Moonlighting in Rickettsiales: Expanding Virulence Landscape
Abstract
:1. Introduction
2. Bacterial Moonlight Proteins
3. Intracellular Bacterial Moonlight Proteins
4. Moonlighting in Rickettsiales
4.1. Anaplasma spp.
4.2. Ehrlichia chaffeensis
4.3. Orientia tsutsugamushi
4.4. Rickettsia spp.
4.5. Wolbachia spp.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salje, J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat. Rev. Genet. 2021, 19, 375–390. [Google Scholar] [CrossRef]
- Khatat, S.E.H.; Daminet, S.; Duchateau, L.; Elhachimi, L.; Kachani, M.; Sahibi, H. Epidemiological and Clinicopathological Features of Anaplasma phagocytophilum Infection in Dogs: A Systematic Review. Front. Veter.-Sci. 2021, 8, 686644. [Google Scholar] [CrossRef]
- Matei, I.A.; Estrada-Peña, A.; Cutler, S.J.; Vayssier-Taussat, M.; Castro, L.V.; Potkonjak, A.; Zeller, H.; Mihalca, A.D. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasites Vectors 2019, 12, 599. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, F.; Wang, L.; Zhang, L.; Zhang, J.; Wang, S.; Yang, S. Investigation of anaplasmosis in Yiyuan County, Shandong Province, China. Asian Pac. J. Trop. Med. 2011, 4, 568–572. [Google Scholar] [CrossRef] [Green Version]
- Gettings, J.R.; Self, S.C.W.; McMahan, C.S.; Brown, D.A.; Nordone, S.K.; Yabsley, M.J. Local and regional temporal trends (2013–2019) of canine Ehrlichia spp. seroprevalence in the USA. Parasites Vectors 2020, 13, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luce-Fedrow, A.; Lehman, M.L.; Kelly, D.J.; Mullins, K.; Maina, A.N.; Stewart, R.L.; Ge, H.; John, H.S.; Jiang, J.; Richards, A.L. A Review of Scrub Typhus (Orientia tsutsugamushi and Related Organisms): Then, Now, and Tomorrow. Trop. Med. Infect. Dis. 2018, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Sarma, N. Scrub Typhus: An Emerging Threat. Indian J. Dermatol. 2017, 62, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.-E.; et al. Update on Tick-Borne Rickettsioses around the World: A Geographic Approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Epidemiological Situation of Rickettsioses in EU/EFTA Countries; ECDC: Stockholm, Sweden, 2013.
- Binder, A.M.; Armstrong, P.A. Increase in Reports of Tick-Borne Rickettsial Diseases in the United States. Am. J. Nurs. 2019, 119, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Drexler, N.A.; Dahlgren, F.; Massung, R.F.; Behravesh, C.B.; Heitman, K.N.; Paddock, C.D. National Surveillance of Spotted Fever Group Rickettsioses in the United States, 2008–2012. Am. J. Trop. Med. Hyg. 2016, 94, 26–34. [Google Scholar] [CrossRef]
- Álvarez-Hernández, G.; Roldán, J.F.G.; Milan, N.S.H.; Lash, R.R.; Behravesh, C.B.; Paddock, C.D. Rocky Mountain spotted fever in Mexico: Past, present, and future. Lancet Infect. Dis. 2017, 17, e189–e196. [Google Scholar] [CrossRef]
- Spernovasilis, N.; Markaki, I.; Papadakis, M.; Mazonakis, N.; Ierodiakonou, D. Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Trop. Med. Infect. Dis. 2021, 6, 172. [Google Scholar] [CrossRef] [PubMed]
- Buczek, W.; Koman-Iżko, A.; Buczek, A.M.; Bartosik, K.; Kulina, D.; Ciura, D. Spotted fever group rickettsiae transmitted by Dermacentor ticks and determinants of their spread in Europe. Ann. Agric. Environ. Med. 2020, 27, 505–511. [Google Scholar] [CrossRef]
- Heinrich, N.; Dill, T.; Dobler, G.; Clowes, P.; Kroidl, I.; Starke, M.; Ntinginya, N.E.; Maboko, L.; Löscher, T.; Hoelscher, M.; et al. High Seroprevalence for Spotted Fever Group Rickettsiae, Is Associated with Higher Temperatures and Rural Environment in Mbeya Region, Southwestern Tanzania. PLoS Negl. Trop. Dis. 2015, 9, e0003626. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.A.C.; Ramírez-Hernández, A.; Blanton, L.S. Manifestations and Management of Flea-Borne Rickettsioses. Res. Rep. Trop. Med. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Brown, L.D.; Macaluso, K.R. Rickettsia felis, an Emerging Flea-Borne Rickettsiosis. Curr. Trop. Med. Rep. 2016, 3, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maina, A.N.; Jiang, J.; Luce-Fedrow, A.; John, H.K.S.; Farris, C.M.; Richards, A.L. Worldwide Presence and Features of Flea-Borne Rickettsia asembonensis. Front. Veter.-Sci. 2019, 5, 334. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, M.; Rymaszewska, A. Expansion of Tick-Borne Rickettsioses in the World. Microorganisms 2020, 8, 1906. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, C.J. Moonlighting proteins. Trends Biochem. Sci. 1999, 24, 8–11. [Google Scholar] [CrossRef]
- Chen, C.; Liu, H.; Zabad, S.; Rivera, N.; Rowin, E.; Hassan, M.; De Jesus, S.M.G.; Santos, P.S.L.; Kravchenko, K.; Mikhova, M.; et al. MoonProt 3.0: An update of the moonlighting proteins database. Nucleic Acids Res. 2020, 49, D368–D372. [Google Scholar] [CrossRef]
- Franco-Serrano, L.; Hernández, S.; Calvo, A.; Severi, M.A.; Ferragut, G.; Pérez-Pons, J.; Piñol, J.; Pich, Ò.; Mozo-Villarias, Á.; Amela, I.; et al. MultitaskProtDB-II: An update of a database of multitasking/moonlighting proteins. Nucleic Acids Res. 2018, 46, D645–D648. [Google Scholar] [CrossRef]
- Huberts, D.H.; van der Klei, I.J. Moonlighting proteins: An intriguing mode of multitasking. Biochim. Biophys. Acta 2010, 1803, 520–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffery, C.J. Why study moonlighting proteins? Front. Genet. 2015, 6, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, S.; Franco, L.; Calvo, A.; Ferragut, G.; Hermoso, A.; Amela, I.; Gomez, A.; Querol, E.; Cedano, J. Bioinformatics and Moonlighting Proteins. Front. Bioeng. Biotechnol. 2015, 3, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.K.; Bhuiyan, M.; Kihara, D. DextMP: Deep dive into text for predicting moonlighting proteins. Bioinformatics 2017, 33, i83–i91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirafkan, F.; Gharaghani, S.; Rahimian, K.; Sajedi, R.H.; Zahiri, J. Moonlighting protein prediction using physico-chemical and evolutional properties via machine learning methods. BMC Bioinform. 2021, 22, 261. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Briere, G.; Bely, B.; Spinelli, L.; Brun, C. MoonDB 2.0: An updated database of extreme multifunctional and moonlighting proteins. Nucleic Acids Res. 2018, 47, D398–D402. [Google Scholar] [CrossRef]
- Jeffery, C.J. Protein moonlighting: What is it, and why is it important? Philos. Trans. R. Soc. B Biol. Sci. 2017, 373, 20160523. [Google Scholar] [CrossRef]
- Wang, G.; Xia, Y.; Cui, J.; Gu, Z.; Song, Y.; Chen, Y.Q.; Chen, H.; Zhang, H.; Chen, W. The Roles of Moonlighting Proteins in Bacteria. Curr. Issues Mol. Biol. 2014, 16, 15–22. [Google Scholar]
- Espinosa-Cantú, A.; Cruz-Bonilla, E.; Noda-Garcia, L.; DeLuna, A. Multiple Forms of Multifunctional Proteins in Health and Disease. Front. Cell Dev. Biol. 2020, 8, 451. [Google Scholar] [CrossRef]
- Jeffery, C. Intracellular proteins moonlighting as bacterial adhesion factors. AIMS Microbiol. 2018, 4, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Dhasmana, N.; Dubey, N.; Kumar, N.; Gangwal, A.; Gupta, M.; Singh, Y. Bacterial Virulence Factors: Secreted for Survival. Indian J. Microbiol. 2017, 57, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, B.; Martin, A. Bacterial Virulence in the Moonlight: Multitasking Bacterial Moonlighting Proteins Are Virulence Determinants in Infectious Disease. Infect. Immun. 2011, 79, 3476–3491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kainulainen, V.; Korhonen, T.K. Dancing to Another Tune—Adhesive Moonlighting Proteins in Bacteria. Biology 2014, 3, 178–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pancholi, V.; Fischetti, V.A. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J. Exp. Med. 1992, 176, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Amblee, V.; Jeffery, C.J. Physical Features of Intracellular Proteins that Moonlight on the Cell Surface. PLoS ONE 2015, 10, e0130575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallo, S.F.; Kannan, T.R.; Blaylock, M.W.; Baseman, J.B. Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol. Microbiol. 2002, 46, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Kunert, A.; Losse, J.; Gruszin, C.; Hühn, M.; Kaendler, K.; Mikkat, S.; Volke, D.; Hoffmann, R.; Jokiranta, T.S.; Seeberger, H.; et al. Immune Evasion of the Human Pathogen Pseudomonas aeruginosa: Elongation Factor Tuf is a Factor H and Plasminogen Binding Protein. J. Immunol. 2007, 179, 2979–2988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culp, E.; Wright, G.D. Bacterial proteases, untapped antimicrobial drug targets. J. Antibiot. 2017, 70, 366–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebrun, I.; Marques-Porto, R.; Pereira, A.; Perpetuo, E. Bacterial Toxins: An Overview on Bacterial Proteases and their Action as Virulence Factors. Mini-Rev. Med. Chem. 2009, 9, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.D.; Overall, C.M. Proteolytic Post-translational Modification of Proteins: Proteomic Tools and Methodology. Mol. Cell. Proteom. 2013, 12, 3532–3542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckmann, C.; Waggoner, J.D.; Harris, T.O.; Tamura, G.S.; Rubens, C.E. Identification of Novel Adhesins from Group B Streptococci by Use of Phage Display Reveals that C5a Peptidase Mediates Fibronectin Binding. Infect. Immun. 2002, 70, 2869–2876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, A.; Chamorro-Veloso, N.; Costa, P.; Cádiz, L.; Del Canto, F.; Venegas, S.; Nitsche, M.L.; Coloma-Rivero, R.; Montero, D.; Vidal, R. Deciphering Additional Roles for the EF-Tu, l-Asparaginase II and OmpT Proteins of Shiga Toxin-Producing Escherichia coli. Microorganisms 2020, 8, 1184. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Guo, Y.; Hui, C.-Y.; Liu, X.-L.; Zhang, W.-B.; Cao, H. The surface protease ompT serves as Escherichia coli K1 adhesin in binding to human brain micro vascular endothelial cells. Pak. J. Pharm. Sci. 2014, 27, 617–624. [Google Scholar] [PubMed]
- Leon-Sicairos, N.; Reyes-Cortes, R.; Guadron-Llanos, A.M.; Madueña-Molina, J.; Leon-Sicairos, C.; Canizalez-Roman, A. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment. BioMed Res. Int. 2015, 2015, 476534. [Google Scholar] [CrossRef]
- Bourdonnay, E.; Henry, T. Catch me if you can. eLife 2016, 5, e14721. [Google Scholar] [CrossRef] [PubMed]
- Mak, T.W.; Saunders, M.E. 22-Immunity to Pathogens. In The Immune Response; Mak, T.W., Saunders, M.E., Eds.; Academic Press: Burlington, NJ, USA, 2006; pp. 641–694. ISBN 978-0-12-088451-3. [Google Scholar]
- Eisenreich, W.; Rudel, T.; Heesemann, J.; Goebel, W. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front. Cell. Infect. Microbiol. 2019, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Köseoğlu, V.K.; Agaisse, H. Evolutionary Perspectives on the Moonlighting Functions of Bacterial Factors That Support Actin-Based Motility. mBio 2019, 10, e01520-19. [Google Scholar] [CrossRef] [Green Version]
- Ensgraber, M.; Loos, M. A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect. Immun. 1992, 60, 3072–3078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagadeesan, B.; Koo, O.K.; Kim, K.-P.; Burkholder, K.M.; Mishra, K.K.; Aroonnual, A.; Bhunia, A.K. LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology 2010, 156, 2782–2795. [Google Scholar] [CrossRef]
- Wampler, J.L.; Kim, K.-P.; Jaradat, Z.; Bhunia, A.K. Heat Shock Protein 60 Acts as a Receptor for the Listeria Adhesion Protein in Caco-2 Cells. Infect. Immun. 2004, 72, 931–936. [Google Scholar] [CrossRef] [Green Version]
- Garduño, R.A.; Garduño, E.; Hoffman, P.S. Surface-Associated Hsp60 Chaperonin of Legionella pneumophila Mediates Invasion in a HeLa Cell Model. Infect. Immun. 1998, 66, 4602–4610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Masison, D.C. Hsp70 Structure, Function, Regulation and Influence on Yeast Prions. Protein Pept. Lett. 2009, 16, 571–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Jeffery, C.J. Moonlighting Proteins in the Fuzzy Logic of Cellular Metabolism. Molecules 2020, 25, 3440. [Google Scholar] [CrossRef] [PubMed]
- Kinhikar, A.G.; Vargas, D.; Li, H.; Mahaffey, S.B.; Hinds, L.; Belisle, J.T.; Laal, S. Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol. Microbiol. 2006, 60, 999–1013. [Google Scholar] [CrossRef]
- Xolalpa, W.; Vallecillo, A.J.; Lara, M.; Mendoza-Hernandez, G.; Comini, M.; Spallek, R.; Singh, M.; Espitia, C. Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics 2007, 7, 3332–3341. [Google Scholar] [CrossRef]
- Heilmann, C.; Thumm, G.; Chhatwal, G.S.; Hartleib, J.; Uekötter, A.; Peters, G. Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 2003, 149, 2769–2778. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, C.; Hartleib, J.; Hussain, M.S.; Peters, G. The Multifunctional Staphylococcus aureus Autolysin Aaa Mediates Adherence to Immobilized Fibrinogen and Fibronectin. Infect. Immun. 2005, 73, 4793–4802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milohanic, E.; Pron, B.; Berche, P.; Gaillard, J.-L.; The European Listeria Genome Consortium. Identification of new loci involved in adhesion of Listeria monocytogenes to eukaryotic cells The GenBank accession numbers for the sequences determined in this work are AF104224–AF104229. Microbiology 2000, 146 Pt 3, 731–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumler, J.S.; Walker, D.H. Order II. Rickettsiales. In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Garrity, G.M., Brenner, D.J., Krieg, N.R., Staley, J.T., Eds.; Springer: New York, NY, USA, 2005; Volume 2. [Google Scholar]
- Vescovo, I.A.L.; Golemba, M.D.; Di Lello, F.A.; Culasso, A.C.; Levin, G.; Ruberto, L.; Mac Cormack, W.P.; López, J.L. Rich bacterial assemblages from Maritime Antarctica (Potter Cove, South Shetlands) reveal several kinds of endemic and undescribed phylotypes. Rev. Argent. Microbiol. 2014, 46, 218–230. [Google Scholar] [CrossRef] [Green Version]
- McQuiston, J.H.; Paddock, C.D. Public Health: Rickettsial Infections and Epidemiology. In Intracellular Pathogens II; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 40–83. [Google Scholar] [CrossRef]
- Wood, H.; Artsob, H. Spotted Fever Group Rickettsiae: A Brief Review and a Canadian Perspective. Zoonoses Public Health 2012, 59, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Dumler, J.S. Clinical Disease: Current Treatment and New Challenges. In Intracellular Pathogens II; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 1–39. [Google Scholar] [CrossRef]
- Sahni, A.; Fang, R.; Sahni, S.K.; Walker, D.H. Pathogenesis of Rickettsial Diseases: Pathogenic and Immune Mechanisms of an Endotheliotropic Infection. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 127–152. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.J.; Richards, A.L.; Temenak, J.; Strickman, D.; Dasch, G.A. The Past and Present Threat of Rickettsial Diseases to Military Medicine and International Public Health. Clin. Infect. Dis. 2002, 34, S145–S169. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Walker, D.H.; Jupiter, D.; Melby, P.C.; Arcari, C.M. A review of the global epidemiology of scrub typhus. PLoS Negl. Trop. Dis. 2017, 11, e0006062. [Google Scholar] [CrossRef] [Green Version]
- Devasagayam, E.; Dayanand, D.; Kundu, D.; Kamath, M.S.; Kirubakaran, R.; Varghese, G.M. The burden of scrub typhus in India: A systematic review. PLoS Negl. Trop. Dis. 2021, 15, e0009619. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. 2020, 27, 22336–22352. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Perrings, C.; Kinzig, A.; Collins, J.P.; Minteer, B.A.; Daszak, P. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review. Ambio 2017, 46, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Blazejak, K.; Janecek, E.; Strube, C. A 10-year surveillance of Rickettsiales (Rickettsia spp. and Anaplasma phagocytophilum) in the city of Hanover, Germany, reveals Rickettsia spp. as emerging pathogens in ticks. Parasites Vectors 2017, 10, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, R.; Varghese, G.M. Scrub typhus: A reemerging infection. Curr. Opin. Infect. Dis. 2020, 33, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Alkishe, A.; Raghavan, R.K.; Peterson, A.T. Likely Geographic Distributional Shifts among Medically Important Tick Species and Tick-Associated Diseases under Climate Change in North America: A Review. Insects 2021, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Nelder, M.P.; Russell, C.B.; Lindsay, L.R.; Dibernardo, A.; Brandon, N.C.; Pritchard, J.; Johnson, S.; Cronin, K.; Patel, S.N. Recent Emergence of Anaplasma phagocytophilum in Ontario, Canada: Early Serological and Entomological Indicators. Am. J. Trop. Med. Hyg. 2019, 101, 1249–1258. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yang, Z.; Dong, Z.; Wang, M. Meteorological factors and risk of scrub typhus in Guangzhou, southern China, 2006–2012. BMC Infect. Dis. 2014, 14, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikihisa, Y. Mechanisms of Obligatory Intracellular Infection with Anaplasma phagocytophilum. Clin. Microbiol. Rev. 2011, 24, 469–489. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zheng, C.; Liu, X. Expression, purification, and biological characterization of Anaplasma phagocytophilum enolase. Biosci. Trends 2018, 11, 651–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truchan, H.K.; VieBrock, L.; Cockburn, C.L.; Ojogun, N.; Griffin, B.P.; Wijesinghe, D.S.; Chalfant, C.E.; Carlyon, J.A. Anaplasma phagocytophilum Rab10-dependent parasitism of thetrans-Golgi network is critical for completion of the infection cycle. Cell. Microbiol. 2016, 18, 260–281. [Google Scholar] [CrossRef] [Green Version]
- English, A.R.; Voeltz, G.K. Rab10 GTPase regulates ER dynamics and morphology. Nat. Cell Biol. 2013, 15, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, K.J.; Choi, K.-S.; Grab, D.J.; Dumler, J.S. Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell. Microbiol. 2004, 6, 743–751. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.C.; Rennoll-Bankert, K.E.; Pelly, S.; Milstone, A.M.; Dumler, J.S. Silencing of Host Cell CYBB Gene Expression by the Nuclear Effector AnkA of the Intracellular Pathogen Anaplasma phagocytophilum. Infect. Immun. 2009, 77, 2385–2391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rennoll-Bankert, K. Lessons from Anaplasma phagocytophilum: Chromatin Remodeling by Bacterial Effectors. Infect. Disord.-Drug Targets 2012, 12, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Ijdo, J.W.; Carlson, A.C.; Kennedy, E.L. Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell. Microbiol. 2007, 9, 1284–1296. [Google Scholar] [CrossRef]
- Lin, M.; Dulk-Ras, A.D.; Hooykaas, P.J.J.; Rikihisa, Y. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell. Microbiol. 2007, 9, 2644–2657. [Google Scholar] [CrossRef]
- Rikihisa, Y. Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species. In Type IV Secretion in Gram-Negative and Gram-Positive Bacteria; Springer: Cham, Switzerland, 2017; Volume 413, pp. 297–321. [Google Scholar] [CrossRef]
- Niu, H.; Kozjak-Pavlovic, V.; Rudel, T.; Rikihisa, Y. Anaplasma phagocytophilum Ats-1 Is Imported into Host Cell Mitochondria and Interferes with Apoptosis Induction. PLoS Pathog. 2010, 6, e1000774. [Google Scholar] [CrossRef]
- Friedrich, A.; Pechstein, J.; Berens, C.; Lührmann, A. Modulation of host cell apoptotic pathways by intracellular pathogens. Curr. Opin. Microbiol. 2017, 35, 88–99. [Google Scholar] [CrossRef]
- Niu, H.; Rikihisa, Y. Ats-1: A novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy 2013, 9, 787–788. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Xiong, Q.; Yamamoto, A.; Hayashi-Nishino, M.; Rikihisa, Y. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc. Natl. Acad. Sci. USA 2012, 109, 20800–20807. [Google Scholar] [CrossRef] [Green Version]
- Villar, M.; Ayllón, N.; Kocan, K.M.; Bonzón-Kulichenko, E.; Alberdi, P.; Blouin, E.F.; Weisheit, S.; Mateos-Hernández, L.; Cabezas-Cruz, A.; Bell-Sakyi, L.; et al. Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis. PLoS ONE 2015, 10, e0137237. [Google Scholar] [CrossRef]
- Byerly, C.D.; Patterson, L.L.; McBride, J.W. Ehrlichia TRP effectors: Moonlighting, mimicry and infection. Pathog. Dis. 2021, 79. [Google Scholar] [CrossRef]
- Dunphy, P.S.; Luo, T.; McBride, J.W. Ehrlichia moonlighting effectors and interkingdom interactions with the mononuclear phagocyte. Microbes Infect. 2013, 15, 1005–1016. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, Y.; Matsuo, J.; Hayakawa, Y.; Rikihisa, Y. Cyclic di-GMP Signaling Regulates Invasion by Ehrlichia chaffeensis of Human Monocytes. J. Bacteriol. 2010, 192, 4122–4133. [Google Scholar] [CrossRef] [Green Version]
- Rogan, M.R.; Patterson, L.L.; Byerly, C.D.; Luo, T.; Paessler, S.; Veljkovic, V.; Quade, B.; McBride, J.W. Ehrlichia chaffeensis TRP120 Is a Wnt Ligand Mimetic That Interacts with Wnt Receptors and Contains a Novel Repetitive Short Linear Motif That Activates Wnt Signaling. mSphere 2021, 6, e00216-21. [Google Scholar] [CrossRef]
- Klema, V.J.; Sepuru, K.M.; Füllbrunn, N.; Farris, T.R.; Dunphy, P.S.; McBride, J.W.; Rajarathnam, K.; Choi, K.H. Ehrlichia chaffeensis TRP120 nucleomodulin binds DNA with disordered tandem repeat domain. PLoS ONE 2018, 13, e0194891. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Bao, W.; Lin, M.; Niu, H.; Rikihisa, Y. Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell. Microbiol. 2012, 14, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
- Backert, S.; Grohmann, E. Type IV Secretion in Gram-Negative and Gram-Positive Bacteria; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-75241-9. [Google Scholar]
- Lin, M.; Liu, H.; Xiong, Q.; Niu, H.; Cheng, Z.; Yamamoto, A.; Rikihisa, Y. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase. Autophagy 2016, 12, 2145–2166. [Google Scholar] [CrossRef] [Green Version]
- Ha, N.-Y.; Cho, N.-H.; Kim, Y.-S.; Choi, M.-S.; Kim, I.-S. An Autotransporter Protein from Orientia tsutsugamushi Mediates Adherence to Nonphagocytic Host Cells. Infect. Immun. 2011, 79, 1718–1727. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Y.T.H.; Kim, C.; Kim, Y.; Jeon, K.; Kim, H.-I.; Ha, N.-Y.; Cho, N.-H. The Orientia tsutsugamushi ScaB Autotransporter Protein Is Required for Adhesion and Invasion of Mammalian Cells. Front. Microbiol. 2021, 12, 34. [Google Scholar] [CrossRef]
- Ha, N.-Y.; Sharma, P.; Kim, G.; Kim, Y.; Min, C.-K.; Choi, M.-S.; Kim, I.-S.; Cho, N.-H. Immunization with an Autotransporter Protein of Orientia tsutsugamushi Provides Protective Immunity against Scrub Typhus. PLoS Negl. Trop. Dis. 2015, 9, e0003585. [Google Scholar] [CrossRef]
- Min, C.-K.; Kwon, Y.-J.; Ha, N.-Y.; Cho, B.-A.; Kim, J.-M.; Kwon, E.-K.; Kim, Y.-S.; Choi, M.-S.; Kim, I.-S.; Cho, N.-H. Multiple Orientia tsutsugamushi Ankyrin Repeat Proteins Interact with SCF1 Ubiquitin Ligase Complex and Eukaryotic Elongation Factor 1 α. PLoS ONE 2014, 9, e105652. [Google Scholar] [CrossRef] [Green Version]
- Rodino, K.G.; VieBrock, L.; Evans, S.M.; Ge, H.; Richards, A.L.; Carlyon, J.A. Orientia tsutsugamushi Modulates Endoplasmic Reticulum-Associated Degradation To Benefit Its Growth. Infect. Immun. 2018, 86, e00596-17. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.M.; Rodino, K.G.; Adcox, H.E.; Carlyon, J.A. Orientia tsutsugamushi uses two Ank effectors to modulate NF-κB p65 nuclear transport and inhibit NF-κB transcriptional activation. PLoS Pathog. 2018, 14, e1007023. [Google Scholar] [CrossRef] [Green Version]
- Beyer, A.R.; Rodino, K.G.; VieBrock, L.; Green, R.S.; Tegels, B.K.; Oliver, L.D.; Marconi, R.T.; Carlyon, J.A. Orientia tsutsugamushi Ank9 is a multifunctional effector that utilizes a novel GRIP-like Golgi localization domain for Golgi-to-endoplasmic reticulum trafficking and interacts with host COPB. Cell Microbiol. 2017, 19, e12727. [Google Scholar] [CrossRef] [Green Version]
- Adcox, H.E.; Hatke, A.L.; Andersen, S.E.; Gupta, S.; Otto, N.B.; Weber, M.M.; Marconi, R.T.; Carlyon, J.A. Orientia tsutsugamushi Nucleomodulin Ank13 Exploits the RaDAR Nuclear Import Pathway To Modulate Host Cell Transcription. mBio 2021, 12, e01816-21. [Google Scholar] [CrossRef]
- Riley, S.P.; Patterson, J.L.; Martinez, J.J. The Rickettsial OmpB β-Peptide of Rickettsia conorii Is Sufficient To Facilitate Factor H-Mediated Serum Resistance. Infect. Immun. 2012, 80, 2735–2743. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.G.Y.; Cardwell, M.M.; Hermanas, T.M.; Uchiyama, T.; Martinez, J.J. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell. Microbiol. 2009, 11, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.H.; Ismail, N. Emerging and re-emerging rickettsioses: Endothelial cell infection and early disease events. Nat. Rev. Genet. 2008, 6, 375–386. [Google Scholar] [CrossRef]
- Thepparit, C.; Bourchookarn, A.; Petchampai, N.; Barker, S.A.; Macaluso, K.R. Interaction of Rickettsia felis with histone H2B facilitates the infection of a tick cell line. Microbiology 2010, 156, 2855–2863. [Google Scholar] [CrossRef] [Green Version]
- Merle, N.S.; Noé, R.; Halbwachs-Mecarelli, L.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement System Part II: Role in Immunity. Front. Immunol. 2015, 6, 257. [Google Scholar] [CrossRef] [Green Version]
- Dunkelberger, J.R.; Song, W.-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Engström, P.; Burke, T.; Mitchell, G.; Ingabire, N.; Mark, K.G.; Golovkine, G.; Iavarone, A.T.; Rape, M.; Cox, J.S.; Welch, M.D. Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nat. Microbiol. 2019, 4, 2538–2551. [Google Scholar] [CrossRef]
- Emelyanov, V.V.; Demyanova, N.G. Nucleotide sequence of the gene and features of the major outer membrane protein of a virulent Rickettsia prowazekii strain. Biochemistry 1999, 64, 494–503. [Google Scholar]
- Jakob, R.P.; Koch, J.R.; Burmann, B.; Schmidpeter, P.A.; Hunkeler, M.; Hiller, S.; Schmid, F.X.; Maier, T. Dimeric Structure of the Bacterial Extracellular Foldase PrsA. J. Biol. Chem. 2015, 290, 3278–3292. [Google Scholar] [CrossRef] [Green Version]
- Loukianov, E.V.; Emelyanov, V.V. A 29.5 KDA Heat-modifiable Major Outer Membrane Protein of Rickettsia Prowazekii, Putative Virulence Factor, is a Peptidyl-Prolyl Cis / trans Isomerase. IUBMB Life 2004, 56, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Garza, D.A.; Riley, S.P.; Martinez, J.J. Expression of Rickettsia Adr2 protein in E. coli is sufficient to promote resistance to complement-mediated killing, but not adherence to mammalian cells. PLoS ONE 2017, 12, e0179544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellaiswamy, M.; Kowalczewska, M.; Merhej, V.; Nappez, C.; Vincentelli, R.; Renesto, P.; Raoult, D. Characterization of rickettsial adhesin Adr2 belonging to a new group of adhesins in α-proteobacteria. Microb. Pathog. 2011, 50, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Cardwell, M.M.; Martinez, J.J. The Sca2 Autotransporter Protein from Rickettsia conorii Is Sufficient To Mediate Adherence to and Invasion of Cultured Mammalian Cells. Infect. Immun. 2009, 77, 5272–5280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haglund, C.M.; Choe, J.E.; Skau, C.T.; Kovar, D.R.; Welch, M.D. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 2010, 12, 1057–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madasu, Y.; Suarez, C.; Kast, D.; Kovar, D.R.; Dominguez, R. Rickettsia Sca2 has evolved formin-like activity through a different molecular mechanism. Proc. Natl. Acad. Sci. USA 2013, 110, E2677–E2686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, R.; Huesgen, P.; Riley, S.P.; Wlodawer, A.; Faro, C.; Overall, C.M.; Martinez, J.J.; Simões, I. RC1339/APRc from Rickettsia conorii Is a Novel Aspartic Protease with Properties of Retropepsin-Like Enzymes. PLoS Pathog. 2014, 10, e1004324. [Google Scholar] [CrossRef] [Green Version]
- Sidorin, E.V.; Solov’Eva, T.F. IgG-binding proteins of bacteria. Biochemistry 2011, 76, 295–308. [Google Scholar] [CrossRef]
- Curto, P.; Barro, A.; Almeida, C.; Vieira-Pires, R.S.; Simões, I. The Retropepsin-Type Protease APRc as a Novel Ig-Binding Protein and Moonlighting Immune Evasion Factor of Rickettsia. mBio 2021, 12, e03059-21. [Google Scholar] [CrossRef]
- Brattig, N.W.; Bazzocchi, C.; Kirschning, C.J.; Reiling, N.; Büttner, D.W.; Ceciliani, F.; Geisinger, F.; Hochrein, H.; Ernst, M.; Wagner, H.; et al. The Major Surface Protein of Wolbachia Endosymbionts in Filarial Nematodes Elicits Immune Responses through TLR2 and TLR4. J. Immunol. 2004, 173, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Porksakorn, C.; Nuchprayoon, S.; Park, K.; Scott, A.L. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response toBrugia malayi WolbachiaSurface Protein. Mediat. Inflamm. 2007, 2007, 084318. [Google Scholar] [CrossRef] [PubMed]
- Bazzocchi, C.; Comazzi, S.; Santoni, R.; Bandi, C.; Genchi, C.; Mortarino, M. Wolbachia surface protein (WSP) inhibits apoptosis in human neutrophils. Parasite Immunol. 2007, 29, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Morchón, R.; Bazzocchi, C.; López-Belmonte, J.; Martín-Pacho, J.R.; Kramer, L.H.; Grandi, G.; Simón, F. iNOs expression is stimulated by the major surface protein (rWSP) from Wolbachia bacterial endosymbiont of Dirofilaria immitis following subcutaneous injection in mice. Parasitol. Int. 2007, 56, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Melnikow, E.; Xu, S.; Liu, J.; Bell, A.J.; Ghedin, E.; Unnasch, T.R.; Lustigman, S. A Potential Role for the Interaction of Wolbachia Surface Proteins with the Brugia malayi Glycolytic Enzymes and Cytoskeleton in Maintenance of Endosymbiosis. PLoS Negl. Trop. Dis. 2013, 7, e2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Organism | Protein | Activity | References |
---|---|---|---|
Anaplasma phagocytophilum | Enolase | Converts 2-phosphoglycerate to phosphoenolpyruvate in glycolysis Binds and activates plasminogen | [78,79] |
UMPK | Catalyzes the conversion of uridine monophosphate to uridine diphosphate in the cytoplasm Binds Rab10 | [80] | |
AnkA | Interacts with CYBB promoter and downregulates expression of CYBB and other host defense genes Binds high-content AT DNA regions and recruits HDAC1 to repress gene expression Undergoes tyrosine phosphorylation by Src kinase and interacts with neutrophil SHP-1, interfering with host cell signaling Binds adaptor protein Abi-1 and is phosphorylated by Abl-1 Interacts with actin and actin-regulating proteins α-actinin 4 and gelsolin | [83,84,85,86,87] | |
Ats-1 | Inhibits apoptosis in mammalian cells by inhibiting cytochrome c release and PARP cleavage Inhibits Bax-induced apoptosis in yeast cells Binds Beclin 1 and Atg14L, inducing autophagosome formation | [88,91] | |
GroEL | Assists protein folding and response to stress Binds to I. scapularis tick cells, presenting a role in A. phagocytophilum-vector interaction. Interacts with HSP70 and MSP4 | [92] | |
HSP70 | Assists protein folding and response to stress Binds to I. scapularis tick cells, presenting a role in A. phagocytophilum-vector interaction. Interacts with GroEL and MSP4 | [92] | |
Ehrlichia chaffeensis | TRP120 | Interacts with Wnt and Notch receptors to activate both pathways, regulating apoptosis and autophagy Modulates the expression of several genes Interacts with GC-rich regions of DNA Targets host proteins to degradation, regulating signaling pathways | [93,95,96,97] |
Ank200 | Targets transcriptional factors, genes of the epigenetic machinery and components of signaling pathways Interacts with genes related to vesicular trafficking and cytoskeleton proteins Potentially contributes to the delivery of nutrients to ehrlichial inclusions | [94] | |
Etf-1 | Inhibits apoptosis in mammalian cells and yeast Increases mitochondrial MnSod Decreases ROS, preventing cellular damage and apoptosis Modulates autophagy by recruiting GTP-bound RAB5 and binding VPS34 and Beclin1 | [98,100] | |
Orientia tsutsugamushi | ScaC | Mediates transport to the cell surface Mediates adhesion in non-phagocytic mammalian cells Binds fibronectin | [101] |
ScaB | Mediates transport to the cell surface Mediates adhesion and invasion into epithelial and non-epithelial cells | [102] | |
ScaA | Mediates transport to the cell surface Mediates adhesion in non-phagocytic mammalian cells | [103] | |
Ank1A | Interacts with SKP1 Interacts with EF-1α | [104] | |
Ank1B | Interacts with Cullin1 and SKP1 Interacts with EF-1α | [104] | |
Ank1E | Interacts with Cullin1 and SKP1 Interacts with EF-1α | [104] | |
Ank1U4 | Interacts with Cullin1 and SKP1 Interacts with EF-1α | [104] | |
Ank1U5 | Interacts with Cullin1 and SKP1 Decreases EF-1α protein level | [104] | |
Ank1U9 | Interacts with Cullin1 and SKP1 Interacts with EF-1α | [104] | |
Ank4 | Interacts with SKP1 Nucleates SCF1 ubiquitin ligase complex Induces UPR and inhibits ERAD, contributing bacterial obtaining of ERAD-derived amino acids Binds Bat3 | [105] | |
Ank1 | Decreases NF-κB dependent gene expression by interacting with importin β1, p65 and exportin Interacts with SCF1 complex assembly | [106] | |
Ank6 | Decreases NF-κB dependent gene expression by interacting with importin β1, p65 and exportin Interacts with SCF1 complex assembly | [106] | |
Ank9 | Perturbs Golgi-to-ER retrograde trafficking by binding COPB2 Binds SKP1 and CUL1 proteins, modulating UPR Binds SCF1 complex and transcription factors, modulating protein secretion | [107] | |
Ank13 | Interacts with RaDAR and downregulates multiple host genes, acting as a nucleomodulin Modulates cytoplasm gene expression Reprograms host cell transcription | [108] | |
Rickettsia spp. | rOmpB | Autotransporter Mediates adherence and invasion of non-phagocytic cells by binding Ku70 Binds H2B and facilitates infection in a tick cell line Mediates serum resistance by interacting with Factor H Promotes autophagy evasion (Prevents ubiquitination of bacterial surface proteins and subsequent recognition by autophagy receptors) | [109,110,111,112,115] |
PrsA | Mediates folding of secreted proteins Interacts with H2B and facilitates infection in a tick cell line | [112,116,117,118] | |
Adr2 | Interacts with vibronectin and mediates serum resistance May act as an adhesin | [119,120] | |
Sca2 | Mediates adherence and invasion of mammalian epithelial and endothelial cells Promotes actin filament nucleation and elongation to assemble actin tails Inhibits capping proteins’ activity | [121,122,123] | |
APRc | Catalyzes in vitro processing of Sca5/OmpB and Sca0/OmpA Presents nonimmune Ig-binding activity & Targets host serum components Confers resistance to complement-mediated killing | [124,126] | |
Wolbachia spp. | WSP | Triggers innate immune system by interacting with TLR2 and TLR4 Delays apoptosis of human neutrophils Induces iNOS mRNA expression and NOS production Interacts with glycolytic enzymes and cytoskeleton proteins of Brugia malayi | [127,128,129,130,131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, A.L.; Curto, P.; Simões, I. Moonlighting in Rickettsiales: Expanding Virulence Landscape. Trop. Med. Infect. Dis. 2022, 7, 32. https://doi.org/10.3390/tropicalmed7020032
Matos AL, Curto P, Simões I. Moonlighting in Rickettsiales: Expanding Virulence Landscape. Tropical Medicine and Infectious Disease. 2022; 7(2):32. https://doi.org/10.3390/tropicalmed7020032
Chicago/Turabian StyleMatos, Ana Luísa, Pedro Curto, and Isaura Simões. 2022. "Moonlighting in Rickettsiales: Expanding Virulence Landscape" Tropical Medicine and Infectious Disease 7, no. 2: 32. https://doi.org/10.3390/tropicalmed7020032
APA StyleMatos, A. L., Curto, P., & Simões, I. (2022). Moonlighting in Rickettsiales: Expanding Virulence Landscape. Tropical Medicine and Infectious Disease, 7(2), 32. https://doi.org/10.3390/tropicalmed7020032