection of schistosomiasis in an area directly affected by the São Francisco River large-scale water transposition project in the northeast of Brazil. Rev. Soc. Bras. Med. Trop. 2017, 50, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Carmo, M.E.; Guizardi, F.L. O conceito de vulnerabilidade e seus sentidos para as políticas públicas de saúde e assistência social. Cad. Saúde Pública 2018, 34, e00101417. [Google Scholar] [CrossRef] [Green Version]
- Neglected Diseases in Brazil: Vulnerability and challenges. In Health Brazil 2017: An Analysis of the Health Situation and Challenges to the Achievement of the Sustainable Development Goals, 1st ed.; Ministry of Health: Brasilia, Brazil, 2018; pp. 99–141. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/saude_brasil_2017_analise_situacao_saude_desafios_objetivos_desenvolvimento_sustetantavel.pdf (accessed on 4 October 2021).
- Fundação Instituto Oswaldo Cruz. Escola Nacional de Saúde Pública. Centro de Estudos, Políticas e Informação Sobre Determinantes Sociais da Saúde. 2017. Available online: https://dssbr.ensp.fiocruz.br/ (accessed on 4 October 2021).
- Brazil Ministry of Health. Esquistossomose: Causas, Sintomas, Tratamento, Diagnóstico e Prevenção. Available online: http://antigo.saude.gov.br/saude-de-a-z/esquistossomose (accessed on 10 February 2020).
- Nascimento, G.L.; Pegado, H.M.; Domingues, A.L.C.; Ximenes, R.A.A.; Itria, A.; Cruz, L.N.; Oliveira, M.R.F. The cost of a disease targeted for elimination in Brazil: The case of schistosomiasis mansoni. Mem. Inst. Oswaldo Cruz 2019, 114, e180347. [Google Scholar] [CrossRef]
- Hay, S.I.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; et al. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1260–1344. [Google Scholar] [CrossRef] [Green Version]
- Martins-Melo, F.R.; Ramos, A.N., Jr.; Alencar, C.H.; Heukelbach, J. Mortality from neglected tropical diseases in Brazil, 2000–2011. Bull. World Health Organ. 2016, 2, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.L.; Domingues, A.L.C.; Ximenes, R.A.A.; Itria, A.; Cruz, L.N.; Oliveira, M.R.F. Quality of life and quality-adjusted life years of chronic schistosomiasis mansoni patients in Brazil in 2015. Trans. R. Soc. Trop. Med. Hyg. 2018, 112, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Institute of Geography and Statistics. Brasil em Síntese. 2021. Available online: https://cidades.ibge.gov.br/ (accessed on 18 February 2021). (In Portuguese)
- Institute of Applied Economic Research. Atlas da Vulnerabilidade Social nos Municípios Brasileiros. 2015. Available online: http://ivs.ipea.gov.br (accessed on 18 February 2021). (In Portuguese)
- National Sanitation Information System. Painel de Informações sobre Saneamento. Available online: http://snis.gov.br/painel-informacoes-saneamento-brasil/web/ (accessed on 5 December 2020). (In Portuguese)
- Haining, R.P. The moving average model for spatial interaction. Trans. Inst. Br. Geogr. 1978, 3, 202. [Google Scholar] [CrossRef]
- Bernardinelli, L.; Montomoli, C. Empirical bayes versus fully Bayesian analysis of geographical variation in disease risk. Stat. Med. 1992, 11, 983–1007. [Google Scholar] [CrossRef]
- Silva, F.F.; Bezerra, R.P.; Souza, C.D.F.; Santos, C.B. Spatio-temporal dynamics of mansonic schistosomiasis in Alagoas (2007–2017). Divers. J. 2020, 5, 1738–1749. [Google Scholar] [CrossRef]
- Cruz, J.I.N.; Salazar, G.O.; la Corte, R. Setback of the schistosomiasis control program in the Brazilian state with the highest prevalence of the disease. Rev. Pan. Amaz. Saúde 2020, 11, 1–9. [Google Scholar]
- Rocha, T.J.M.; Santos, M.C.S.; de Lima, M.V.M.; Calheiros, C.M.L.; Wanderley, F.S. Epidemiological aspects and distribution of infection cases by Schistosoma mansoni in municipalities in the Alagoas State, Brazil. Rev. Pan. Amaz. Saúde 2016, 2, 1–2. [Google Scholar]
- Menezes, A.P.; Coura, J.R. Sectional study on schistosomiasis mansoni in the municipality of Riachuelo, State of Sergipe. Rev. Soc. Bras. Med. Trop. 1980, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Katz, N. National Survey on the Prevalence of Schistosomiasis Mansoni and Geo-Helminths. 2018. Available online: https://www.arca.fiocruz.br/handle/icict/25662 (accessed on 6 April 2020).
- Facchini, L.A.; Nunes, B.P.; Felisberto, E.; da Silva, J.A.M.; da Silva, J.B., Jr.; Tomasi, E. Assessment of a Brazilian public policy intervention to address schistosomiasis in Pernambuco state: The SANAR program, 2011–2014. BMC Public Health 2018, 18, 1200. [Google Scholar] [CrossRef] [PubMed]
- Brito, M.I.B.S.; Silva, M.B.A.; Quinino, L.R.M. Epidemiological situation and control of schistosomiasis in Pernambuco, Brazil: A descriptive study, 2010–2016. Epidemiol. Serv. Saúde 2020, 29, e2019252. [Google Scholar] [PubMed]
- Nascimento, É.S.; Maia-Herzog, M.; Sabroza, P.C. Public access to health information concerning neglected diseases in Brazil. Rev. Eletrônica Comun. Inf. Inovação Saúde 2012, 6, 1–10. [Google Scholar] [CrossRef]
- Alves, J.A.B.; Santos, J.R.; de Mendonça, E.N.; Abud, A.C.F.; Nunes, M.D.S.; Fakhouri, R.; Inagaki, A.D.D.M.; Marchioro, M.; Antoniolli, A.R. Epidemiological aspects of dengue in Aracaju, State of Sergipe, Brazil. Rev. Soc. Bras. Med. Trop. 2011, 44, 670–673. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, A.D.; Lima, A.C.R.; Santos, M.B.; Alves, J.A.B.; Góes, M.A.D.O.; Nunes, M.A.P.; Sá, S.L.C.S.; de Araújo, K.C.G.M. Spatial analysis for the identification of risk areas for schistosomiasis mansoni in the State of Sergipe, Brazil, 2005–2014. Rev. Soc. Bras. Med. Trop. 2016, 49, 608–615. [Google Scholar] [CrossRef] [Green Version]
- Toor, J.; Adams, E.R.; Aliee, M.; Amoah, B.; Anderson, R.M.; Ayabina, D.; Bailey, R.; Basáñez, M.-G.; Blok, D.J.; Blumberg, S.; et al. Predicted impact of COVID-19 on neglected tropical disease programs and the opportunity for innovation. Clin. Infect. Dis. 2021, 72, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- Ximenes, R.A.D.A.; Southgate, B.; Smith, P.G.; Neto, L.G. Migration and urban schistosomiasis. The case of São Lourenço da Mata, northeast of Brazil. Rev. Inst. Med. Trop. 2000, 42, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Favre, T.C.; Fernandez, M.A.; Beck, L.C.N.H.; Guimaraes, R.; Pieri, O.S.; Thiengo, S. Assessment of schistosomiasis in the semi-arid Northeast region of Brazil: The São Francisco River large-scale water transposition project. Rev. Soc. Bras. Med. Trop. 2016, 49, 252–257. [Google Scholar] [CrossRef]
- Da Paz, W.S.; Gomes, D.S.; Ramos, R.E.S.; Cirilo, T.M.; Santos, I.G.A.; Ribeiro, C.J.N.; de Araújo, K.C.G.M.; de Jesus, A.M.R.; dos Santos, A.D.; Bezerra-Santos, M. Spatiotemporal clusters of schistosomiasis mortality and association with social determinants of health in the Northeast region of Brazil (1980–2017). Acta Trop. 2020, 212, 105668. [Google Scholar] [CrossRef] [PubMed]
- Rollemberg, C.V.; Silva, M.M.; Rollemberg, K.C.; Amorim, F.R.; Lessa, N.M.; Santos, M.D.S.; Souza, A.M.B.; Melo, E.V.; Almeida, R.P.; Silva, Â.M.; et al. Predicting frequency distribution and influence of sociodemographic and behavioral risk factors of Schistosoma mansoni infection and analysis of co-infection with intestinal parasites. Geospat. Health 2015, 10, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.C.V.; Domingues, A.L.C. Epidemiologic aspects of hepatosplenic schistosomiasis in the State of Pernambuco, Brazil. Epidemiol. Serv. Saúde 2011, 20, 327–336. [Google Scholar] [CrossRef]
- Silva, P.C.V.; Leal, T.V.; Domingues, A.L.C. Treatment and education reduce the severity of schistosomiasis periportal fibrosis. Rev. Soc. Bras. Med. Trop. 2013, 46, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, C.S.; Araújo, K.C.; Sevilla, M.A.A.; Melo, F.; Gomes, E.C.; Souza-Santos, R. Current epidemiological status of schistosomiasis in the state of Pernambuco, Brazil. Mem. Inst. Oswaldo Cruz 2010, 105, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.S.; Santos, R.S.; Gomes, E.S.; Araújo, K.; Albuquerque, J.; Melo, F.; Sevilha, M.A.; Brasileiro, D.; Barreto, M.I.; Leal Neto, O.B.; et al. Epidemiology of schistosomiasis in coastal areas of Pernambuco State, Brazil. Rev. Patol. Trop. 2015, 43, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.B.; dos Santos, A.D.; da Silva, P.P.; Barreto, A.S.; dos Santos, E.O.; França, A.V.C.; Barbosa, C.S.; Araújo, K.C.G.M. Spatial analysis of viral hepatitis and schistosomiasis coinfection in an endemic area in Northeastern Brazil. Rev. Soc. Bras. Med. Trop. 2017, 50, 383–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, V.S.; Loyo, R.M.; Souza e Guimarães, R.J.P.; Barbosa, C.S. Geographic information systems under study on schistosomiasis in Pernambuco. Rev. Saude Publica 2017, 51, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resendes, A.P.C.; Souza-Santos, R.; Barbosa, C.S. Hospitalization and mortality from mansoni schistosomiasis in the state of Pernambuco, Brazil, 1992/2000. Cad. Saude Publica 2005, 21, 1392–1401. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, M.C.C.; Ferreira, A.F.; Silva Filho, J.D.D.; Lima, M.D.S.; Martins-Melo, F.R.; Bezerra, F.S.M.; Sousa, M.S.; Ramos, A.N., Jr. Burden of schistosomiasis-related mortality in Brazil: Epidemiological patterns and spatial-temporal distribution, 2003–2018. Trop. Med. Int. Health 2020, 25, 1395–1407. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.S.; de Souza, E.C.G.; Campos, J.V.; de Oliveira, F.J.M.; da Silva, M.C.M.; de Oliveira, E.C.A.; Domingues, A.L.C. Morbidity of mansoni schistosomiasis in Pernambuco—Brazil: Analysis on the temporal evolution of deaths, hospital admissions and severe clinical forms (1999–2014). Acta Trop. 2016, 164, 10–16. [Google Scholar] [CrossRef]
- Almeida, T.C.; Domingues, A.L.C.; de Almeida, J.R.; de Moura, A.G.; da Costa, A.B.; de Almeida, R.C. Varicel upper gastrointestinal bleeding in emergency hospital in Recife—PE. Gastroenterol. Endosc. Diag. 2013, 32, 103–110. [Google Scholar]
- Anisuzzaman, A.A.; Tsuji, N. Schistosomiasis and hookworm infection in humans: Disease burden, pathobiology and anthelmintic vaccines. Parasitol. Int. 2020, 75, 102051. [Google Scholar] [CrossRef] [PubMed]
- Zoni, A.C.; Catalá, L.; Ault, S.K. Schistosomiasis prevalence and intensity of infection in Latin America and the Caribbean countries, 1942–2014: A systematic review in the context of a regional elimination goal. PLoS Negl. Trop. Dis. 2016, 10, e0004493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | SISPCE + SINAN | SIH | ||||||
---|---|---|---|---|---|---|---|---|
n (%) | Crude Rate (95%CI) | RR (95%CI) | p-Value | n (%) | Crude Rate (95%CI) | RR (95%CI) | p-Value | |
Total | 1,040,983 (100.0) | 112.95 (112.10–113.80) | 6030 (100.0) | 0.65 (0.59–0.72) | - | |||
State of residence | ||||||||
Maranhão | 71,275 (6.8) | 62.48 (60.60–64.37) | 1.00 | 117 (1.9) | 0.10 (0.03–0.18) | 1.00 | ||
Piauí | 35 (0.0) | 0.06 (0.00–0.15) | 0.00 (0.00–0.00) | <0.0001 | 14 (0.2) | 0.03 (0.00–0.09) | 0.30 (0.04–2.44) | 0.2605 |
Ceará | 4,680 (0.4) | 3.19 (2.80–3.57) | 0.05 (0.00–0.06) | <0.0001 | 170 (2.8) | 0.12 (0.04–0.19) | 1.11 (0.42–2.92) | 0.8299 |
Rio Grande do Norte | 22,154 (2.1) | 40.22 (38.00–42.40) | 0.64 (0.60–0.69) | <0.0001 | 67 (1.1) | 0.12 (0.00–0.24) | 1.18 (0.35–4.04) | 0.7880 |
Paraíba | 61,902 (5.9) | 94.80 (91.70–97.88) | 1.52 (1.50–1.59) | <0.0001 | 302 (5.0) | 0.47 (0.25–0.69) | 4.49 (1.88–10.76) | 0.0007 |
Pernambuco | 148,575 (14.3) | 97.10 (95.10–99.14) | 1.55 (1.50–1.61) | <0.0001 | 2508 (41.6) | 1.64 (1.38–1.91) | 15.76 (7.39–33.64) | <0.0001 |
Alagoas | 267,328 (25.7) | 492.06 (484.40–499.70) | 7.84 (7.60–8.11) | <0.0001 | 937 (15.5) | 1.72 (1.27–2.18) | 16.5 (7.51–36.23) | <0.0001 |
Sergipe | 136,247 (13.1) | 380.17 (371.90–388.50) | 6.07 (5.80–6.30) | <0.0001 | 282 (4.7) | 0.81 (0.42–1.19) | 7.73 (3.21–18.64) | <0.0001 |
Bahia | 328,787 (31.6) | 135.22 (133.30–137.10) | 2.16 (2.10–2.24) | <0.0001 | 1633 (27.1) | 0.67 (0.54–0.81) | 6.43 (2.99–13.86) | <0.0001 |
Residence in the capital | ||||||||
No | 1,005,388 (96.6) | 139.34 (138.20–140.50) | 7.82 (7.50–8.17) | <0.0001 | 5135 (85.2) | 0.71 (0.63–0.79) | 1.58 (1.18–2.12) | 0.0021 |
Yes | 35,595 (3.4) | 17.79 (17.00–18.55) | 1.00 | 895 (14.8) | 0.45 (0.33–0.57) | 1.00 | ||
Municipality extremely poor | ||||||||
No | 699,531 (67.2) | 108.49 (107.40–109.50) | 1.00 | 4184 (69.4) | 0.65 (0.57–0.73) | 0.97 (0.77–1.21) | 0.7858 | |
Yes | 341,452 (32.8) | 123.31 (121.60–125.00) | 1.14 (1.10–1.16) | <0.0001 | 1846 (30.6) | 0.67 (0.54–0.79) | 1.00 | |
Municipality of the semi-arid region | ||||||||
No | 814,589 (78.3) | 147.84 (146.50–149.20) | 1.00 | 4683 (77.7) | 0.85 (0.75–0.95) | 2.34 (1.82–3.01) | <0.0001 | |
Yes | 226,394 (21.7) | 61.08 (60.00–62.11) | 0.41 (0.40–0.42) | <0.0001 | 1347 (22.3) | 0.36 (0.28–0.44) | 1.00 | |
SVI | ||||||||
Very low | 4 (0.0) | - | 1 (0.0) | - | - | - | ||
Low | 30,247 (2.9) | 34.10 (32.50–35.69) | 1.00 | 155 (2.6) | 0.17 (0.06–0.29) | 1.00 | ||
Medium | 159,300 (15.3) | 45.84 (44.90–46.77) | 1.34 (1.30–1.41) | <0.0001 | 1819 (30.2) | 0.52 (0.42–0.62) | 3.03 (1.54–5.99) | 0.0014 |
High | 500,586 (48.1) | 164.69 (162.80–166.60) | 4.82 (4.60–5.06) | <0.0001 | 2873 (47.6) | 0.95 (0.80–1.09) | 5.48 (2.80–10.71) | <0.0001 |
Very high | 350,846 (33.7) | 193.34 (190.70–196.00) | 5.66 (5.40–5.94) | <0.0001 | 1182 (19.6) | 0.66 (0.50–0.81) | 3.80 (1.90–7.61) | 0.0002 |
HDI | ||||||||
Very low | 1,522 (0.1) | 48.97 (38.90–59.09) | 2.57 (2.10–3.17) | <0.0001 | 6 (0.1) | - | - | - |
Low | 553,516 (53.2) | 196.78 (194.60–198.90) | 10.32 (9.90–10.71) | <0.0001 | 2245 (37.2) | 0.80 (0.66–0.93) | 1.73 (1.30–2.30) | 0.0001 |
Medium | 433,275 (41.6) | 120.16 (118.70–121.60) | 6.31 (6.10–6.55) | <0.0001 | 2501 (41.5) | 0.69 (0.58–0.81) | 1.50 (1.14–1.99) | 0.004 |
High | 52,670 (5.1) | 19.04 (18.40–19.71) | 1.00 | 1278 (21.2) | 0.46 (0.36–0.57) | 1.00 | ||
SPI | ||||||||
Very low | 541,034 (52.0) | 197.13 (195.00–199.30) | 8.91 (8.60–9.29) | <0.0001 | 2216 (36.7) | 0.81 (0.67–0.94) | 4.24 (2.16–8.33) | <0.0001 |
Low | 317,647 (30.5) | 154.90 (152.70–157.10) | 7.01 (6.70–7.31) | <0.0001 | 1696 (28.1) | 0.83 (0.67–0.99) | 4.36 (2.21–8.63) | <0.0001 |
Medium | 123,410 (11.9) | 71.28 (69.60–72.92) | 3.23 (3.10–3.38) | <0.0001 | 1010 (16.7) | 0.58 (0.43–0.73) | 3.05 (1.51–6.15) | 0.0018 |
High | 41,618 (4.0) | 22.08 (21.20–22.95) | 1.00 | 960 (15.9) | 0.51 (0.37–0.64) | 2.66 (1.31–5.37) | 0.0065 | |
Very high | 17,274 (1.7) | 21.45 (20.10–22.77) | 0.97 (0.90–1.05) | 0.4407 | 148 (2.5) | 0.19 (0.07–0.31) | 1.00 | |
Size of municipality | ||||||||
Small Size I | 366,294 (35.2) | 188.79 (186.30–191.30) | 1.62 (1.60–1.66) | <0.0001 | 944 (15.7) | 0.49 (0.36–0.62) | 1.00 | |
Small Size II | 397,032 (38.1) | 180.98 (178.70–183.30) | 1.55 (1.50–1.59) | <0.0001 | 1997 (33.1) | 0.91 (0.74–1.07) | 1.85 (1.34–2.54) | 0.0002 |
Medium Size | 155,869 (15.0) | 116.45 (114.10–118.80) | 1.00 | 1024 (17.0) | 0.76 (0.57–0.95) | 1.55 (1.08–2.24) | 0.0178 | |
Large Size | 121,788 (11.7) | 32.53 (31.80–33.28) | 0.28 (0.30–0.29) | <0.0001 | 2065 (34.2) | 0.55 (0.45–0.65) | 1.12 (0.82–1.54) | 0.4840 |
Variable | SISPCE + SINAN | SIH | ||||
---|---|---|---|---|---|---|
Period | APC (95%CI) | AAPC (95%CI) | Period | APC (95%CI) | AAPC (95%CI) | |
Total | 2001–2003 | 19.8 (−10.9 to 61.1) | −11.5 * (−13.9 to −9.1) | 2001–2014 | −14.2 * (−16.8 to −11.6) | −13.2 * (−15.0 to −11.3) |
2003–2017 | −13.7 * (−15.5 to −11.9) | 2014–2017 | 0.8 (−35.2 to 56.9) | |||
State of residence | ||||||
Maranhão | 2001–2005 | 22.5 (0 to 50.2) | −7.6 * (−11.8 to -3.1) | 2001–2017 | −17.5 * (−20.9 to −14.0) | −17.5 * (−20.9 to −14.0) |
2005–2017 | −13.1 * (−16.9 to −9) | |||||
Piauí | 2001–2017 | −3.1 (−12.1 to 6.8) | −3.1 (−12.1 to 6.8) | 2001–2017 | 8.8 (−0.7 to 19.2) | 8.8 (−0.7 to 19.2) |
Ceará | 2001–2017 | −19.4 * (−22.8 to −15.8) | −19.4 * (−22.8 to −15.8) | 2001–2017 | −9.8 * (−13.2 to −6.1) | −9.8 * (−13.2 to −6.1) |
Rio Grande do Norte | 2001–2005 | 110.5 (−13.5 to 412.6) | −12.0 * (−21.9 to −0.8) | 2001–2017 | −7.8 * (−12.9 to −2.4) | −7.8 * (−12.9 to −2.4) |
2005–2017 | −20.1 * (−28.8 to −10.3) | |||||
Paraíba | 2001–2014 | −9.5 * (−12.7 to −6.3) | −10.4 * (−13.9 to −6.7) | 2001–2017 | −13.8 * (−18.0 to −9.5) | −13.8 * (−18.0 to −9.5) |
2014–2017 | −70.6 (−96.1 to 118.8) | |||||
Pernambuco | 2001–2017 | −4.8 * (−7.5 to −2.1) | −4.8 * (−7.5 to −2.1) | 2001–2017 | −9.8 * (−11.6 to −8.0) | −9.8 * (−11.6 to −8.0) |
Alagoas | 2001–2003 | 18.5 (−5.4 to 48.4) | −8.2 * (−9.9 to −6.4) | 2001–2017 | −21.4 * (−24.2 to −18.4) | −21.4 * (−24.2 to −18.4) |
2003–2017 | −9.8 * (−11 to −8.6) | |||||
Sergipe | 2001–2006 | 8.1 (−6.1 to 24.5) | −9.0 * (-12.8 to −4.9) | 2001–2017 | −12.5 * (−15.7 to −9.2) | −12.5 * (−15.7 to −9.2) |
2006–2017 | −15.5 * (−20.2 to −10.5) | |||||
Bahia | 2001–2017 | −19.6 * (−24.6 to −14.3) | −19.6 * (−24.6 to −14.3) | 2001–2006 | −2.8 (−15.0 to 11.1) | −14.2 * (−18.3 to −9.9) |
2006–2017 | −20.6 * (−26.4 to −14.4) | |||||
Residence in the capital | ||||||
No | 2001–2003 | 18.7 (−11.1 to 58.5) | −11.6 * (−13.9 to −9.2) | 2001–2005 | −6.7 (−19.0 to 7.4) | −12.6 * (−14.6 to −10.4) |
2003–2017 | −13.7 * (−15.5 to −11.9) | 2005–2017 | −14.4 * (−18.0 to −10.7) | |||
Yes | 2001–2005 | 30.3 * (10.6 to 53.5) | −9.9 * (−15.2 to −4.2) | 2001–2017 | −16.8 * (−18.4 to −15.1) | −16.8 * (−18.4 to −15.1) |
2005–2017 | −17.6 * (−21 to −14.1) | |||||
Municipality extremely poor | ||||||
No | 2001–2003 | 21.3 (−10.5 to 64.4) | −10.2 * (−12.4 to −8) | 2001–2017 | −12.6 * (−14.1 to −11.1) | −12.6 * (−14.1 to −11.1) |
2003–2017 | −12.3* (−14.1 to −10.5) | |||||
Yes | 2001–2017 | −14.3 * (−17.2 to −11.2) | −14.3 * (−17.2 to −11.2) | 2001–2006 | −2.2 (−14.7 to 12.2) | −14.1 * (−18.3 to −9.7) |
2006–2017 | −20.7 * (−26.6 to −14.2) | |||||
Municipality of the semi-arid region | ||||||
No | 2001–2003 | 27.3 (−10.3 to 80.6) | −10.0 * (−12.4 to −7.5) | 2001–2005 | −7.6 (−19.8 to 6.5) | −13.8 * (−16.0 to −11.6) |
2003–2017 | −12.3 * (−14.2 to −10.3) | 2005–2017 | −15.9 * (−19.7 to −12.0) | |||
Yes | 2001–2017 | −18.1 * (−21.1 to −14.9) | −18.1 * (−21.1 to −14.9) | 2001–2014 | −13.2 * (−15.1 to −11.1) | −11.1 * (−13.0 to −9.3) |
2014–2017 | 12.8 (−17.9 to 55.0) | |||||
SVI | ||||||
Very low | 2001–2017 | −10.8 * (−16.8 to −4.3) | −10.8 * (−16.8 to −4.3) | 2001–2017 | −2.6 * (−4.9 to −0.1) | −2.6 * (−4.9 to −0.1) |
Low | 2001–2017 | −17.0 * (−23.1 to −10.4) | −17.0 * (−23.1 to −10.4) | 2001–2017 | −11.2 * (−14.3 to −8.0) | −11.2 * (−14.3 to −8.0) |
Medium | 2001–2005 | 0.4 (−15.5 to 19.3) | −13.0 * (−16.1 to −9.8) | 2001–2011 | −17.0 * (−19.3 to −14.7) | −14.8 * (−16.3 to −13.2) |
2005–2017 | −17.4 * (−21.6 to −12.9) | 2011–2017 | −6.3 (−15.9 to 4.4) | |||
High | 2001–2003 | 19.6 (−15.6 to 69.3) | −11.5 * (−13.9 to −9) | 2001–2005 | −1.2 (−16.9 to 17.4) | −11.7 * (−14.5 to −8.8) |
2003–2017 | −13.7 * (−15.9 to −11.5) | 2005–2017 | −14.8 * (−18.8 to −10.5) | |||
Very high | 2001–2003 | 23.3 (−10.1 to 69.1) | −10.1 * (−12.3 to −7.8) | 2001–2017 | −14.2 * (−16.6 to −11.7) | −14.2 * (−16.6 to −11.7) |
2003–2017 | −12.2 * (−13.9 to −10.4) | |||||
HDI | ||||||
Very low | 2001–2017 | −17.4 * (−24.8 to −9.3) | −17.4 * (−24.8 to −9.3) | 2001–2017 | −3.4 (−6.8 to 0.1) | −3.4 (−6.8 to 0.1) |
Low | 2001–2003 | 22 (−8.7 to 63.1) | −11.2 * (−13.6 to −8.7) | 2001–2006 | −4.5 (−17.9 to 11.1) | −14.4 * (−18.3 to −10.2) |
2003–2017 | −13.4 * (−15.1 to −11.7) | 2006–2017 | −19.9 * (−26.4 to −12.9) | |||
Medium | 2001–2006 | −2.7 (−10.7 to 5.9) | −11.7 * (−14.1 to −9.3) | 2001–2017 | −11.5 * (−13.0 to −9.9) | −11.5 * (−13.0 to −9.9) |
2006–2017 | −16.1 * (−19.6 to −12.6) | |||||
High | 2001–2006 | 7.8 (−4.1 to 21.1) | −10.6 * (−14.7 to −6.4) | 2001–2010 | −17.8 * (−21.6 to −13.9) | −13.6 * (−15.9 to −11.3) |
2006–2017 | −17.9 * (−22.2 to −13.4) | 2010–2017 | −3.4 (−13.9 to 8.3) | |||
SPI | ||||||
Very low | 2001–2003 | 20.6 (−9.4 to 60.7) | −11.2 * (−13.5 to −8.8) | 2001–2006 | −4.5 (−18.1 to 11.4) | −14.4 * (−18.3 to −10.2) |
2003–2017 | −13.3 * (−15 to −11.6) | 2006–2017 | −19.9 * (−26.4 to −12.8) | |||
Low | 2001–2003 | 22.2 (−16.7 to 79.1) | −10.6 * (−13 to −8.1) | 2001–2017 | −10.5 * (−12.4 to −8.5) | −10.5 * (−12.4 to −8.5) |
2003–2017 | −12.8 * (−15.1 to −10.5) | |||||
Medium | 2001–2017 | −13.3 * (−16.1 to −10.5) | −13.3 * (−16.1 to −10.5) | 2001–2017 | −11.7 * (−13.6 to −9.7) | −11.7 * (−13.6 to −9.7) |
High | 2001–2017 | −14.9 * (−20.4 to −9.1) | −14.9 * (−20.4 to −9.1) | 2001–2009 | −20.0 * (−23.9 to −15.8) | −15.8 * (−18.0 to −13.6) |
2009–2017 | −8.1 (−16.1 to 0.5) | |||||
Very high | 2001–2017 | −12.5 * (−17 to −7.7) | −12.5 * (−17 to −7.7) | 2001–2017 | −11.1 * (−14.5 to −7.5) | −11.1 * (−14.5 to −7.5) |
Size of municipality | ||||||
Small Size I | 2001–2006 | −0.1 (−8.5 to 9.1) | −10.6 * (−13.2 to −8) | 2001–2014 | −16.3 * (−19.1 to −13.4) | −13.6 * (−16.2 to −11.0) |
2006–2017 | −15.5 * (−18.9 to −11.9) | 2014–2017 | 19.2 (−31.7 to 108.0) | |||
Small Size II | 2001–2003 | 18.6 (−9 to 54.6) | −12.2 * (−14.5 to −9.7) | 2001–2006 | −1.7 (−14.9 to 13.7) | −13.9 * (−18.1 to −9.5) |
2003–2017 | −14.4 * (−16.1 to −12.7) | 2006–2017 | −20.3 * (−26.4 to −13.8) | |||
Medium Size | 2001–2017 | −11.3 * (−14.1 to −8.4) | −11.3 * (−14.1 to −8.4) | 2001–2017 | −11.6 * (−13.6 to −9.7) | −11.6 * (−13.6 to −9.7) |
Large Size | 2001–2007 | −2.8 (−8.4 to 3.1) | −11.5 * (−14.4 to −8.5) | 2001–2010 | −15.7 * (−18.7 to −12.7) | −12.6 * (−14.3 to −10.8) |
2007–2017 | −18.2 * (−22.2 to −14) | 2010–2017 | −5.3 (−12.9 to 2.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, B.M.d.; Ferreira, A.F.; da Silva, J.A.M.; de Amorim, R.G.; Domingues, A.L.C.; Pinheiro, M.C.C.; de Moraes Bezerra, F.S.; Heukelbach, J.; Ramos, A.N., Jr. Persistence of Schistosomiasis-Related Morbidity in Northeast Brazil: An Integrated Spatio-Temporal Analysis. Trop. Med. Infect. Dis. 2021, 6, 193. https://doi.org/10.3390/tropicalmed6040193
Silva BMd, Ferreira AF, da Silva JAM, de Amorim RG, Domingues ALC, Pinheiro MCC, de Moraes Bezerra FS, Heukelbach J, Ramos AN Jr. Persistence of Schistosomiasis-Related Morbidity in Northeast Brazil: An Integrated Spatio-Temporal Analysis. Tropical Medicine and Infectious Disease. 2021; 6(4):193. https://doi.org/10.3390/tropicalmed6040193
Chicago/Turabian StyleSilva, Bárbara Morgana da, Anderson Fuentes Ferreira, José Alexandre Menezes da Silva, Rebeca Gomes de Amorim, Ana Lúcia Coutinho Domingues, Marta Cristhiany Cunha Pinheiro, Fernando Schemelzer de Moraes Bezerra, Jorg Heukelbach, and Alberto Novaes Ramos, Jr. 2021. "Persistence of Schistosomiasis-Related Morbidity in Northeast Brazil: An Integrated Spatio-Temporal Analysis" Tropical Medicine and Infectious Disease 6, no. 4: 193. https://doi.org/10.3390/tropicalmed6040193
APA StyleSilva, B. M. d., Ferreira, A. F., da Silva, J. A. M., de Amorim, R. G., Domingues, A. L. C., Pinheiro, M. C. C., de Moraes Bezerra, F. S., Heukelbach, J., & Ramos, A. N., Jr. (2021). Persistence of Schistosomiasis-Related Morbidity in Northeast Brazil: An Integrated Spatio-Temporal Analysis. Tropical Medicine and Infectious Disease, 6(4), 193. https://doi.org/10.3390/tropicalmed6040193