Rickettsial Infections Are Neglected Causes of Acute Febrile Illness in Teluk Intan, Peninsular Malaysia
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Study Design and Patient Selection Criteria
2.3. Patient Data, Samples, and Biochemistry/Biomarkers
2.4. Diagnostic Laboratory Assays Performed
2.5. Attribution to Final Diagnosis
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halliday, J.E.B.; Carugati, M.; Snavely, M.E.; Allan, K.J.; Beamesderfer, J.; Ladbury, G.A.F.; Hoyle, D.V.; Holland, P.; Crump, J.A.; Cleaveland, S.; et al. Zoonotic causes of febrile illness in malaria endemic countries: A systematic review. Lancet Infect. Dis. 2020, 20, e27–e37. [Google Scholar] [CrossRef]
- Luvira, V.; Silachamroon, U.; Piyaphanee, W.; Lawpoolsri, S.; Chierakul, W.; Leaungwutiwong, P.; Thawornkuno, C.; Wattanagoon, Y. Etiologies of Acute Undifferentiated Febrile Illness in Bangkok, Thailand. Am. J. Trop. Med. Hyg. 2019, 100, 622–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingston, H.W.; Hossain, M.; Leopold, S.; Anantatat, T.; Tanganuchitcharnchai, A.; Sinha, I.; Plewes, K.; Maude, R.J.; Chowdhury, M.A.H.; Paul, S.; et al. Rickettsial Illnesses as Important Causes of Febrile Illness in Chittagong, Bangladesh. Emerg. Infect. Dis. 2018, 24, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayxay, M.; Castonguay-Vanier, J.; Chansamouth, V.; Dubot-Pérès, A.; Paris, D.H.; Phetsouvanh, R.; Tangkhabuanbutra, J.; Douangdala, P.; Inthalath, S.; Souvannasing, P.; et al. Causes of non-malarial fever in Laos: A prospective study. Lancet Glob. Health 2013, 1, e46–e54. [Google Scholar] [CrossRef] [Green Version]
- Chheng, K.; Carter, M.J.; Emary, K.; Chanpheaktra, N.; Moore, C.E.; Stoesser, N.; Putchhat, H.; Sona, S.; Reaksmey, S.; Kitsutani, P.; et al. A prospective study of the causes of febrile illness requiring hospitalization in children in Cambodia. PLoS ONE 2013, 8, e60634. [Google Scholar] [CrossRef]
- Capeding, M.R.; Chua, M.N.; Hadinegoro, S.R.; Hussain, I.I.; Nallusamy, R.; Pitisuttithum, P.; Rusmil, K.; Thisyakorn, U.; Thomas, S.J.; Huu Tran, N.; et al. Dengue and other common causes of acute febrile illness in Asia: An active surveillance study in children. PLoS Negl. Trop. Dis. 2013, 7, e2331. [Google Scholar] [CrossRef] [Green Version]
- Suttinont, C.; Losuwanaluk, K.; Niwatayakul, K.; Hoontrakul, S.; Intaranongpai, W.; Silpasakorn, S.; Suwancharoen, D.; Panlar, P.; Saisongkorh, W.; Rolain, J.M.; et al. Causes of acute, undifferentiated, febrile illness in rural Thailand: Results of a prospective observational study. Ann. Trop. Med. Parasitol. 2006, 100, 363–370. [Google Scholar] [CrossRef]
- Wangrangsimakul, T.; Althaus, T.; Mukaka, M.; Kantipong, P.; Wuthiekanun, V.; Chierakul, W.; Blacksell, S.D.; Day, N.P.; Laongnualpanich, A.; Paris, D.H. Causes of acute undifferentiated fever and the utility of biomarkers in Chiangrai, northern Thailand. PLoS Negl. Trop. Dis. 2018, 12, e0006477. [Google Scholar] [CrossRef] [Green Version]
- Paris, D.H.; Shelite, T.R.; Day, N.P.; Walker, D.H. Unresolved problems related to scrub typhus: A seriously neglected life-threatening disease. Am. J. Trop. Med. Hyg. 2013, 89, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Bonell, A.; Lubell, Y.; Newton, P.N.; Crump, J.A.; Paris, D.H. Estimating the burden of scrub typhus: A systematic review. PLoS Negl. Trop. Dis. 2017, 11, e0005838. [Google Scholar] [CrossRef] [Green Version]
- Yusof, R.; Lau, Y.L.; Mahmud, R.; Fong, M.Y.; Jelip, J.; Ngian, H.U.; Mustakim, S.; Hussin, H.M.; Marzuki, N.; Mohd Ali, M. High proportion of knowlesi malaria in recent malaria cases in Malaysia. Malar. J. 2014, 13, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- William, T.; Menon, J. A review of malaria research in malaysia. Med. J. Malays. 2014, 69 (Suppl. A), 82–87. [Google Scholar]
- William, T.; Jelip, J.; Menon, J.; Anderios, F.; Mohammad, R.; Awang Mohammad, T.A.; Grigg, M.J.; Yeo, T.W.; Anstey, N.M.; Barber, B.E. Changing epidemiology of malaria in Sabah, Malaysia: Increasing incidence of Plasmodium knowlesi. Malar. J. 2014, 13, 390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, D.J.; Rajahram, G.S.; William, T.; Jelip, J.; Mohammad, R.; Benedict, J.; Alaza, D.A.; Malacova, E.; Yeo, T.W.; Grigg, M.J.; et al. Plasmodium knowlesi malaria in Sabah, Malaysia, 2015–2017: Ongoing increase in incidence despite near-elimination of the human-only Plasmodium species. Clin. Infect. Dis. 2019, 70, 361–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garba, B.; Bahaman, A.R.; Bejo, S.K.; Zakaria, Z.; Mutalib, A.R.; Bande, F. Major epidemiological factors associated with leptospirosis in Malaysia. Acta Trop. 2018, 178, 242–247. [Google Scholar] [CrossRef] [PubMed]
- El Jalii, I.M.; Bahaman, A.R. A review of human leptospirosis in Malaysia. Trop. Biomed. 2004, 21, 113–119. [Google Scholar]
- Benacer, D.; Thong, K.L.; Verasahib, K.B.; Galloway, R.L.; Hartskeerl, R.A.; Lewis, J.W.; Mohd Zain, S.N. Human Leptospirosis in Malaysia: Reviewing the Challenges After 8 Decades (1925–2012). Asia-Pac. J. Public Health/Asia-Pac. Acad. Consort. Public Health 2016, 28, 290–302. [Google Scholar] [CrossRef]
- Benacer, D.; Thong, K.L.; Min, N.C.; Verasahib, K.B.; Galloway, R.L.; Hartskeerl, R.A.; Souris, M.; Zain, S.N.M. Epidemiology of human leptospirosis in Malaysia, 2004–2012. Acta Trop. 2016, 157, 162–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chew, C.H.; Woon, Y.L.; Amin, F.; Adnan, T.H.; Abdul Wahab, A.H.; Ahmad, Z.E.; Bujang, M.A.; Hamid, A.M.A.; Jamal, R.; Chen, W.S.; et al. Rural-urban comparisons of dengue seroprevalence in Malaysia. BMC Public Health 2016, 16, 824. [Google Scholar] [CrossRef] [Green Version]
- Pang, E.L.; Loh, H.S. Current perspectives on dengue episode in Malaysia. Asian Pac. J. Trop. Med. 2016, 9, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Woon, Y.L.; Hor, C.P.; Hussin, N.; Zakaria, A.; Goh, P.P.; Cheah, W.K. A Two-Year Review on Epidemiology and Clinical Characteristics of Dengue Deaths in Malaysia, 2013–2014. PLoS Negl. Trop. Dis. 2016, 10, e0004575. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.; Lung Than, L.T.; Shah, A.M.; Yuhana, M.Y.; Sekawi, Z.; Neela, V.K. Predictors of severe leptospirosis: A multicentre observational study from Central Malaysia. BMC Infect. Dis. 2021, 21, 1081. [Google Scholar] [CrossRef] [PubMed]
- Dowden, R. Suspected case of kedani fever in the Federated Malay States. Indian Med. Gaz. 1915, 1, 208. [Google Scholar]
- Fletcher, W.; Lesslar, J.E. Tropical typhus and Brill’s disease. J. Trop. Med. Hyg. 1956, 29, 374–378. [Google Scholar]
- Fletcher, W. Typhus-like Fevers of Unknown Ætiology, with Special Reference to the Malay States. Proc. R. Soc. Med. 1930, 23, 1021–1030. [Google Scholar] [CrossRef] [Green Version]
- Smadel, J.E.; Woodward, T.E.; Ley, H.L.; Lewthwaite, R. Chloramphenicol (Chloromycetin) in the Treatment of Tsutsugamushi Disease (Scrub Typhus). J. Clin. Investig. 1949, 28, 1196–1215. [Google Scholar] [CrossRef]
- Smadel, J.E.; Traub, R. Chloramphenicol in the chemoprophylaxis of scrub typhus; results with volunteers exposed in hyperendemic areas of scrub typhus. Am. J. Hyg. 1949, 50, 75–91. [Google Scholar] [CrossRef]
- Philip, C.B.; Traub, R.; Smadel, J.E. Chloramphenicol in the chemoprophylaxis of scrub typhus; epidemiological observations on hyperendemic areas of scrub typhus in Malaya. Am. J. Hyg. 1949, 50, 63–74. [Google Scholar] [CrossRef]
- Roy, J. Practical notes on scrub typhus in the field. Army Med. Corps 1949, 93, 273–288. [Google Scholar]
- Audy, S.S., Jr. Chapter on Typhus. In Studies from the Institute for Medical Research Federation of Malaya-Jubilee Volume No. 25: The Institutr for Medical Research 1900–1950; Government Press: Kuala Lumpur, Malaysia, 1951; pp. 184–209. [Google Scholar]
- Brown, G.W.; Robinson, D.M.; Huxsoll, D.L.; Ng, T.S.; Lim, K.J. Scrub typhus: A common cause of illness in indigenous populations. Trans. R. Soc. Trop. Med. Hyg. 1976, 70, 444–448. [Google Scholar] [CrossRef]
- Tay, S.T.; Rohani, Y.M.; Ho, T.M.; Shamala, D. Sequence analysis of the hypervariable regions of the 56 kDa immunodominant protein genes of Orientia tsutsugamushi strains in Malaysia. Microbiol. Immunol. 2005, 49, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Tay, S.T.; Kamalanathan, M.; Rohani, M.Y. Antibody prevalence of Orientia tsutsugamushi, Rickettsia typhi and TT118 spotted fever group rickettsiae among Malaysian blood donors and febrile patients in the urban areas. Southeast Asian J. Trop. Med. Public Health 2003, 34, 165–170. [Google Scholar] [PubMed]
- Tay, S.T.; Mohamed Zan, H.A.; Lim, Y.A.; Ngui, R. Antibody prevalence and factors associated with exposure to Orientia tsutsugamushi in different aboriginal subgroups in West Malaysia. PLoS Negl. Trop. Dis. 2013, 7, e2341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Surase, P.V.; Nataraj, G.; Pattamadai, K.; Mehta, P.R.; Pazare, A.R.; Agarwal, M.C.; Nanavati, R.N. An appropriately performed conventional blood culture can facilitate choice of therapy in resource-constrained settings-comparison with BACTEC 9050. J. Postgrad. Med. 2016, 62, 228–234. [Google Scholar] [CrossRef]
- Thanachartwet, V.; Desakorn, V.; Sahassananda, D.; Jittmittraphap, A.; Oer-Areemitr, N.; Osothsomboon, S.; Surabotsophon, M.; Wattanathum, A. Serum Procalcitonin and Peripheral Venous Lactate for Predicting Dengue Shock and/or Organ Failure: A Prospective Observational Study. PLoS Negl. Trop. Dis. 2016, 10, e0004961. [Google Scholar] [CrossRef]
- Paris, D.H.; Blacksell, S.D.; Nawtaisong, P.; Jenjaroen, K.; Teeraratkul, A.; Chierakul, W.; Wuthiekanun, V.; Kantipong, P.; Day, N.P. Diagnostic accuracy of a loop-mediated isothermal PCR assay for detection of Orientia tsutsugamushi during acute Scrub Typhus infection. PLoS Negl. Trop. Dis. 2011, 5, e1307. [Google Scholar] [CrossRef]
- Paris, D.H.; Aukkanit, N.; Jenjaroen, K.; Blacksell, S.D.; Day, N.P. A highly sensitive quantitative real-time PCR assay based on the groEL gene of contemporary Thai strains of Orientia tsutsugamushi. Clin. Microbiol. Infect. 2009, 15, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Henry, K.M.; Jiang, J.; Rozmajzl, P.J.; Azad, A.F.; Macaluso, K.R.; Richards, A.L. Development of quantitative real-time PCR assays to detect Rickettsia typhi and Rickettsia felis, the causative agents of murine typhus and flea-borne spotted fever. Mol. Cell. Probes 2007, 21, 17–23. [Google Scholar] [CrossRef]
- Jiang, J.; Paris, D.H.; Blacksell, S.D.; Aukkanit, N.; Newton, P.N.; Phetsouvanh, R.; Izzard, L.; Stenos, J.; Graves, S.R.; Day, N.P.; et al. Diversity of the 47-kD HtrA nucleic acid and translated amino acid sequences from 17 recent human isolates of Orientia. Vector Borne Zoonotic Dis. 2013, 13, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Blacksell, S.D.; Tanganuchitcharnchai, A.; Nawtaisong, P.; Kantipong, P.; Laongnualpanich, A.; Day, N.P.; Paris, D.H. Diagnostic Accuracy of the InBios Scrub Typhus Detect Enzyme-Linked Immunoassay for the Detection of IgM Antibodies in Northern Thailand. Clin. Vaccine Immunol. CVI 2016, 23, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.; Blacksell, S.D.; Laongnualpanich, A.; Kantipong, P.; Day, N.P.; Paris, D.H.; Limmathurotsakul, D. Optimal Cutoff Titers for Indirect Immunofluorescence Assay for Diagnosis of Scrub Typhus. J. Clin. Microbiol. 2015, 53, 3663–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacksell, S.D.; Jenjaroen, K.; Phetsouvanh, R.; Tanganuchitcharnchai, A.; Phouminh, P.; Phongmany, S.; Day, N.P.; Newton, P.N. Accuracy of rapid IgM-based immunochromatographic and immunoblot assays for diagnosis of acute scrub typhus and murine typhus infections in Laos. Am. J. Trop. Med. Hyg. 2010, 83, 365–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoddard, R.A. Detection of pathogenic Leptospira spp. through real-time PCR (qPCR) targeting the LipL32 gene. Methods Mol. Biol. 2013, 943, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.; Affendy, N.B.; Masri, S.N.; Yuhana, M.Y.; Than, L.T.L.; Sekawi, Z.; Neela, V.K. Combined PCR and MAT improves the early diagnosis of the biphasic illness leptospirosis. PLoS ONE 2020, 15, e0239069. [Google Scholar] [CrossRef]
- Tanganuchitcharnchai, A.; Smythe, L.; Dohnt, M.; Hartskeerl, R.; Vongsouvath, M.; Davong, V.; Lattana, O.; Newton, P.N.; Blacksell, S.D. Evaluation of the Standard Diagnostics Leptospira IgM ELISA for diagnosis of acute leptospirosis in Lao PDR. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, P.M.; Pini, V.; Calleja, M.; Tamayo, J. Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection. PLoS ONE 2017, 12, e0171899. [Google Scholar] [CrossRef] [Green Version]
- Varghese, G.M.; Janardhanan, J.; Trowbridge, P.; Peter, J.V.; Prakash, J.A.; Sathyendra, S.; Thomas, K.; David, T.S.; Kavitha, M.L.; Abraham, O.C.; et al. Scrub typhus in South India: Clinical and laboratory manifestations, genetic variability, and outcome. Int. J. Infect. Dis. 2013, 17, e981–e987. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Kim, S.J.; Youn, S.K.; Park, K.; Gwack, J. Epidemiology of scrub typhus and the eschars patterns in South Korea from 2008 to 2012. Jpn. J. Infect. Dis. 2014, 67, 458–463. [Google Scholar] [CrossRef]
- Lee, C.S.; Hwang, J.H.; Lee, J.M.; Lee, J.H. The clinical usefulness of serum procalcitonin level in patients with scrub typhus. Korean J. Intern. Med. 2017, 32, 761–763. [Google Scholar] [CrossRef]
- Li, J.R.; Liu, Q.; Chen, C.C.; Ma, A.P. Association between Severity of Scrub Typhus and Serum Procalcitonin Level. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2018, 40, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.F.; Lin, J.N.; Tsai, C.T.; Wu, Y.Y.; Chen, Y.H.; Lai, C.H. Serum C-reactive protein and procalcitonin values in acute Q fever, scrub typhus, and murine typhus. BMC Infect. Dis. 2020, 20, 334. [Google Scholar] [CrossRef] [PubMed]
- Peter, J.V.; Karthik, G.; Ramakrishna, K.; Griffith, M.F.; Jude Prakash, J.A.; Job, V.; Chacko, B.; Graham, P.L. Elevated procalcitonin is associated with increased mortality in patients with scrub typhus infection needing intensive care admission. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2013, 17, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Garba, B.; Bahaman, A.R.; Khairani-Bejo, S.; Zakaria, Z.; Mutalib, A.R. Retrospective Study of Leptospirosis in Malaysia. Ecohealth 2017, 14, 389–398. [Google Scholar] [CrossRef]
- Tan, W.L.; Soelar, S.A.; Mohd Suan, M.A.; Hussin, N.; Cheah, W.K.; Verasahib, K.; Goh, P.P. Leptospirosis Incidence and Mortality in Malaysia. Southeast Asian J. Trop. Med. Public Health 2016, 47, 434–440. [Google Scholar]
- Mohd Ali, M.R.; Mohamad Safiee, A.W.; Yusof, N.Y.; Fauzi, M.H.; Yean Yean, C.; Ismail, N. Isolation of Leptospira kmetyi from residential areas of patients with leptospirosis in Kelantan, Malaysia. J. Infect. Public Health 2018, 11, 578–580. [Google Scholar] [CrossRef]
- Zaki, A.M.; Hod, R.; Shamsusah, N.A.; Isa, Z.M.; Bejo, S.K.; Agustar, H.K. Detection of Leptospira kmetyi at recreational areas in Peninsular Malaysia. Environ. Monit. Assess 2020, 192, 703. [Google Scholar] [CrossRef]
- Chaudhry, R.; Das, A.; Premlatha, M.M.; Choudhary, A.; Chourasia, B.K.; Chandel, D.S.; Dey, A.B. Serological & molecular approaches for diagnosis of leptospirosis in a tertiary care hospital in north India: A 10-year study. Indian J. Med. Res. 2013, 137, 785–790. [Google Scholar]
- Sehgal, S.C.; Biswas, D.; Vijayachari, P.; Sugunan, A.P.; Roy, S. Molecular tools in leptospirosis diagnosis and characterization of isolates. Southeast Asian J. Trop. Med. Public Health 2003, 34 (Suppl. 2), 163–169. [Google Scholar]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef]
- Crouzet, J.; Faucher, J.F.; Toubin, M.; Hoen, B.; Estavoyer, J.M. Serum C-reactive protein (CRP) and procalcitonin (PCT) levels and kinetics in patients with leptospirosis. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 299–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petros, S.; Leonhardt, U.; Engelmann, L. Serum procalcitonin and proinflammatory cytokines in a patient with acute severe leptospirosis. Scand. J. Infect. Dis. 2000, 32, 104–105. [Google Scholar] [PubMed]
- Woon, Y.L.; Hor, C.P.; Lee, K.Y.; Mohd Anuar, S.F.Z.; Mudin, R.N.; Sheikh Ahmad, M.K.; Komari, S.; Amin, F.; Jamal, R.; Chen, W.S.; et al. Estimating dengue incidence and hospitalization in Malaysia, 2001 to 2013. BMC Public Health 2018, 18, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition; WHO Guidelines Approved by the Guidelines Review Committee; WHO: Geneva, Switzeland, 2009. [Google Scholar]
- Alias, H.; Surin, J.; Mahmud, R.; Shafie, A.; Mohd Zin, J.; Mohamad Nor, M.; Ibrahim, A.S.; Rundi, C. Spatial distribution of malaria in Peninsular Malaysia from 2000 to 2009. Parasit Vectors 2014, 7, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographic and Clinical Data | Total n = 309 |
---|---|
Median age in years (IQR) | 47 (IQR 29–62) |
Male sex | 171 (55%) |
Underlying medical co-morbidity/-ies | 109 (34%) |
Median fever day(s) before hospitalization (IQR) | 4 (IQR 2–7) |
Antibiotic consumption pre-hospitalization | 46 (15%) |
Ethnicity | |
• Malay | 194 (63%) |
• Indian | 48 (15%) |
• Chinese | 34 (11%) |
• Orang Asli (Aborigine) | 30 (10%) |
Symptoms and signs | |
• Cough | 154 (50%) |
• Vomiting | 121 (40%) |
• Headache | 107 (35%) |
• Diarrhea | 106 (34%) |
• Myalgia | 83 (27%) |
• Acute confusion or new-onset seizure | 24 (8%) |
• Bronchial breathing or reduced air entry | 94 (30%) |
• Rash | 23 (7%) |
• Lymphadenopathy | 16 (5%) |
• Hepatomegaly | 14 (5%) |
• Splenomegaly | 8 (3%) |
• Eschar | 4 (1%) |
Sepsis severity and outcome | |
• Median length of hospital stays in days (IQR) | 6 (4–9) |
• Severe sepsis by qSOFA (≥2) † | 55 (18%) |
• In-patient antibiotic (s) | 238 (75%) |
• Deaths | 38 (12%) |
Demographic and Clinical Data | * All Rickettsial Infections; n = 42 | Leptospirosis; n = 68 | Dengue; n = 58 | p-Value |
---|---|---|---|---|
Median age in years (IQR) | 43 (IQR 27–60) | 56 (IQR 34–64) | 29 (IQR 22–47) | 0.001 |
Male sex | 23 (55%) | 38 (56%) | 32 (55%) | 0.909 |
Symptoms and signs | ||||
• Cough | 17 (40% | 44 (64%) | 11 (19%) | 0.014 |
• Vomiting | 17 (40%) | 27 (39%) | 31 (53%) | 0.936 |
• Headache | 19 (45%) | 15 (22%) | 30 (52%) | 0.175 |
• Diarrhea | 16 (38%) | 19 (28%) | 31 (53%) | 0.268 |
• Myalgia | 13 (31%) | 11 (16%) | 36 (62%) | 0.013 |
• Rash | 3 (7%) | 5 (7%) | 10 (17%) | 0.967 |
• Lymphadenopathy | 5 (12%) | 0 | 0 | 0.001 |
• Eschar | 3 (7%) | 0 | 0 | 0.001 |
Biomarkers | ||||
• White cell counts | 7.5 (IQR 4.6–11.2) | 11.2 (IQR 18.7) | 2.8 (IQR 2–5) | 0.001 |
• Platelets | 173 (IQR 80–239) | 212 (IQR 125–326) | 61 (IQR 29–113) | 0.001 |
• Procalcitonin | 0.44 (IQR 0.15–1.2) | 1.9 (IQR 0.29–31) | 0.29 (IQR 0.15–0.65) | 0.018 |
• C-reactive protein | 49 (IQR 7–96) | 103 (IQR 42–218) | 12 (IQR 3–18) | 0.001 |
Sepsis severity and outcome | ||||
• Severe sepsis by qSOFA (≥2) † | 9 (21%) | 23 (34%) | 0 (0%) | 0.001 |
• Deaths | 4 (10%) | 16 (24%) | 0(0%) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuhana, M.Y.; Hanboonkunupakarn, B.; Tanganuchitcharnchai, A.; Sujariyakul, P.; Sonthayanon, P.; Chotivanich, K.; Pukrittayakamee, S.; Blacksell, S.D.; Paris, D.H. Rickettsial Infections Are Neglected Causes of Acute Febrile Illness in Teluk Intan, Peninsular Malaysia. Trop. Med. Infect. Dis. 2022, 7, 77. https://doi.org/10.3390/tropicalmed7050077
Yuhana MY, Hanboonkunupakarn B, Tanganuchitcharnchai A, Sujariyakul P, Sonthayanon P, Chotivanich K, Pukrittayakamee S, Blacksell SD, Paris DH. Rickettsial Infections Are Neglected Causes of Acute Febrile Illness in Teluk Intan, Peninsular Malaysia. Tropical Medicine and Infectious Disease. 2022; 7(5):77. https://doi.org/10.3390/tropicalmed7050077
Chicago/Turabian StyleYuhana, Muhamad Yazli, Borimas Hanboonkunupakarn, Ampai Tanganuchitcharnchai, Pimpan Sujariyakul, Piengchan Sonthayanon, Kesinee Chotivanich, Sasithon Pukrittayakamee, Stuart D. Blacksell, and Daniel H. Paris. 2022. "Rickettsial Infections Are Neglected Causes of Acute Febrile Illness in Teluk Intan, Peninsular Malaysia" Tropical Medicine and Infectious Disease 7, no. 5: 77. https://doi.org/10.3390/tropicalmed7050077
APA StyleYuhana, M. Y., Hanboonkunupakarn, B., Tanganuchitcharnchai, A., Sujariyakul, P., Sonthayanon, P., Chotivanich, K., Pukrittayakamee, S., Blacksell, S. D., & Paris, D. H. (2022). Rickettsial Infections Are Neglected Causes of Acute Febrile Illness in Teluk Intan, Peninsular Malaysia. Tropical Medicine and Infectious Disease, 7(5), 77. https://doi.org/10.3390/tropicalmed7050077