First Evidence of Co-Circulation of Emerging Leishmania martiniquensis, Leishmania orientalis, and Crithidia sp. in Culicoides Biting Midges (Diptera: Ceratopogonidae), the Putative Vectors for Autochthonous Transmission in Southern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Patients
2.3. Field Trapping of Biting Midges and Morphological Species Identification
2.4. Genomic DNA Extraction Using the Non-Destructive Enzymatic Method
2.5. Molecular Detection of Leishmania and Other Trypanosomatids in Culicoides Biting Midge Specimens
2.6. Molecular Species Identification of Culicoides Biting Midges
2.7. TA Plasmid Vector Cloning and Sanger Dideoxy Nucleotide Sequencing
2.8. Sequence Alignment and Phylogenetic Analysis
2.9. Host Blood Meal Analysis
3. Results
3.1. Case Presentation
3.1.1. First Patient
3.1.2. Second Patient
3.2. Morphological Identification and COI-Based Species Confirmation of Field-Caught Culicoides Biting Midges
3.3. Molecular Prevalence and Phylogenetic Analysis of Leishmania and Crithidia in Non-Engorged Culicoides Biting Midges
3.4. Host Blood Meal Identification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; Who Leishmaniasis Control the WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef] [PubMed]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, O.A.; Serrano, M.G.; Camargo, E.P.; Teixeira, M.M.G.; Shaw, J.J. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology 2016, 145, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Leelayoova, S.; Siripattanapipong, S.; Manomat, J.; Piyaraj, P.; Tan-Ariya, P.; Bualert, L.; Mungthin, M. Leishmaniasis in Thailand: A Review of Causative Agents and Situations. Am. J. Trop. Med. Hyg. 2017, 96, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Jariyapan, N.; Daroontum, T.; Jaiwong, K.; Chanmol, W.; Intakhan, N.; Sor-Suwan, S.; Siriyasatien, P.; Somboon, P.; Bates, M.D.; Bates, P.A. Leishmania (Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible for localised cutaneous leishmaniasis. Parasites Vectors 2018, 11, 1–9. [Google Scholar] [CrossRef]
- Muniz, J.; Medina, H. Cutaneous leishmaniasis of the guinea pig, Leishmania enriettii n. sp. Hospital 1948, 33, 7–25. [Google Scholar]
- Rose, K.; Curtis, J.; Baldwin, T.; Mathis, A.; Kumar, B.; Sakthianandeswaren, A.; Spurck, T.; Low Choy, J.; Handman, E. Cu-taneous leishmaniasis in red kangaroos: Isolation and characterisation of the causative organisms. Int. J. Parasitol. 2004, 34, 655–664. [Google Scholar] [CrossRef]
- Dougall, A.M.; Alexander, B.; Holt, D.; Harris, T.; Sultan, A.H.; Bates, P.; Rose, K.; Walton, S. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int. J. Parasitol. 2011, 41, 571–579. [Google Scholar] [CrossRef]
- Kwakye-Nuako, G.; Mosore, M.-T.; Duplessis, C.; Bates, M.D.; Puplampu, N.; Mensah-Attipoe, I.; Desewu, K.; Afegbe, G.; Asmah, R.H.; Jamjoom, M.B.; et al. First isolation of a new species of Leishmania responsible for human cutaneous leishmaniasis in Ghana and classification in the Leishmania enriettii complex. Int. J. Parasitol. 2015, 45, 679–684. [Google Scholar] [CrossRef]
- Pothirat, T.; Tantiworawit, A.; Chaiwarith, R.; Jariyapan, N.; Wannasan, A.; Siriyasatien, P.; Supparatpinyo, K.; Bates, M.D.; Kwakye-Nuako, G.; Bates, P. First isolation of Leishmania from Northern Thailand: Case report, identification as Leishmania martiniquensis and Phylogenetic Position within the Leishmania enriettii Complex. PLoS Neglected Trop. Dis. 2014, 8, e3339. [Google Scholar] [CrossRef]
- Sukmee, T.; Siripattanapipong, S.; Mungthin, M.; Worapong, J.; Rangsin, R.; Samung, Y.; Kongkaew, W.; Bumrungsana, K.; Chanachai, K.; Apiwathanasorn, C.; et al. A suspected new species of Leishmania, the causative agent of visceral leishmaniasis in a Thai patient. Int. J. Parasitol. 2008, 38, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Suankratay, C.; Suwanpimolkul, G.; Wilde, H.; Siriyasatien, P. Autochthonous visceral leishmaniasis in a human immunode-ficiency virus (HIV)-infected patient: The first in Thailand and review of the literature. Am. J. Trop. Med. Hyg. 2010, 82, 4–8. [Google Scholar] [PubMed]
- Chusri, S.; Siriyasatien, P.; Silpapojakul, K.; Hortiwakul, T. Consecutive cutaneous and visceral leishmaniasis manifestations involving a novel Leishmania species in two HIV patients in Thailand. Am. J. Trop. Med. Hyg. 2012, 87, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Osatakul, S.; Leelayoova, S.; Hitakarun, A.; Kositnitikul, R.; Mungthin, M.; Siripattanapipong, S.; Naaglor, T. Recurrences of visceral leishmaniasis caused by Leishmania siamensis after treatment with amphotericin B in a seronegative child. Am. J. Trop. Med. Hyg. 2014, 90, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Phumee, A.; Chusri, S.; Kraivichian, K.; Wititsuwannakul, J.; Hortiwakul, T.; Thavara, U.; Silpapojakul, K.; Siriyasatien, P. Multiple cutaneous nodules in an HIV-infected patient. PLoS Neglected Trop. Dis. 2014, 8, e3291. [Google Scholar] [CrossRef]
- Noppakun, N.; Kraivichian, K.; Siriyasatien, P. Disseminated Dermal Leishmaniasis Caused by Leishmania siamensis in a Systemic Steroid Therapy Patient. Am. J. Trop. Med. Hyg. 2014, 91, 869–870. [Google Scholar] [CrossRef] [PubMed]
- Chiewchanvit, S.; Tovanabutra, N.; Jariyapan, N.; Bates, M.D.; Mahanupab, P.; Chuamanochan, M.; Tantiworawit, A.; Bates, P.A. Chronic generalized fibrotic skin lesions from disseminated leishmaniasis caused by Leishmania martiniquensis in two pa-tients from northern Thailand infected with HIV. Br. J. Dermatol. 2015, 173, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Siriyasatien, P.; Chusri, S.; Kraivichian, K.; Jariyapan, N.; Hortiwakul, T.; Silpapojakul, K.; Pym, A.M.; Phumee, A. Early detection of novel Leishmania species DNA in the saliva of two HIV-infected patients. BMC Infect. Dis. 2016, 16, 1–7. [Google Scholar] [CrossRef]
- Lobsiger, L.; Müller, N.; Schweizer, T.; Frey, C.F.; Wiederkehr, D.; Zumkehr, B.; Gottstein, B. An autochthonous case of cuta-neous bovine leishmaniasis in Switzerland. Vet. Parasitol. 2010, 169, 408–414. [Google Scholar] [CrossRef]
- Müller, N.; Welle, M.; Lobsiger, L.; Stoffel, M.H.; Boghenbor, K.K.; Hilbe, M.; Gottstein, B.; Frey, C.; Geyer, C.; von Bomhard, W. Occurrence of Leishmania sp. in cutaneous lesions of horses in Central Europe. Veter Parasitol. 2009, 166, 346–351. [Google Scholar] [CrossRef]
- Reuss, S.M.; Dunbar, M.D.; Calderwood Mays, M.B.; Owen, J.L.; Mallicote, M.F.; Archer, L.L.; Wellehan, J.F., Jr. Autochthonous Leishmania siamensis in horse, Florida, USA. Emerg. Infect. Dis. 2012, 18, 1545–1547. [Google Scholar] [CrossRef] [PubMed]
- Bualert, L.; Charungkiattikul, W.; Thongsuksai, P.; Mungthin, M.; Siripattanapipong, S.; Khositnithikul, R.; Naaglor, T.; Ravel, C.; El Baidouri, F.; Leelayoova, S. Autochthonous disseminated dermal and visceral leishmaniasis in an AIDS patient, southern thailand, caused by Leishmania siamensis. Am. J. Trop. Med. Hyg. 2012, 86, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Supsrisunjai, C.; Kootiratrakarn, T.; Puangpet, P.; Bunnag, T.; Chaowalit, P.; Wessagowit, V. Disseminated Autochthonous Dermal Leishmaniasis Caused by Leishmania siamensis (PCM2 Trang) in a Patient from Central Thailand Infected with Human Immunodeficiency Virus. Am. J. Trop. Med. Hyg. 2017, 96, 1160–1163. [Google Scholar] [CrossRef]
- Toontong, P.; Sunantaraporn, S.; Tiawsirisup, S.; Pengsakul, T.; Boonserm, R.; Phumee, A.; Siriyasatien, P.; Preativatanyou, K. First Report of Anuran Trypanosoma DNA in Flat-Tailed House Geckos (Reptilia: Gekkonidae) Collected from Southern Thailand: No Evidence as a Reservoir for Human Trypanosomatids. Pathogens 2022, 11, 247. [Google Scholar] [CrossRef]
- Cecílio, P.; Cordeiro-Da-Silva, A.; Oliveira, F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 2022, 5, 1–12. [Google Scholar] [CrossRef]
- Srisuton, P.; Phumee, A.; Sunantaraporn, S.; Boonserm, R.; Sor-Suwan, S.; Brownell, N.; Pengsakul, T.; Siriyasatien, P. Detec-tion of Leishmania and Trypanosoma DNA in Field-Caught Sand Flies from Endemic and Non-Endemic Areas of Leishmaniasis in Southern Thailand. Insects 2019, 10, 238. [Google Scholar] [CrossRef]
- Chusri, S.; Thammapalo, S.; Silpapojakul, K.; Siriyasatien, P. Animal reservoirs and potential vectors of Leishmania siamensis in southern Thailand. Southeast Asian J. Trop. Med. Public Health 2014, 45, 13–19. [Google Scholar]
- Siripattanapipong, S.; Leelayoova, S.; Ninsaeng, U.; Mungthin, M. Detection of DNA of Leishmania siamensis in Sergentomyia (Neophlebotomus) iyengari (Diptera: Psychodidae) and Molecular Identification of Blood Meals of Sand Flies in an Affected Area, Southern Thailand. J. Med. Èntomol. 2018, 55, 1277–1283. [Google Scholar] [CrossRef]
- Sriwongpan, P.; Nedsuwan, S.; Manomat, J.; Charoensakulchai, S.; Lacharojana, K.; Sankwan, J.; Kobpungton, N.; Sriwongpun, T.; Leelayoova, S.; Mungthin, M.; et al. Prevalence and associated risk factors of Leishmania infection among immunocompetent hosts, a community-based study in Chiang Rai, Thailand. PLoS Neglected Trop. Dis. 2021, 15, e0009545. [Google Scholar] [CrossRef]
- Becvar, T.; Vojtkova, B.; Siriyasatien, P.; Votypka, J.; Modry, D.; Jahn, P.; Bates, P.; Carpenter, S.; Volf, P.; Sadlova, J. Exper-imental transmission of Leishmania (Mundinia) parasites by biting midges (Diptera: Ceratopogonidae). PLoS Pathog. 2021, 17, e1009654. [Google Scholar] [CrossRef]
- Sunantaraporn, S.; Thepparat, A.; Phumee, A.; Sor-Suwan, S.; Boonserm, R.; Bellis, G.; Siriyasatien, P. Culicoides Latreille (Diptera: Ceratopogonidae) as potential vectors for Leishmania martiniquensis and Trypanosoma sp. in northern Thailand. PLoS Neglected Trop. Dis. 2021, 15, e0010014. [Google Scholar] [CrossRef] [PubMed]
- Wirth, W.W.; Hubert, A.A. The Culicoides of Southeast Asia (Diptera: Ceratopogonidae). Mem. Am. Entomol. Inst. 1989, 44, 1–508. [Google Scholar]
- Pramual, P.; Jomkumsing, P.; Piraonapicha, K.; Jumpato, W. Integrative taxonomy uncovers a new Culicoides (Diptera: Ceratopogonidae) biting midge species from Thailand. Acta Trop. 2021, 220, 105941. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Ribeiro, G.C.; Cabral, A.D.; Sperança, M.A. A non-destructive enzymatic method to extract DNA from arthropod specimens: Implications for morphological and molecular studies. PLoS ONE 2018, 13, e0192200. [Google Scholar] [CrossRef] [PubMed]
- Spanakos, G.; Piperaki, E.-T.; Menounos, P.G.; Tegos, N.; Flemetakis, A.; Vakalis, N.C. Detection and species identification of Old World Leishmania in clinical samples using a PCR-based method. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 46–53. [Google Scholar] [CrossRef]
- Noyes, H.; Stevens, J.; Teixeira, M.; Phelan, J.; Holz, P. A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia1. Int. J. Parasitol. 1999, 29, 331–339. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Dallas, J.F.; Cruickshank, R.H.; Linton, Y.-M.; Nolan, D.V.; Patakakis, M.; Braverman, Y.; Capela, R.; Capela, M.; Pena, I.; Meiswinkel, R.; et al. Phylogenetic status and matrilineal structure of the biting midge, Culicoides imicola, in Portugal, Rhodes and Israel. Med. Veter-Èntomol. 2003, 17, 379–387. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kent, R.J.; Norris, D. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am. J. Trop. Med. Hyg. 2005, 73, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Cicero, C.; Johnson, N.K. Speciation in Sapsuckers (Sphyrapicus): III. Mitochondrial-DNA Sequence Divergence at the Cyto-chrome-B Locus. Auk 1995, 112, 547–563. [Google Scholar] [CrossRef]
- Collins, Á.B.; Mee, J.F.; Doherty, M.L.; Barrett, D.J.; England, M.E. Culicoides species composition and abundance on Irish cattle farms: Implications for arboviral disease transmission. Parasites Vectors 2018, 11, 472. [Google Scholar] [CrossRef] [PubMed]
- England, M.E.; Pearce-Kelly, P.; Brugman, V.A.; King, S.; Gubbins, S.; Sach, F.; Sanders, C.J.; Masters, N.J.; Denison, E.; Carpenter, S. Culicoides species composition and molecular identification of host blood meals at two zoos in the UK. Parasites Vectors 2020, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, S.; Bauer, B.; Wiemann, A.; Clausen, P.-H.; Steuber, S. Feeding patterns of biting midges of the Culicoides obsoletus and Culicoides pulicaris groups on selected farms in Brandenburg, Germany. Parasitol. Res. 2009, 105, 373–380. [Google Scholar] [CrossRef]
- Ayllón, T.; Nijhof, A.M.; Weiher, W.; Bauer, B.; Allène, X.; Clausen, P.H. Feeding behaviour of Culicoides spp. (Diptera: Cer-atopogonidae) on cattle and sheep in northeast Germany. Parasites Vectors 2014, 7, 34. [Google Scholar] [CrossRef]
- Cuéllar, A.C.; Kjær, L.J.; Kirkeby, C.; Skovgard, H.; Nielsen, S.A.; Stockmarr, A.; Andersson, G.; Lindstrom, A.; Chirico, J.; Lühken, R.; et al. Spatial and temporal variation in the abundance of Culicoides biting midges (Diptera: Ceratopogonidae) in nine European countries. Parasites Vectors 2018, 11, 1–18. [Google Scholar] [CrossRef]
- Zimmer, J.Y.; Brostaux, Y.; Haubruge, E.; Francis, F. Larval development sites of the main Culicoides species (Diptera: Cera-topogonidae) in northern Europe and distribution of coprophilic species larvae in Belgian pastures. Vet. Parasitol. 2014, 205, 676–686. [Google Scholar] [CrossRef]
- Zimmer, J.Y.; Saegerman, C.; Losson, B.; Beckers, Y.; Haubruge, E.; Francis, F. Chemical composition of silage residues sus-taining the larval development of the Culicoides obsoletus/Culicoides scoticus species (Diptera: Ceratopogonidae). Vet. Parasitol. 2013, 191, 197–201. [Google Scholar] [CrossRef]
- Slama, D.; Haouas, N.; Remadi, L.; Mezhoud, H.; Babba, H.; Chaker, E. First detection of Leishmania infantum (Kinetoplastida: Trypanosomatidae) in Culicoides spp. (Diptera: Ceratopogonidae). Parasites Vectors 2014, 7, 51. [Google Scholar] [CrossRef]
- Ríos-Tostado, J.J.; Castillo-Ureta, H.; Torres-Montoya, E.H.; Torres-Avendaño, J.I.; Olimón-Andalón, V.; Romero-Higareda, C.E.; Silva-Hidalgo, G.; Zazueta-Moreno, J.M. Molecular Detection of Leishmania (L.) mexicana (Kinetoplastida: Trypanosto-matidae) DNA in Culicoides furens (Diptera: Ceratopogonidae) from an Area with Autochthonous Canine Leishmaniasis in Northwestern Mexico. Acta Parasitol. 2021, 66, 1055–1058. [Google Scholar] [CrossRef] [PubMed]
- Rebêlo, J.M.M.; Rodrigues, B.; Bandeira, M.D.C.A.; Moraes, J.L.P.; Fonteles, R.S.; Pereira, S.R.F. Detection of Leishmania amazonensis and Leishmania braziliensis in Culicoides (Diptera, Ceratopogonidae) in an endemic area of cutaneous leishmaniasis in the Brazilian Amazonia. J. Vector Ecol. 2016, 41, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Dyce, A.L. The recognition of nulliparous and parous Culicoides (diptera: Ceratopogonidae) without dissection. Aust. J. Èntomol. 1969, 8, 11–15. [Google Scholar] [CrossRef]
- Mullens, B.A.; Schmidtmann, E.T. The Gonotropic Cycle of Culicoides Variipennis (Diptera: Ceratopogonidae) and its Implica-tions in Age-Grading Field Populations in New York State, USA. J. Med. Entomol. 1982, 19, 340–349. [Google Scholar] [CrossRef]
- Kongkaew, W.; Siriarayaporn, P.; Leelayoova, S.; Supparatpinyo, K.; Areechokchai, D.; Duang-Ngern, P.; Chanachai, K.; Sukmee, T.; Samung, Y.; Sridurongkathum, P. Autochthonous visceral leishmaniasis: A report of a second case in Thailand. Southeast Asian J. Trop. Med. Public Health 2007, 38, 8–12. [Google Scholar]
- Murray, M.D.; Kirkland, P.D. Bluetongue and Douglas virus activity in New South Wales in 1989: Further evidence for long-distance dispersal of the biting midge Culicoides brevitarsis. Aust. Vet. J. 1995, 72, 23. [Google Scholar] [CrossRef]
- Murray, M.D. Local dispersal of the biting-midge Culicoides brevitarsis Kieffer (Diptera, Ceratopogonidae) in southeastern Australia. Aust. J. Zool. 1987, 35, 559–573. [Google Scholar] [CrossRef]
- Ducheyne, E.; De Deken, R.; Bécu, S.; Codina, B.; Nomikou, K.; Mangana-Vougiaki, O.; Georgiev, G.; Purse, B.V.; Hendickx, G. Quantifying the wind dispersal of Culicoides species in Greece and Bulgaria. Geospat. Health 2007, 1, 177–189. [Google Scholar] [CrossRef]
- Mignotte, A.; Garros, C.; Dellicour, S.; Jacquot, M.; Gilbert, M.; Gardès, L.; Balenghien, T.; Duhayon, M.; Rakotoarivony, I.; de Wavrechin, M.; et al. High dispersal capacity of Culicoides obsoletus (Diptera: Ceratopogonidae), vector of bluetongue and Schmallenberg viruses, revealed by landscape genetic analyses. Parasites Vectors 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Manomat, J.; Leelayoova, S.; Bualert, L.; Tan-Ariya, P.; Siripattanapipong, S.; Mungthin, M.; Naaglor, T.; Piyaraj, P. Prevalence and risk factors associated with Leishmania infection in Trang Province, southern Thailand. PLoS Negl. Trop. Dis. 2017, 11, e0006095. [Google Scholar] [CrossRef]
- Jomkumsing, P.; Surapinit, A.; Saengpara, T.; Pramual, P. Genetic variation, DNA barcoding and blood meal identification of Culicoides Latreille biting midges (Diptera: Ceratopogonidae) in Thailand. Acta Trop. 2021, 217, 105866. [Google Scholar] [CrossRef] [PubMed]
- Killick-Kendrick, R. The biology and control of Phlebotomine sand flies. Clin. Dermatol. 1999, 17, 279–289. [Google Scholar] [CrossRef]
- Kar, S.; Mondal, B.; Pal, A.; Harsha, R.; Mazumdar, A. Blood meal analysis of Culicoides species associated with livestock in West Bengal, India. Med. Vet. Èntomol. 2022, 36, 503–510. [Google Scholar] [CrossRef]
- Dostálová, A.; Volf, P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasites Vectors 2012, 5, 276. [Google Scholar] [CrossRef] [PubMed]
- Telleria, E.L.; Martins-Da-Silva, A.; Tempone, A.J.; Traub-Csekö, Y.M. Leishmania, microbiota and sand fly immunity. Parasitology 2018, 145, 1336–1353. [Google Scholar] [CrossRef]
- Diaz-Albiter, H.; Sant’Anna, M.R.V.; Genta, F.A.; Dillon, R.J. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the Phlebotomine Sand Fly Lutzomyia longipalpis. J. Biol. Chem. 2012, 287, 23995–24003. [Google Scholar] [CrossRef]
- Chanmol, W.; Jariyapan, N.; Somboon, P.; Bates, M.D.; Bates, P.A. Development of Leishmania orientalis in the sand fly Lutzomyia longipalpis (Diptera: Psychodidae) and the biting midge Culicoides soronensis (Diptera: Ceratopogonidae). Acta Trop. 2019, 199, 105157. [Google Scholar] [CrossRef]
- Maslov, D.A.; Votýpka, J.; Yurchenko, V.; Lukeš, J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013, 29, 43–52. [Google Scholar] [CrossRef]
- Kozminsky, E.; Kraeva, N.; Ishemgulova, A.; Dobáková, E.; Lukeš, J.; Kment, P.; Yurchenko, V.; Votýpka, J.; Maslov, D.A. Host-specificity of Monoxenous Trypanosomatids: Statistical Analysis of the Distribution and Transmission Patterns of the Parasites from Neotropical Heteroptera. Protist 2015, 166, 551–568. [Google Scholar] [CrossRef]
- Lukeš, J.; Butenko, A.; Hashimi, H.; Maslov, D.A.; Votýpka, J.; Yurchenko, V. Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Trends Parasitol. 2018, 34, 466–480. [Google Scholar] [CrossRef]
- Sunantaraporn, S.; Hortiwakul, T.; Kraivichian, K.; Siriyasatien, P.; Brownell, N. Molecular Identification of Host Blood Meals and Detection of Blood Parasites in Culicoides Latreille (Diptera: Ceratopogonidae) Collected from Phatthalung Province, Southern Thailand. Insects 2022, 13, 912. [Google Scholar] [CrossRef] [PubMed]
- Chicharro, C.; Alvar, J. Lower trypanosomatids in HIV/AIDS patients. Ann. Trop. Med. Parasitol. 2003, 97, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Morio, F.; Reynes, J.; Dollet, M.; Pratlong, F.; Dedet, J.-P.; Ravel, C. Isolation of a protozoan parasite genetically related to the insect trypanosomatid Herpetomonas samuelpessoai from a human immunodeficiency virus-positive patient. J. Clin. Microbiol. 2008, 46, 3845–3847. [Google Scholar] [CrossRef] [PubMed]
- Ghobakhloo, N.; Motazedian, M.H.; Naderi, S.; Ebrahimi, S. Isolation of Crithidia spp. from lesions of immunocompetent pa-tients with suspected cutaneous leishmaniasis in Iran. Trop. Med. Int. Health 2019, 24, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.R.; de Santana, A.; Takamiya, N.T.; Takahashi, T.Y.; Rogerio, L.A.; Oliveira, C.; Milanezi, C.M.; Trombela, V.A.; Cruz, A.K.; Jesus, A.R.; et al. Non-Leishmania Parasite in Fatal Visceral Leishmaniasis-Like Disease, Brazil. Emerg. Infect. Dis. 2019, 25, 2088–2092. [Google Scholar] [CrossRef] [PubMed]
- Dario, M.A.; Lisboa, C.V.; Silva, M.V.; Herrera, H.M.; Rocha, F.L.; Furtado, M.C.; Moratelli, R.; Roque, A.L.R.; Jansen, A.M. Crithidia mellificae infection in different mammalian species in Brazil. Int. J. Parasitol. Parasites Wildl. 2021, 15, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Boucinha, C.; Andrade-Neto, V.V.; Ennes-Vidal, V.; Branquinha, M.H.; Dos Santos, A.L.S.; Torres-Santos, E.C.; d’Avila-Levy, C.M. A Stroll Through the History of Monoxenous Trypanosomatids Infection in Vertebrate Hosts. Front. Cell Infect. Microbiol. 2022, 12, 804707. [Google Scholar] [CrossRef]
- Kostygov, A.; Butenko, A.; Yurchenko, V. On monoxenous trypanosomatids from lesions of immunocompetent patients with suspected cutaneous leishmaniasis in Iran. Trop. Med. Int. Health 2019, 24, 127–128. [Google Scholar] [CrossRef]
Collection Sites | Subgenus | Host Species | No. of Investigated Biting Midges | Sample ID. of Non-Engorged Biting Midges with Positive PCR | |||
---|---|---|---|---|---|---|---|
Male (n = 19) | Non-Engorged (Parous and Gravid) Female (n = 187) | Engorged (n = 47) | ITS1-PCR (n = 17) | SSU rRNA-PCR (n = 12) | |||
Sadao District, Songkhla Province 1st Patient’s House (6°38′08.3″ N, 100°25′35.6″ E) | Remmia | C. oxystoma | 3 | 11 | |||
Calvipalpis group | C. huffi | 7 | CNR10 | ||||
Hoffmania | C. peregrinus | 5 | |||||
Meijerehelea | C. mahasarakhamense | 1 | 4 | ||||
Meijerehelea | C. guttifer | 1 | |||||
Avaritia | C. orientalis | 1 | |||||
Trithecoides | C. Trithecoides sp. | 1 | |||||
Total | 9 | 25 | 0 | 1 | 0 | ||
Sadao District, Songkhla Province 2nd Patient’s House (6°36′05.2″ N, 100°29′07.9″ E) | Hoffmania | C. peregrinus | 9 | 34 | CSP2, CSP8, CSP9, CSP11, CSP12, CSP15 | CSP18, CSP20, CSP22, CSP25, CSP28, CSP30 | |
Hoffmania | C. innoxius | 2 | |||||
Remmia | C. oxystoma | 1 | 22 | CSP35, CSP38, CSP41, CSP42 *, CSP44, CSP45, CSP48 | CSP42 *, CSP50 | ||
Meijerehelea | C. mahasarakhamense | 6 | CSP59 | ||||
Meijerehelea | C. guttifer | 1 | |||||
Avaritia | C. orientalis | 1 | |||||
Total | 10 | 66 | 0 | 14 | 8 | ||
Rattaphum District, Songkhla Province Livestock Sheds (7°01′19.2″ N, 100°07′53.1″ E) | Trithecoides | C. fordae | 45 | 15 | CHH10 | CHH64, CHH65 | |
Trithecoides | C. elbeli | 28 | 11 | CHH113 | |||
Trithecoides | C. flaviscutatus | 3 | |||||
Trithecoides | C. Trithecoides sp. | 10 | 4 | ||||
Avaritia | C. orientalis | 5 | 11 | CHH95 | |||
Avaritia | C. fulvus | 2 | 1 | CHH45 | |||
Avaritia | C. jacobsoni | 2 | |||||
Hoffmania | C. innoxius | 3 | 1 | ||||
Hoffmania | C. peregrinus | 1 | |||||
Meijerehelea | C. guttifer | 1 | |||||
Total | 0 | 96 | 47 | 2 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Songumpai, N.; Promrangsee, C.; Noopetch, P.; Siriyasatien, P.; Preativatanyou, K. First Evidence of Co-Circulation of Emerging Leishmania martiniquensis, Leishmania orientalis, and Crithidia sp. in Culicoides Biting Midges (Diptera: Ceratopogonidae), the Putative Vectors for Autochthonous Transmission in Southern Thailand. Trop. Med. Infect. Dis. 2022, 7, 379. https://doi.org/10.3390/tropicalmed7110379
Songumpai N, Promrangsee C, Noopetch P, Siriyasatien P, Preativatanyou K. First Evidence of Co-Circulation of Emerging Leishmania martiniquensis, Leishmania orientalis, and Crithidia sp. in Culicoides Biting Midges (Diptera: Ceratopogonidae), the Putative Vectors for Autochthonous Transmission in Southern Thailand. Tropical Medicine and Infectious Disease. 2022; 7(11):379. https://doi.org/10.3390/tropicalmed7110379
Chicago/Turabian StyleSongumpai, Nopporn, Chulaluk Promrangsee, Preudtipong Noopetch, Padet Siriyasatien, and Kanok Preativatanyou. 2022. "First Evidence of Co-Circulation of Emerging Leishmania martiniquensis, Leishmania orientalis, and Crithidia sp. in Culicoides Biting Midges (Diptera: Ceratopogonidae), the Putative Vectors for Autochthonous Transmission in Southern Thailand" Tropical Medicine and Infectious Disease 7, no. 11: 379. https://doi.org/10.3390/tropicalmed7110379
APA StyleSongumpai, N., Promrangsee, C., Noopetch, P., Siriyasatien, P., & Preativatanyou, K. (2022). First Evidence of Co-Circulation of Emerging Leishmania martiniquensis, Leishmania orientalis, and Crithidia sp. in Culicoides Biting Midges (Diptera: Ceratopogonidae), the Putative Vectors for Autochthonous Transmission in Southern Thailand. Tropical Medicine and Infectious Disease, 7(11), 379. https://doi.org/10.3390/tropicalmed7110379