Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Quality Assessment
2.4. Data Extraction
2.5. Data Analysis
3. Results
3.1. Search and Screening Results
3.2. Characteristics of the Eligible Studies
3.3. The Pooled Prevalence of Mutated Colistin-Resistant K. pneumoniae (ColRkp)
3.4. Subgroup Meta-Analysis
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, M.; Sánchez-Gorostiaga, A.; Cuesta, T.; Martínez, J. The Acquisition of Colistin Resistance Is Associated to the Amplification of a Large Chromosomal Region in Klebsiella pneumoniae kp52145. Int. J. Mol. Sci. 2021, 22, 649. [Google Scholar] [CrossRef] [PubMed]
- Ah, Y.-M.; Kim, A.-J.; Lee, J.-Y. Colistin resistance in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2014, 44, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Petrosillo, N.; Taglietti, F.; Granata, G. Treatment Options for Colistin Resistant Klebsiella pneumoniae: Present and Future. J. Clin. Med. 2019, 8, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed Ahmed, M.A.E.G.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berglund, B. Acquired Resistance to Colistin via Chromosomal and Plasmid-Mediated Mechanisms in Klebsiella pneumoniae. Infect. Microbes Dis. 2019, 1, 10–19. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Eljaaly, K.; Alhumaid, S.; Albayat, H.; Al-Adsani, W.; Sabour, A.A.; Alshiekheid, M.A.; Al-Jishi, J.M.; Khamis, F.; Alwarthan, S.; et al. An Overview on Phenotypic and Genotypic Characterisation of Carbapenem-Resistant. Enterobacterales. Med. 2022, 58, 1675. [Google Scholar] [CrossRef]
- Asri, N.A.M.; Ahmad, S.; Mohamud, R.; Hanafi, N.M.; Zaidi, N.F.M.; Irekeola, A.A.; Shueb, R.H.; Yee, L.C.; Noor, N.M.; Mustafa, F.H.; et al. Global Prevalence of Nosocomial Multidrug-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 1508. [Google Scholar] [CrossRef]
- Ahmed, N.; Khalid, H.; Mushtaq, M.; Basha, S.; Rabaan, A.A.; Garout, M.; Halwani, M.A.; Al Mutair, A.; Alhumaid, S.; Al Alawi, Z.; et al. The Molecular Characterization of Virulence Determinants and Antibiotic Resistance Patterns in Human Bacterial Uropathogens. Antibiotics 2022, 11, 516. [Google Scholar] [CrossRef]
- Sokhn, E.S.; Salami, A.; El Roz, A.; Salloum, L.; Bahmad, H.F.; Ghssein, G. Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics. Med. Sci. 2020, 8, 32. [Google Scholar] [CrossRef]
- Narimisa, N.; Goodarzi, F.; Bavari, S. Prevalence of colistin resistance of Klebsiella pneumoniae isolates in Iran: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 29. [Google Scholar] [CrossRef]
- Dadashi, M.; Sameni, F.; Bostanshirin, N.; Yaslianifard, S.; Khosravi-Dehaghi, N.; Nasiri, M.J.; Goudarzi, M.; Hashemi, A.; Hajikhani, B. Global prevalence and molecular epidemiology of mcr-mediated colistin resistance in Escherichia coli clinical isolates: A systematic review. J. Glob. Antimicrob. Resist. 2021, 29, 444–461. [Google Scholar] [CrossRef] [PubMed]
- Avgoulea, K.; Di Pilato, V.; Zarkotou, O.; Sennati, S.; Politi, L.; Cannatelli, A.; Themeli-Digalaki, K.; Giani, T.; Tsakris, A.; Rossolini, G.M.; et al. Characterization of Extensively Drug-Resistant or Pandrug-Resistant Sequence Type 147 and 101 OXA-48-Producing Klebsiella pneumoniae Causing Bloodstream Infections in Patients in an Intensive Care Unit. Antimicrob. Agents Chemother. 2018, 62, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azam, M.; Gaind, R.; Yadav, G.; Sharma, A.; Upmanyu, K.; Jain, M.; Singh, R. Colistin Resistance Among Multiple Sequence Types of Klebsiella pneumoniae Is Associated with Diverse Resistance Mechanisms: A Report from India. Front. Microbiol. 2021, 12, 609840. [Google Scholar] [CrossRef]
- Baron, S.A.; Cassir, N.; Hamel, M.; Hadjadj, L.; Saidani, N.; Dubourg, G.; Rolain, J.-M. Risk factors for acquisition of colistin-resistant Klebsiella pneumoniae and expansion of a colistin-resistant ST307 epidemic clone in hospitals in Marseille, France, 2014 to 2017. Eurosurveillance 2021, 26, 2000022. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Prada, H.; Ruiz-Hueso, P.; Tedim, A.P.; González-Candelas, F.; Galán, J.C.; Cantón, R.; Morosini, M.-I. Emergence and dissemination of colistin-resistant Klebsiella pneumoniae isolates expressing OXA-48 plus CTX-M-15 in patients not previously treated with colistin in a Spanish university hospital. Diagn. Microbiol. Infect. Dis. 2019, 93, 147–153. [Google Scholar] [CrossRef]
- Berglund, B.; Hoang, N.T.B.; Tärnberg, M.; Le, N.K.; Svartström, O.; Khu, D.T.K.; Nilsson, M.; Le, H.T.; Welander, J.; Olson, L.; et al. Insertion sequence transpositions and point mutations in mgrB causing colistin resistance in a clinical strain of carbapenem-resistant Klebsiella pneumoniae from Vietnam. Int. J. Antimicrob. Agents 2018, 51, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Bonura, C.; Giuffrè, M.; Aleo, A.; Fasciana, T.; Di Bernardo, F.; Stampone, T.; Giammanco, A.; Palma, D.M.; Mammina, C. An Update of the Evolving Epidemic of blaKPC Carrying Klebsiella pneumoniae in Sicily, Italy, 2014: Emergence of Multiple Non-ST258 Clones. PLoS ONE 2015, 10, e0132936. [Google Scholar] [CrossRef] [Green Version]
- Can, F.; Menekse, S.; Ispir, P.; Atac, N.; Albayrak, O.; Demir, T.; Karaaslan, D.C.; Karahan, S.N.; Kapmaz, M.; Azap, O.K.; et al. Impact of the ST101 clone on fatality among patients with colistin-resistant Klebsiella pneumoniae infection. J. Antimicrob. Chemother. 2018, 73, 1235–1241. [Google Scholar] [CrossRef] [Green Version]
- Cannatelli, A.; Giani, T.; D’Andrea, M.M.; Di Pilato, V.; Arena, F.; Conte, V.; Tryfinopoulou, K.; Vatopoulos, A.; Rossolini, G.M. MgrB Inactivation Is a Common Mechanism of Colistin Resistance in KPC-Producing Klebsiella pneumoniae of Clinical Origin. Antimicrob. Agents Chemother. 2014, 58, 5696–5703. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zeng, Y.; Zhang, R.; Cai, J. In vivo Emergence of Colistin and Tigecycline Resistance in Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae During Antibiotics Treatment. Front. Microbiol. 2021, 12, 702956. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Lin, T.-L.; Lin, Y.-T.; Wang, J.-T. Amino Acid Substitutions of CrrB Responsible for Resistance to Colistin through CrrC in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2016, 60, 3709–3716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.-J.; Ko, K.S. Loss of Hypermucoviscosity and Increased Fitness Cost in Colistin-Resistant Klebsiella pneumoniae Sequence Type 23 Strains. Antimicrob. Agents Chemother. 2015, 59, 6763–6773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.; Ko, K.S. Identification of Genetic Alterations Associated with Acquired Colistin Resistance in Klebsiella pneumoniae Isogenic Strains by Whole-Genome Sequencing. Antibiotics 2020, 9, 374. [Google Scholar] [CrossRef]
- Da Silva, K.E.; Nguyen, T.N.T.; Boinett, C.J.; Baker, S.; Simionatto, S. Molecular and epidemiological surveillance of polymyxin-resistant Klebsiella pneumoniae strains isolated from Brazil with multiple mgrB gene mutations. Int. J. Med. Microbiol. 2020, 310, 151448. [Google Scholar] [CrossRef] [PubMed]
- Di Tella, D.; Tamburro, M.; Guerrizio, G.; Fanelli, I.; Sammarco, M.L.; Ripabelli, G. Molecular Epidemiological Insights into Colistin-Resistant and Carbapenemases-Producing Clinical Klebsiella pneumoniae Isolates. Infect. Drug Resist. 2019, 12, 3783–3795. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, V.; Conzemius, R.; Varda-Brkić, D.; Bogdan, M.; Grisold, A.; Gyssens, I.C.; Bedenić, B.; Barišić, I. Epidemiology of colistin-resistant, carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Croatia. Infect. Genet. Evol. 2020, 81, 104263. [Google Scholar] [CrossRef]
- Eltai, N.O.; Kelly, B.; Al-Mana, H.A.; Ibrahim, E.B.; Yassine, H.M.; Al Thani, A.; Al Maslmani, M.; Lammens, C.; Xavier, B.B.; Malhotra-Kumar, S. Identification of mcr-8 in Clinical Isolates from Qatar and Evaluation of Their Antimicrobial Profiles. Front. Microbiol. 2020, 11, 01954. [Google Scholar] [CrossRef]
- Esposito, E.P.; Cervoni, M.; Bernardo, M.; Crivaro, V.; Cuccurullo, S.; Imperi, F.; Zarrilli, R. Molecular Epidemiology and Virulence Profiles of Colistin-Resistant Klebsiella pneumoniae Blood Isolates from the Hospital Agency ‘Ospedale dei Colli,’ Naples, Italy. Front. Microbiol. 2018, 9, 01463. [Google Scholar] [CrossRef] [Green Version]
- Gentile, B.; Grottola, A.; Orlando, G.; Serpini, G.F.; Venturelli, C.; Meschiari, M.; Anselmo, A.; Fillo, S.; Fortunato, A.; Lista, F.; et al. A Retrospective Whole-Genome Sequencing Analysis of Carbapenem and Colistin-Resistant Klebsiella pneumoniae Nosocomial Strains Isolated during an MDR Surveillance Program. Antibiotics 2020, 9, 246. [Google Scholar] [CrossRef]
- Giordano, C.; Barnini, S.; Tsioutis, C.; Chlebowicz, M.A.; Scoulica, E.V.; Gikas, A.; Rossen, J.W.; Friedrich, A.W.; Bathoorn, E. Expansion of KPC-producing Klebsiella pneumoniae with various mgrB mutations giving rise to colistin resistance: The role of IS L3 on plasmids. Int. J. Antimicrob. Agents 2018, 51, 260–265. [Google Scholar] [CrossRef]
- Haeili, M.; Javani, A.; Moradi, J.; Jafari, Z.; Feizabadi, M.M.; Babaei, E. MgrB Alterations Mediate Colistin Resistance in Klebsiella pneumoniae Isolates from Iran. Front. Microbiol. 2017, 8, 2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.-H.; Cheng, Y.-H.; Chen, W.-Y.; Juan, C.-H.; Chou, S.-H.; Wang, J.-T.; Chuang, C.; Wang, F.-D.; Lin, Y.-T. Risk factors and mechanisms of in vivo emergence of colistin resistance in carbapenem-resistant Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2021, 57, 106342. [Google Scholar] [CrossRef] [PubMed]
- Jaidane, N.; Bonnin, R.A.; Mansour, W.; Girlich, D.; Creton, E.; Cotellon, G.; Chaouch, C.; Boujaafar, N.; Bouallegue, O.; Naas, T. Genomic Insights into Colistin-Resistant Klebsiella pneumoniae from a Tunisian Teaching Hospital. Antimicrob. Agents Chemother. 2018, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Ko, K.S. Diverse genetic alterations responsible for post-exposure colistin resistance in populations of the same strain of Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2018, 52, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Lagerbäck, P.; Khine, W.W.T.; Giske, C.G.; Tängdén, T. Evaluation of antibacterial activities of colistin, rifampicin and meropenem combinations against NDM-1-producing Klebsiella pneumoniae in 24 h in vitro time–kill experiments. J. Antimicrob. Chemother. 2016, 71, 2321–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.H.; Cho, M.; Lee, J.; Hwang, J.-H.; Lee, C.-S.; Chung, K.M. Molecular Characterization of Carbapenem-resistant, Colistin-resistant Klebsiella pneumoniae Isolates from a Tertiary Hospital in Jeonbuk, Korea. J. Bacteriol. Virol. 2021, 51, 120–127. [Google Scholar] [CrossRef]
- Leung, L.M.; Cooper, V.S.; Rasko, D.A.; Guo, Q.; Pacey, M.P.; McElheny, C.L.; Mettus, R.T.; Yoon, S.H.; Goodlett, D.R.; Ernst, R.K.; et al. Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2017, 72, 3035–3042. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lin, Y.; Wang, Z.; Hu, N.; Liu, Q.; Zhou, W.; Li, X.; Hu, L.; Guo, J.; Huang, X.; et al. Molecular Mechanisms of Colistin Resistance in Klebsiella pneumoniae in a Tertiary Care Teaching Hospital. Front. Cell. Infect. Microbiol. 2021, 11, 673503. [Google Scholar] [CrossRef]
- Longo, L.G.; de Sousa, V.S.; Kraychete, G.B.; Justo-Da-Silva, L.H.; Rocha, J.A.; Superti, S.V.; Bonelli, R.R.; Martins, I.S.; Moreira, B.M. Colistin resistance emerges in pandrug-resistant Klebsiella pneumoniae epidemic clones in Rio de Janeiro, Brazil. Int. J. Antimicrob. Agents 2019, 54, 579–586. [Google Scholar] [CrossRef]
- Lu, Y.; Feng, Y.; McNally, A.; Zong, Z. The Occurence of Colistin-Resistant Hypervirulent Klebsiella pneumoniae in China. Front. Microbiol. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Malli, E.; Florou, Z.; Tsilipounidaki, K.; Voulgaridi, I.; Stefos, A.; Xitsas, S.; Papagiannitsis, C.C.; Petinaki, E. Evaluation of rapid polymyxin NP test to detect colistin-resistant Klebsiella pneumoniae isolated in a tertiary Greek hospital. J. Microbiol. Methods 2018, 153, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Veeraraghavan, B.; Ragupathi, N.K.D.; Inbanathan, F.Y.; Khurana, S.; Bhardwaj, N.; Kumar, S.; Sagar, S.; Gupta, A. Multiple mutations in lipid-A modification pathway & novel fosA variants in colistin-resistant Klebsiella pneumoniae. Futur. Sci. OA 2018, 4, FSO319. [Google Scholar] [CrossRef] [Green Version]
- Mirshekar, M.; Darbandi, A.; Ghanavati, R.; Shivaee, A.; Masjedian, F. Analysis of mgrB gene mutations in colistin-resistant Klebsiella pneumoniae in Tehran, Iran. Gene Rep. 2020, 21, 100864. [Google Scholar] [CrossRef]
- Moghimi, M.; Haeili, M.; Mohajjel Shoja, H. Characterization of Tigecycline Resistance among Tigecycline Non-susceptible Klebsiella pneumoniae Isolates from Humans, Food-Producing Animals, and in vitro Selection Assay. Front. Microbiol. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Morales-León, F.; Lima, C.A.; González-Rocha, G.; Opazo-Capurro, A.; Bello-Toledo, H. Colistin Heteroresistance among Extended Spectrum β-lactamases-Producing Klebsiella pneumoniae. Microorganisms 2020, 8, 1279. [Google Scholar] [CrossRef]
- Ngbede, E.O.; Adekanmbi, F.; Poudel, A.; Kalalah, A.; Kelly, P.; Yang, Y.; Adamu, A.M.; Daniel, S.T.; Adikwu, A.A.; Akwuobu, C.A.; et al. Concurrent Resistance to Carbapenem and Colistin among Enterobacteriaceae Recovered from Human and Animal Sources in Nigeria Is Associated with Multiple Genetic Mechanisms. Front. Microbiol. 2021, 12, 740348. [Google Scholar] [CrossRef]
- Otter, J.A.; Doumith, M.; Davies, F.; Mookerjee, S.; Dyakova, E.; Gilchrist, M.; Brannigan, E.T.; Bamford, K.; Galletly, T.; Donaldson, H.; et al. Emergence and clonal spread of colistin resistance due to multiple mutational mechanisms in carbapenemase-producing Klebsiella pneumoniae in London. Sci. Rep. 2017, 7, 12711. [Google Scholar] [CrossRef] [Green Version]
- Palani, G.S.; Ghafur, A.; Krishnan, P.; Rayvathy, B.; Thirunarayan, M. Intestinal carriage of colistin resistant Enterobacteriaceae in hospitalized patients from an Indian center. Diagn. Microbiol. Infect. Dis. 2020, 97, 114998. [Google Scholar] [CrossRef]
- Poirel, L.; Jayol, A.; Bontron, S.; Villegas, M.-V.; Ozdamar, M.; Türkoglu, S.; Nordmann, P. The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2015, 70, 75–80. [Google Scholar] [CrossRef]
- Pragasam, A.K.; Shankar, C.; Veeraraghavan, B.; Biswas, I.; Nabarro, L.E.B.; Inbanathan, F.Y.; George, B.; Verghese, S. Molecular Mechanisms of Colistin Resistance in Klebsiella pneumoniae Causing Bacteremia from India—A First Report. Front. Microbiol. 2017, 7, 2135. [Google Scholar] [CrossRef]
- Sato, T.; Wada, T.; Nishijima, S.; Fukushima, Y.; Nakajima, C.; Suzuki, Y.; Takahashi, S.; Yokota, S.-I. Emergence of the Novel Aminoglycoside Acetyltransferase Variant aac(6′)-Ib-D179Y and Acquisition of Colistin Heteroresistance in Carbapenem-Resistant Klebsiella pneumoniae Due to a Disrupting Mutation in the DNA Repair Enzyme MutS. mBio 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Wi, Y.M.; Kim, J.M.; Kim, Y.-J.; Ko, K.S. Detection of colistin-resistant populations prior to antibiotic exposure in KPC-2-producing Klebsiella pneumoniae clinical isolates. J. Microbiol. 2021, 59, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, B.; Shankar, C.; Venkatesan, M.; Rajan, R.; Mani, D.; Lal, B.; Prakash, J.A.J.; Anandan, S.; Pragasam, A.K.; Walia, K.; et al. Molecular characterization of colistin-resistant Klebsiella pneumoniae & its clonal relationship among Indian isolates. Indian J. Med. Res. 2019, 149, 199–207. [Google Scholar] [CrossRef]
- Sharahi, J.Y.; Hashemi, A.; Ardebili, A.; Davoudabadi, S. Molecular characteristics of antibiotic-resistant Escherichia coli and Klebsiella pneumoniae strains isolated from hospitalized patients in Tehran, Iran. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Zaman, T.U.; Albladi, M.; Siddique, M.I.; Al Johani, S.M.; Balkhy, H.H. Insertion element mediated mgrB disruption and presence of ISKpn28 in colistin-resistant Klebsiella pneumoniae isolates from Saudi Arabia. Infect. Drug Resist. 2018, 11, 1183–1187. [Google Scholar] [CrossRef] [Green Version]
- Venditti, C.; Butera, O.; Meledandri, M.; Balice, M.P.; Cocciolillo, G.C.; Fontana, C.; D’Arezzo, S.; De Giuli, C.; Antonini, M.; Capone, A.; et al. Molecular analysis of clinical isolates of ceftazidime-avibactam-resistant Klebsiella pneumoniae. Clin. Microbiol. Infect. 2021, 27, 1040.e1–1040.e6. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Qi, X.; Wang, R.; Jin, L.; Zhao, M.; Zhang, Y.; Wang, Q.; Chen, H.; Wang, H. Molecular epidemiology of colistin-resistant Enterobacteriaceae in inpatient and avian isolates from China: High prevalence of mcr-negative Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2017, 50, 536–541. [Google Scholar] [CrossRef]
- Yang, T.-Y.; Wang, S.-F.; Lin, J.-E.; Griffith, B.T.S.; Lian, S.-H.; Hong, Z.-D.; Lin, L.; Lu, P.-L.; Tseng, S.-P. Contributions of insertion sequences conferring colistin resistance in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2020, 55, 105894. [Google Scholar] [CrossRef]
- Zafer, M.M.; El-Mahallawy, H.A.; Abdulhak, A.; Amin, M.A.; Al-Agamy, M.H.; Radwan, H.H. Emergence of colistin resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli strains isolated from cancer patients. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 40. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Xu, C.; Zhang, X.; Li, J.; Dong, G.; Cao, J.; Zhou, T. Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. Int. J. Antimicrob. Agents 2019, 53, 864–867. [Google Scholar] [CrossRef]
- Zhu, Y.; Galani, I.; Karaiskos, I.; Lu, J.; Aye, S.M.; Huang, J.; Yu, H.H.; Velkov, T.; Giamarellou, H.; Li, J. Multifaceted mechanisms of colistin resistance revealed by genomic analysis of multidrug-resistant Klebsiella pneumoniae isolates from individual patients before and after colistin treatment. J. Infect. 2019, 79, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Woo, J.H.; Kim, N.; Kim, M.H.; Kim, S.Y.; Son, J.H.; Moon, D.C.; Lim, S.-K.; Shin, M.; Lee, J.C. Characterization of Chromosome-Mediated Colistin Resistance in Escherichia coli Isolates from Livestock in Korea. Infect. Drug Resist. 2019, 12, 3291–3299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Haq, Q.M.R. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front. Med. 2021, 8, 677720. [Google Scholar] [CrossRef]
- Al-Zalabani, A.; AlThobyane, O.A.; Alshehri, A.H.; Alrehaili, A.O.; Namankani, M.O.; Aljafri, O.H. Prevalence of Klebsiella pneumoniae Antibiotic Resistance in Medina, Saudi Arabia, 2014–2018. Cureus 2020, 12, e9714. [Google Scholar] [CrossRef] [PubMed]
- Dagher, T.N.; Azar, E.; Al-Bayssari, C.; Chamieh, A.S.; Rolain, J.-M. First Detection of Colistin-Resistant Klebsiella pneumoniae in Association with NDM-5 Carbapenemase Isolated from Clinical Lebanese Patients. Microb. Drug Resist. 2019, 25, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Aires, C.A.M.; Pereira, P.S.; Asensi, M.D.; Carvalho-Assef, A.P.D. mgrB Mutations Mediating Polymyxin B Resistance in Klebsiella pneumoniae Isolates from Rectal Surveillance Swabs in Brazil. Antimicrob. Agents Chemother. 2016, 60, 6969–6972. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Li, C.; Chen, H.; Zheng, W.; Sun, Q.; Xie, X.; Zhang, J.; Ruan, Z. In vivo Emergence of Colistin Resistance in Carbapenem-Resistant Klebsiella pneumoniae Mediated by Premature Termination of the mgrB Gene Regulator. Front. Microbiol. 2021, 12, 656610. [Google Scholar] [CrossRef]
- Hamel, M.; Chatzipanagiotou, S.; Hadjadj, L.; Petinaki, E.; Papagianni, S.; Charalampaki, N.; Tsiplakou, S.; Papaioannou, V.; Skarmoutsou, N.; Spiliopoulou, I.; et al. Inactivation of mgrB gene regulator and resistance to colistin is becoming endemic in carbapenem-resistant Klebsiella pneumoniae in Greece: A nationwide study from 2014 to 2017. Int. J. Antimicrob. Agents 2020, 55, 105930. [Google Scholar] [CrossRef]
- Consuegra, J.; Gaffé, J.; Lenski, R.E.; Hindré, T.; Barrick, J.E.; Tenaillon, O.; Schneider, D. Insertion-sequence-mediated mutations both promote and constrain evolvability during a long-term experiment with bacteria. Nat. Commun. 2021, 12, 980. [Google Scholar] [CrossRef]
- Huang, J.; Li, C.; Song, J.; Velkov, T.; Wang, L.; Zhu, Y.; Li, J. Regulating polymyxin resistance in Gram-negative bacteria: Roles of two-component systems PhoPQ and PmrAB. Futur. Microbiol. 2020, 15, 445–459. [Google Scholar] [CrossRef]
- Jayol, A.; Poirel, L.; Brink, A.; Villegas, M.-V.; Yilmaz, M.; Nordmann, P. Resistance to Colistin Associated with a Single Amino Acid Change in Protein PmrB among Klebsiella pneumoniae Isolates of Worldwide Origin. Antimicrob. Agents Chemother. 2014, 58, 4762–4766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.-H.; Lin, T.-L.; Pan, Y.-J.; Wang, Y.-P.; Lin, Y.-T.; Wang, J.-T. Colistin Resistance Mechanisms in Klebsiella pneumoniae Strains from Taiwan. Antimicrob. Agents Chemother. 2015, 59, 2909–2913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomonaco, S.; Crawford, M.A.; Lascols, C.; Timme, R.E.; Anderson, K.; Hodge, D.R.; Fisher, D.J.; Pillai, S.P.; Morse, S.A.; Khan, E.; et al. Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. PLoS ONE 2018, 13, e0198526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, R.; Duarte, A.; Perdigão, J. A Molecular Perspective on Colistin and Klebsiella pneumoniae: Mode of Action, Resistance Genetics, and Phenotypic Susceptibility. Diagnostics 2021, 11, 1165. [Google Scholar] [CrossRef]
- Jayol, A.; Nordmann, P.; Brink, A.; Poirel, L. Heteroresistance to Colistin in Klebsiella pneumoniae Associated with Alterations in the PhoPQ Regulatory System. Antimicrob. Agents Chemother. 2015, 59, 2780–2784. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.-J.; Kim, S.; Ko, K.S. Pathways Regulating the pbgP Operon and Colistin Resistance in Klebsiella pneumoniae Strains. J. Microbiol. Biotechnol. 2016, 26, 1620–1628. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wu, Y.; Zhu, Y.; Jia, P.; Li, X.; Jia, X.; Yu, W.; Cui, Y.; Yang, R.; Xia, W.; et al. Emergence of colistin-resistant hypervirulent Klebsiella pneumoniae (CoR-HvKp) in China. Emerg. Microbes Infect. 2022, 11, 648–661. [Google Scholar] [CrossRef]
- Hicks, K.G. Bacterial Innate Immunity: Mechanisms of PhoQ Sensing that Promote Salmonella Virulance. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2015. Available online: https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/35261/Hicks_washington_0250E_15197.pdf?sequence=1&isAllowed=y (accessed on 7 August 2022).
- Shein, A.M.S.; Wannigama, D.L.; Higgins, P.G.; Hurst, C.; Abe, S.; Hongsing, P.; Chantaravisoot, N.; Saethang, T.; Luk-in, S.; Liao, T.; et al. High prevalence of mgrB-mediated colistin resistance among carbapenem-resistant Klebsiella pneumoniae is associated with biofilm formation, and can be overcome by colistin-EDTA combination therapy. Sci. Rep. 2022, 12, 12939. [Google Scholar] [CrossRef]
No. | Study ID (ref) | Country of Study | Period of Study | Source of Sample | No. of Colistin-Resistant K. pneumoniae | No. of Mutated Cases | Mutation Detection Method | Genes Encoded for Colistin Resistance | Mutated Colistin Resistance Genes |
---|---|---|---|---|---|---|---|---|---|
1 | Avgoulea et al., 2018 [12] | Greece | 2012–2014 | Human | 19 | 15 | WGS, ResFinder | mgrB (15) | mgrB (15) |
2 | Azam et al., 2021 [13] | India | 2017–2018 | Human | 11 | 10 | PROVEAN, PCR | mgrB (4), phoP (1), phoQ (4), pmrA (1), pmrB (7) | mgrB (4), phoP (1), phoQ (4), pmrA (1), pmrB (7) |
3 | Baron et al., 2021 [14] | France | 2014–2017 | Human | 22 | 14 | WGS, PROVEAN | acrS (12), crrB (10), mgrB (2), phoP (1), phoQ (2), pmrA (13), pmrB (11) | acrS (12), crrB (10), mgrB (2), phoP (1), phoQ (2), pmrA (13), pmrB (11) |
4 | Barragán-Prada et al., 2019 [15] | Spain | 2014–2015 | Human | 21 | 4 | WGS, PCR, Sanger sequencing, ISMapper | mgrB (3), pmrA (1), pmrB (1) | mgrB (3), pmrA (1), pmrB (1) |
5 | Berglund et al., 2018 [16] | Vietnam | 2015 | Human | 31 | 30 | WGS, ResFinder, Sanger sequencing, ISFinder | mgrB (31) | mgrB (30) |
6 | Bonura et al., 2015 [17] | Italy | 2014 | Human | 40 | 32 | PCR, sequencing | mgrB (40) | mgrB (32) |
7 | Can et al., 2018 [18] | Turkey | 2015–2016 | Human | 115 | 83 | Sequencing | mgrB (83) | mgrB (83) |
8 | Cannatelli et al., 2014 [19] | Multiple countries | 2010–2012 | Human | 66 | 39 | PCR | mgrB (66) | mgrB (39) |
9 | Chen et al., 2021 [20] | China | 2020 | Human | 2 | 2 | WGS, ResFinder, ISfinder | mgrB (2) | mgrB (2) |
10 | Cheng et al., 2016 [21] | Taiwan | NA | Human | 8 | 8 | PCR, sequencing | crrB (8) | crrB (8) |
11 | Choi & Ko, 2015 [22] | Korea | NA | Human | 12 | 12 | Sequencing | phoP (4), phoQ (12), pmrB (12) | phoP (4), phoQ (12), pmrB (12) |
12 | Choi & Ko, 2020 [23] | Korea | 2006–2007 | Human | 5 | 2 | WGS | mgrB (2), phoQ (1) | mgrB (2), phoQ (1) |
13 | da Silva et al., 2020 [24] | Brazil | 2015–2016 | Human | 30 | 29 | WGS, ISfinder | mgrB (29) | mgrB (29) |
14 | Di Tella et al., 2019 [25] | Italy | 2014–2017 | Human | 19 | 18 | PCR, Sanger sequencing | mgrB (18) | mgrB (18) |
15 | D’Onofrio et al., 2020 [26] | Croatia | 2013–2018 | Human | 14 | 6 | WGS | mgrB (3), phoP (6), phoQ (6), pmrB (6) | mgrB (3), phoP (6), phoQ (6), pmrB (6) |
16 | Eltai et al., 2020 [27] | Qatar | 2020 | Human | 13 | 13 | WGS | mcr-1 (1), mcr-8 (2), mgrB (4), phoP (13) | mgrB (4), phoP (13) |
17 | Esposito et al., 2018 [28] | Italy | 2015–2016 | Human | 25 | 25 | PCR, sequencing | crrB (21), mgrB (25), phoQ (4), pmrA (4), pmrB (4) | crrB (3), mgrB (22), phoQ (4), pmrA (1), pmrB (1) |
18 | Gentile et al., 2020 [29] | Italy | 2013–2014 | Human | 27 | 26 | NGS, ResFinder | mgrB (27), phoQ (27), pmrB (27) | mgrB (14), phoQ (12), pmrB (2) |
19 | Giordano et al., 2018 [30] | Italy | 2015–2016 | Human | 29 | 24 | WGS, ResFinder, ISfinder | mcr-1 (1), mgrB (22), phoP (2), pmrA (3), pmrB (3) | mgrB (22), phoP (2), pmrA (3), pmrB (3) |
20 | Haeili et al., 2017 [31] | Iran | 2015–2017 | Human | 20 | 20 | PCR, sequencing | mgrB (20), phoP (20), phoQ (20), pmrA (20), pmrB (20) | mgrB (15), pmrB (19) |
21 | Huang et al., 2021 [32] | Taiwan | 2016–2019 | Human | 24 | 20 | PCR, Sanger sequencing, ISfinder | crrA (1), mgrB (13), phoP (1), phoQ (2), pmrA (1), pmrB (3) | crrA (1), mgrB (13), phoP (1), phoQ (2), pmrA (1), pmrB (3) |
22 | Jaidane et al., 2018 [33] | Tunisia | 2012–2016 | Human | 13 | 13 | WGS, ResFinder, | mgrB (13), phoP (13), phoQ (13), pmrA (13), pmrB (13), pmrC (13) | mgrB (13), phoQ (9), pmrA (5), pmrB (9), pmrC (13) |
23 | Kim & Ko, 2018 [34] | Korea | NA | Human | 40 | 32 | PCR, sequencing | crrA (4), crrB (5), mgrB (17), phoP (1), phoQ (7), pmrB (3) | crrA (2), crrB (5), mgrB (17), phoP (1), phoQ (7), pmrB (3) |
24 | Lagerbäck et al., 2016 [35] | United State | NA | Human | 2 | 2 | PCR, sequencing | mgrB (1), pmrB (2) | mgrB (1), pmrB (2) |
25 | Lee et al., 2021 [36] | Korea | 2008–2018 | Human | 2 | 2 | PCR, sequencing | mgrB (2), ompK35 (1), ompK36 (2), pmrB (2), pmrC (2), pmrE (2), pmrK (2) | mgrB (2), ompK35 (1), ompK36 (2), pmrB (2), pmrC (2), pmrE (2), pmrK (2) |
26 | Leung et al., 2017 [37] | United State | 2008–2012 | Human | 11 | 9 | PCR, NGS | crrB (4), mgrB (9), pmrB (3), pmrF (2), pmrJ (4), pmrK (3) | crrB (4), mgrB (7), pmrB (3), pmrF (2), pmrJ (1), pmrK (1) |
27 | Liu et al., 2021 [38] | China | 2017–2019 | Human | 53 | 13 | WGS | mcr-1 (3), mcr-8 (1), mgrB (3), phoQ (1), pmrA (1), pmrB (11) | mgrB (3), phoQ (1), pmrA (1), pmrB (11) |
28 | Longo et al., 2019 [39] | Brazil | 2016 | Human | 23 | 10 | WGS, PROVEAN | crrB (3), mgrB (10), phoQ (10), pmrB (10) | crrB (3), mgrB (7), phoQ (6), pmrB (9) |
29 | Lu et al., 2018 [40] | China | 2015–2016 | Human | 5 | 3 | WGS, ResFinder | mcr-1 (1), phoQ (3) | phoQ (3) |
30 | Malli et al., 2018 [41] | Greece | 2016–2017 | Human | 98 | 75 | PCR, sequencing | mgrB (98) | mgrB (75) |
31 | Mathur et al., 2018 [42] | India | NA | Human | 8 | 8 | WGS | arnA (8), arnB (4), arnC (8), arnT (8), mgrB (2), pagP (6), phoP (8), phoQ (8), pmrB (8), pmrC (8), pmrJ (6) | arnA (8), arnB (4), arnC (8), arnT (8), mgrB (2), pagP (6), phoP (8), phoQ (8), pmrB (8), pmrC (8), pmrJ (6) |
32 | Mirshekar et al., 2020 [43] | Iran | 2018–2019 | Human | 20 | 4 | PCR, sequencing, ISfinder | mgrB (20) | mgrB (4) |
33 | Moghimi, Haeili & Mohajjel Shoja, 2021 [44] | Iran | NA | Human | 9 | 5 | PCR, sequencing | mgrB (9) | mgrB (5) |
34 | Morales-León et al., 2020 [45] | Chile | 2011–2014 | Human | 8 | 8 | WGS, ResFinder, PROVEAN | mgrB (4), phoP (4), phoQ (1), pmrB (3) | mgrB (4), phoP (4), phoQ (1), pmrB (3) |
35 | Ngbede et al., 2021 [46] | Nigeria | 2016–2019 | Human and animal | 17 | 17 | WGS, PROVEAN | arnT (1), crrB (17), mcr-1 (3), mcr-8 (5), mgrB (17), ompK36 (10), ompK37 (17), ramR (17) | arnT (1), crrB (17), mgrB (17), ompK36 (10), ompK37 (17), ramR (17) |
36 | Otter et al., 2017 [47] | United Kingdom | 2014–2015 | Human | 25 | 24 | WGS | mgrB (23), phoQ (1) | mgrB (23), phoQ (1) |
37 | Palani et al., 2020 [48] | India | 2017–2018 | Human | 25 | 11 | PCR, sequencing | mgrB (25) | mgrB (11) |
38 | Poirel et al., 2015 [49] | Multiple countries | NA | Human | 47 | 12 | PCR, sequencing, ISfinder | mgrB (12) | mgrB (12) |
39 | Pragasam et al., 2017 [50] | India | 2013–2015 | Human | 8 | 8 | PCR, WGS | arnA (8), arnB (7), arnC (8), arnT (8), mgrB (4), pagP (6), phoP (8), phoQ (8), phoR (3), pmrB (7), pmrC (8) | arnA (8), arnB (7), arnC (8), arnT (8), mgrB (4), pagP (4), phoP (8), phoQ (8), phoR (3), pmrB (7), pmrC (8) |
40 | Sato et al., 2020 [51] | Japan | 2017 | Human | 4 | 3 | WGS, ResFinder | phoP (1), pmrB (2) | phoP (1), pmrB (2) |
41 | Seo et al., 2021 [52] | Korea | NA | Human | 35 | 15 | Sequencing | phoP (14), phoQ (10), pmrB (9) | phoP (14), phoQ (10), pmrB (9) |
42 | Shankar et al., 2019 [53] | India | 2016–2017 | Human | 65 | 19 | PCR, sequencing, ISfinder | mgrB (12), phoP (3) phoQ (9) | mgrB (12), phoP (3), phoQ (9) |
43 | Sharahi et al., 2021 [54] | Iran | 2016–2018 | Human | 16 | 6 | PCR, ISfinder | mgrB (16), phoP (16), phoQ (16), pmrA (16), pmrB (16) | mgrB (6), phoP (1), phoQ (1), pmrB (1) |
44 | Uz Zaman et al., 2018 [55] | Saudi Arabia | 2011–2015 | Human | 23 | 23 | PCR, Sanger sequencing, ISfinder | mgrB (18), phoP (6) | mgrB (18), phoP (6) |
45 | Venditti et al., 2021 [56] | Italy | 2019–2020 | Human | 6 | 6 | WGS | mgrB (6), ompK35 (6), ompK36 (6) | mgrB (6), ompK35 (6), ompK36 (6) |
46 | Wang et al., 2017 [57] | China | 2011–2014 | Human and animal | 17 | 16 | PCR, WGS | mcr-1 (4), mgrB (17), phoQ (17), pmrB (17) | mgrB (6), pmrB (16) |
47 | Yang et al., 2020 [58] | Taiwan | 2012–2015 | Human | 49 | 48 | PCR, sequencing | crrB (28), mgrB (32), phoP (4), phoQ (10), pmrA (5), pmrB (16) | crrB (28), mgrB (31), phoP (4), phoQ (10), pmrA (5), pmrB (16) |
48 | Zafer et al., 2019 [59] | Egypt | 2016–2017 | Human | 22 | 1 | PCR, sequencing | mcr-1 (1), mgrB (12) | mgrB (1) |
49 | Zhang et al., 2019 [60] | China | 2015 | Human | 3 | 3 | PCR, sequencing | pmrB (3) | pmrB (3) |
50 | Zhu et al., 2019 [61] | Greece | NA | Human | 8 | 8 | PCR, Sanger sequencing | arnB (1), mgrB (8), phoP (8), phoQ (3), pmrB (1), pmrC (1), | arnB (1), mgrB (8), phoP (8), phoQ (3), pmrB (1), pmrC (1) |
Country of Study | No. of Study | Prevalence (%) | 95% CI | I2 | Q | Heterogeneity Test | |
---|---|---|---|---|---|---|---|
DF | p | ||||||
Brazil | 2 | 80.8 | 10.8–99.3 | 90.805 | 10.875 | 1 | 0.001 |
Chile | 1 | 94.4 | 49.5–99.7 | 0.000 | 0.000 | 0 | 1.000 |
China | 5 | 71.3 | 29.3–93.7 | 79.333 | 19.355 | 4 | 0.001 |
Croatia | 1 | 42.9 | 20.6–68.4 | 0.000 | 0.000 | 0 | 1.000 |
Egypt | 1 | 4.5 | 0.6–26.1 | 0.000 | 0.000 | 0 | 1.000 |
France | 1 | 63.6 | 42.3–80.7 | 0.000 | 0.000 | 0 | 1.000 |
Greece | 3 | 77.5 | 69.3–84.1 | 0.000 | 1.279 | 2 | 0.528 |
India | 5 | 68.6 | 37.3–88.9 | 79.819 | 19.821 | 4 | 0.001 |
Iran | 4 | 51.0 | 20.7–80.6 | 75.566 | 12.278 | 3 | 0.006 |
Italy | 6 | 88.4 | 78.6–94.1 | 28.437 | 6.987 | 5 | 0.222 |
Japan | 1 | 75.0 | 23.8–96.6 | 0.000 | 0.000 | 0 | 1.000 |
Korea | 5 | 68.6 | 39.9–87.7 | 74.004 | 15.387 | 4 | 0.004 |
Multiple countries | 2 | 41.7 | 14.9–74.5 | 91.559 | 11.847 | 1 | 0.001 |
Nigeria | 1 | 97.2 | 67.8–99.8 | 0.000 | 0.000 | 0 | 1.000 |
Qatar | 1 | 96.4 | 61.6–99.8 | 0.000 | 0.000 | 0 | 1.000 |
Saudi Arabia | 1 | 97.9 | 74.1–99.9 | 0.000 | 0.000 | 0 | 1.000 |
Spain | 1 | 19.0 | 7.3–41.2 | 0.000 | 0.000 | 0 | 1.000 |
Taiwan | 3 | 92.8 | 73.6–98.3 | 51.071 | 4.088 | 2 | 0.130 |
Tunisia | 1 | 96.4 | 61.6–99.8 | 0.000 | 0.000 | 0 | 1.000 |
Turkey | 1 | 72.2 | 63.3–79.6 | 0.000 | 0.000 | 0 | 1.000 |
United Kingdom | 1 | 96.0 | 76.5–99.4 | 0.000 | 0.000 | 0 | 1.000 |
United States | 2 | 82.1 | 53.9–94.8 | 0.000 | 0.004 | 1 | 0.952 |
Vietnam | 1 | 96.8 | 80.4–99.5 | 0.000 | 0.000 | 0 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusof, N.Y.; Norazzman, N.I.I.; Hakim, S.N.W.A.; Azlan, M.M.; Anthony, A.A.; Mustafa, F.H.; Ahmed, N.; Rabaan, A.A.; Almuthree, S.A.; Alawfi, A.; et al. Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2022, 7, 414. https://doi.org/10.3390/tropicalmed7120414
Yusof NY, Norazzman NII, Hakim SNWA, Azlan MM, Anthony AA, Mustafa FH, Ahmed N, Rabaan AA, Almuthree SA, Alawfi A, et al. Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Tropical Medicine and Infectious Disease. 2022; 7(12):414. https://doi.org/10.3390/tropicalmed7120414
Chicago/Turabian StyleYusof, Nik Yusnoraini, Nur Iffah Izzati Norazzman, Siti Nur’ain Warddah Ab Hakim, Mawaddah Mohd Azlan, Amy Amilda Anthony, Fatin Hamimi Mustafa, Naveed Ahmed, Ali A. Rabaan, Souad A. Almuthree, Abdulsalam Alawfi, and et al. 2022. "Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis" Tropical Medicine and Infectious Disease 7, no. 12: 414. https://doi.org/10.3390/tropicalmed7120414
APA StyleYusof, N. Y., Norazzman, N. I. I., Hakim, S. N. W. A., Azlan, M. M., Anthony, A. A., Mustafa, F. H., Ahmed, N., Rabaan, A. A., Almuthree, S. A., Alawfi, A., Alshengeti, A., Alwarthan, S., Garout, M., Alawad, E., & Yean, C. Y. (2022). Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Tropical Medicine and Infectious Disease, 7(12), 414. https://doi.org/10.3390/tropicalmed7120414