Carbapenem-Resistant Organisms Isolated in Surgical Site Infections in Benin: A Public Health Problem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Design, Bacterial Isolation and Culture
2.3. Antimicrobial Susceptibility Testing (AST)
2.4. Phenotypic Confirmation Test for Carbapenemases Production
2.5. Quality Control
2.6. Genotyping of ESBL and Carbapenemases-Producing Organisms
3. Results
3.1. Identification and Antimicrobial Susceptibility Results
3.2. Results of Modified Hodge Test (MHT) and RESIST-5 O.K.N.V.I
3.3. Molecular Detection of ESBL and Carbapenemases Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badia, J.M.; Casey, A.L.; Petrosillo, N.; Hudson, P.; Mitchell, S.; Crosby, C. Impact of surgical site infection on healthcare costs and patient outcomes: A systematic review in six European countries. J. Hosp. Infect. 2017, 96, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora-Guzmán, I.; Rubio-Perez, I.; Martín-Pérez, E. Surgical Site Infections by OXA-48 Carbapenemase-Producing Enterobacteriaceae. Surg. Infect. 2020, 21, 473. [Google Scholar] [CrossRef]
- Gashaw, M.; Berhane, M.; Bekele, S.; Kibru, G.; Teshager, L.; Yilma, Y.; Ahmed, Y.; Fentahun, N.; Assefa, H.; Wieser, A.; et al. Emergence of high drug resistant bacterial isolates from patients with health care associated infections at Jimma University medical center: A cross sectional study. Antimicrob. Resist. Infect. Control 2018, 7, 138. [Google Scholar] [CrossRef] [PubMed]
- Dossim, S.; Bonnin, R.A.; Salou, M.; Tanga, K. Occurence of Carbapenemase-Producing Enterobacteriaceae in Togo, West Africa. Int. J. Antimicrob. Agents 2018, 53, 530–532. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-S.; Doi, Y. Therapy of Infections due to Carbapenem-Resistant Gram-Negative Pathogens. Infect. Chemother. 2014, 46, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Kanj, S.S.; Kanafani, Z.A. Current concepts in antimicrobial therapy against resistant gram-negative organisms: Extended-spectrum β-lactamase–producing enterobacteriaceae, carbapenem-resistant enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin. Proc. 2011, 86, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Nehme, D.; Li, X.-Z.; Elliot, R.; Poole, K. Assembly of the MexAB-OprM Multidrug Efflux System of Pseudomonas aeruginosa: Identification and Characterization of Mutations in mexA Compromising MexA Multimerization and Interaction with MexB. J. Bacteriol. 2004, 186, 2973–2983. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas Aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Zhang, H.; Du, H. Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Front. Microbiol. 2019, 10, 1823. [Google Scholar] [CrossRef]
- Manenzhe, R.I.; Zar, H.J.; Nicol, M.; Kaba, M. The spread of carbapenemase-producing bacteria in Africa: A systematic review. J. Antimicrob. Chemother. 2015, 70, 23–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamma, P.D.; Simner, P.J. Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates. J. Clin. Microbiol. 2018, 56, e01140-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahoyo, T.A.; Bankolé, H.S.; Adéoti, F.M.; Gbohoun, A.A.; Assavèdo, S.; Amoussou-Guénou, M.; Kindé-Gazard, D.A.; Pittet, D. Prevalence of nosocomial infections and anti-infective therapy in Benin: Results of the first nationwide survey in 2012. Antimicrob. Resist. Infect. Control 2014, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for Prevention of Surgical Site Infection, 1999. Am. J. Infect. Control 1999, 27, 97–134. [Google Scholar] [CrossRef]
- European Committee on Antmicrobial Susceptibility Testing (EUCAST). Breakpoints Tables for Interpretation of MICs and Zone Diameters, Version 9.0. 2019. Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 1 March 2021).
- Magiorakos, A.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F. Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Microbiology 2011, 18, 268–281. [Google Scholar]
- Lee, K.; Chong, Y.; Shin, H.; Kim, Y.; Yong, D.; Yum, J. Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobactet species. Clin. Microbiol. Infect. 2001, 7, 88–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, M.P. Clinical and Laboratory Standards Institute. In Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA. USA, 2011; ISBN 9781684400324. [Google Scholar]
- Han, R.; Guo, Y.; Peng, M.; Shi, Q.; Wu, S.; Yang, Y.; Zheng, Y.; Yin, D.; Hu, F. Evaluation of the Immunochromatographic NG-Test Carba 5, RESIST-5 O.O.K.N.V., and IMP K-SeT for Rapid Detection of KPC-, NDM-, IMP-, VIM-Type, and OXA-48-like Carbapenemase Among Enterobacterales. Front. Microbiol. 2021, 11, 609856. [Google Scholar] [CrossRef]
- Bogaerts, P.; de Castro, R.R.; de Mendonça, R.; Huang, T.D.; Denis, O.; Glupczynski, Y. Validation of Carbapenemase and Extended-Spectrum β-Lactamase Multiplex Endpoint PCR Assays According to ISO 15189. J. Antimicrob. Chemother. 2013, 68, 1576–1582. [Google Scholar] [CrossRef] [Green Version]
- Loqman, S.; Soraa, N.; Diene, S.; Rolain, J.-M. Dissemination of Carbapenemases (OXA-48, NDM and VIM) Producing Enterobacteriaceae Isolated from the Mohamed VI University Hospital in Marrakech, Morocco. Antibiotics 2021, 10, 492. [Google Scholar] [CrossRef]
- Mathlouthi, N.; Al-Bayssari, C.; El Salabi, A.; Bakour, S.; Ben Gwierif, S.; Zorgani, A.A.; Jridi, Y.; Ben Slama, K.; Rolain, J.-M.; Chouchani, C. Carbapenemases and extended-spectrum β-lactamases producing Enterobacteriaceae isolated from Tunisian and Libyan hospitals. J. Infect. Dev. Ctries. 2016, 10, 718–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, H.; Ejaz, H.; Zafar, A.; Rathore, A.W.; ul Haq, I. Metallo-Beta-Lactamase Producing Escherichia Coli and Klebsiella Pneumoniae: A Rising Threat for Hospitalized Children. JPMA 2016, 66, 1068. [Google Scholar]
- Raouf, M.; Ghazal, T.; Kassem, M.; Agamya, A.; Amer, A. Surveillance of surgical-site infections and antimicrobial resistance patterns in a tertiary hospital in Alexandria, Egypt. J. Infect. Dev. Ctries. 2020, 14, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuzon, G.; Naas, T.; Bogaerts, P.; Glupczynski, Y.; Huang, T.-D.; Nordmann, P. Plasmid-Encoded Carbapenem-Hydrolyzing β-Lactamase OXA-48 in an Imipenem-Susceptible Klebsiella pneumoniae Strain from Belgium. Antimicrob. Agents Chemother. 2008, 52, 3463–3464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Izquierdo, M.; Láinez-Ramos-Bossini, A.J.; Rivera-Izquierdo, C.; López-Gómez, J.; Fernández-Martínez, N.F.; Redruello-Guerrero, P.; Martín-Delosreyes, L.M.; Martínez-Ruiz, V.; Moreno-Roldán, E.; Jiménez-Mejías, E. OXA-48 Carbapenemase-Producing Enterobacterales in Spanish Hospitals: An Updated Comprehensive Review on a Rising Antimicrobial Resistance. Antibiotics 2021, 10, 89. [Google Scholar] [CrossRef]
- Alemkere, G. Antibiotic usage in surgical prophylaxis: A prospective observational study in the surgical ward of Nekemte referral hospital. PLoS ONE 2018, 13, e0203523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yehouenou, C.; Bogaerts, B.; Vanneste, K.; Roosens, N.H.C.; De Keersmaecker, S.C.J.; Marchal, K.; Affolabi, D.; Soleimani, R.; Rodriguez-Villalobos, H.; Van Bambeke, F.; et al. First detection of a plasmid-encoded New-Delhi metallo-beta-lactamase-1 (NDM-1) producing Acinetobacter baumannii using whole genome sequencing, isolated in a clinical setting in Benin. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 5. [Google Scholar] [CrossRef]
- Aruhomukama, D.; Najjuka, C.F.; Kajumbula, H.; Okee, M.; Mboowa, G.; Sserwadda, I.; Mayanja, R.; Joloba, M.L.; Kateete, D.P. blaVIM- and blaOXA-mediated carbapenem resistance among Acinetobacter baumannii and Pseudomonas aeruginosa isolates from the Mulago hospital intensive care unit in Kampala, Uganda. BMC Infect. Dis. 2019, 19, 853. [Google Scholar] [CrossRef]
- Musyoki, V.M.; Masika, M.M.; Mutai, W.; Gitau, W.; Kuria, A.; Muthini, F. Antimicrobial susceptibility pattern of acinetobacter isolates from patients in Kenyatta National Hospital, Nairobi, Kenya. Pan Afr. Med J. 2019, 33, 146. [Google Scholar] [CrossRef]
- Kindu, M.; Derseh, L.; Gelaw, B.; Moges, F. Carbapenemase-Producing Non-Glucose-Fermenting Gram-Negative Bacilli in Africa, Pseudomonas aeruginosa and Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Int. J. Microbiol. 2020, 2020, 9461901. [Google Scholar] [CrossRef]
- Palleroni, N.J.; Doudoroff, M.; Stanier, R.Y.; SOLaNES, R.E.; Mandel, M. Taxonomy of the Aerobic Pseudomonads: The Properties of the Pseudomonas stutzeri Group. J. Gen. Microbiol. 1970, 60, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Almuzara, M.; Montaña, S.; Carulla, M.; Sly, G.; Fernandez, J.; Hernandez, M.; Moriano, A.; Traglia, G.M.; Bakai, R.; Ramirez, M.S. Clinical cases of VIM-producing Pseudomonas mendocina from two burned patients. J. Glob. Antimicrob. Resist. 2018, 14, 273–274. [Google Scholar] [CrossRef]
- Sekyere, J.O.; Govinden, U.; Essack, S.Y. Review of established and innovative detection methods for carbapenemase-producing Gram-negative bacteria. J. Appl. Microbiol. 2015, 119, 1219–1233. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Wu, M.-L.; Feng, W.-J.; Huang, S.-F.; Yang, P. Accuracy and applicability of different phenotypic methods for carbapenemase detection in Enterobacteriaceae: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 21, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Wayne, P.A. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and laboratory Standards institute: Wayne, AR, USA, 2007; Volume 17. [Google Scholar]
- Gniadek, T.J.; Carroll, K.C.; Simner, P.J. Carbapenem-Resistant Non-Glucose-Fermenting Gram-Negative Bacilli: The Missing Piece to the Puzzle. J. Clin. Microbiol. 2016, 54, 1700–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnin, R.A.; Naas, T.; Poirel, L.; Nordmann, P. Phenotypic, Biochemical, and Molecular Techniques for Detection of Metallo-β-Lactamase NDM in Acinetobacter baumannii. J. Clin. Microbiol. 2012, 50, 1419–1421. [Google Scholar] [CrossRef] [Green Version]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med Sci. 2017, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO guidelines on Hand hygiene in health care, First Global Patient Safety Challenge Clean care is Safer care. Geneva: WHO. 2009; pp. 1–270. Available online: https://pubmed.ncbi.nlm.nih.gov/23805438/ (accessed on 25 July 2022).
- Ierano, C.; Thursky, K.; Marshall, C.; Koning, S.; James, R.; Johnson, S.; Imam, N.; Worth, L.J.; Peel, T. Appropriateness of Surgical Antimicrobial Prophylaxis Practices in Australia. JAMA Netw. Open 2019, 2, e1915003. [Google Scholar] [CrossRef] [Green Version]
- Shiva, F.; Ghanaie, R.; Shirvani, F.; Armin, S.; Rafiei Tabatabaei, S.; Fahimzad, S.A.; Fallah, F.; PourMoshtagh, H.; Karimi, A. Pattern of Antibiotic Usage in Children Hospitalized for Common Infectious Diseases. Arch. Pediatric Infect. Dis. 2018, 6, e34474. [Google Scholar] [CrossRef]
- Zerr DM, Miles-Jay A; Kronman MP; Zhou C; Adler AL; Haaland W.; Weissman SJ, Elward A, Newland JG, Zaoutis T, et al. Previous antibiotic exposure increases risk of infection with extended-spectrum-beta-lactamases- and AmpC-producing Escherichia coli and Klebsiella pneumoniae in pediatric patients. Antimicrob. Agents Chemother. 2016, 60, 4237–4243. [CrossRef] [Green Version]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.; Slain, D.; et al. Clinical Practice Guidelines for Antimicrobial Prophylaxis in Surgery. Surg. Infect. 2013, 14, 73–156. [Google Scholar] [CrossRef] [PubMed]
- Garre, M.; Garo, B.; Hutin, P. Antibactériens. Med. et Mal. Infect. 1996, 26, 22–25. [Google Scholar] [CrossRef]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Affolabi, D.; Dansi, E.S. Evolution de la resistance aux antibiotiques dans les infections bacteriennes courantes a Cotonou. J. de la Société de Biol. Clin. 2012, 16, 79–83. [Google Scholar]
- Dohou, A.M.; Buda, V.O.; Yemoa, L.A.; Anagonou, S.; Van Bambeke, F.; Van Hees, T.; Dossou, F.M.; Dalleur, O. Antibiotic Usage in Patients Having Undergone Caesarean Section: A Three-Level Study in Benin. Antibiotics 2022, 11, 617. [Google Scholar] [CrossRef]
Target Gene | Primer Name | Sequence (5′-3′) | Amplicon Size |
---|---|---|---|
NDM | NDM-1R | CAT-TAG-CCG-CTG-CAT-TGA-T | 596 bp |
NDM-1F-FAM | ACT-TGG-CCT-TGC-TGT-CCT-T | ||
VIM | VIM437R | ATT-CAG-CCA-GAT-CGG-CAT-C | 435 bp |
VIM437R-FAM | TGT-CCG-TGA-TGG-TGA-TGA-GT | ||
OXA-48 | OXA-48 R | CAT-CCT-TAA-CCA-CGC-CCA-AAT-C | 265 bp |
OXA-48F-FAM | TGT-CCG-TGA-TGG-TGA-TGA-GT | ||
CTX-M1 | CTXM1R | AGC-TTA-TTC-ATC-GCC-ACG-TT | 412 bp |
CTXM1F-FAM | AAA-AAT-CAC-TGC-GYC-AGT-TC | ||
OXA-1 | OXA30R | TAA-ACC-CTT-CAA-ACC-ATC-CGT | 388 bp |
OXA30F-FAM | TGG-AAC-AGC-AAT-CAT-ACA-CCA | ||
TEM | TEM500R | CGG-GAG-GGC-TTA-CCA-TCT-GGC | 501 bp |
TEM500F-FAM | CAA-CTC-GGT-CGC-CGC-ATA-CAC-TA |
Samples | Age/Gender | Surgical Antimicrobial Prophylaxis (SAP) | Length of Stay (Days) | Procedure |
---|---|---|---|---|
13150 | 40/F | ceftriaxone | 16 | peritonitis |
12480 | 34/F | ceftriaxone | 28 | cesarean |
8062 | 49/M | ceftriaxone | 14 | peritonitis |
6672 | 28/F | amoxicillin/clavulanic acid | 14 | cesarean |
5823 | 35/F | ceftriaxone | 14 | cesarean |
3159 | 31/F | ceftriaxone | 10 | cesarean |
13150 | 12480 | 8062 | 6672 | 5823 | 3159 | |
---|---|---|---|---|---|---|
MHT | + | + | + | NT | NT | NT |
Beta-lactamases | CTXM1,OXA1 TEM, OXA48 | CTXM1,OXA1 TEM,OXA48 | CTXM1,OXA1- TEM,NDM | CTXM1,OXA1VIM | VIM | NDM |
Name of isolates | E. coli | E. coli | E. cloacae | P. aeruginosa | P. mendocina | A. baumannii |
Antibiotics | ||||||
Ticarcillin | R | R | R | R | R | R |
Piperacillin | R | R | R | R | R | R |
Ticarcillin/clavulanic acid | R | R | R | R | R | R |
Piperacillin/tazobactam | R | R | R | R | R | R |
Ceftazidime | R | R | R | R | R | R |
Cefotaxime | R | R | R | R | R | R |
Cefepime | R | R | R | R | R | R |
Imipenem | R | R | R | R | R | R |
Ertapenem | R | R | R | R | R | R |
Meropenem | R | R | R | R | R | R |
Aztreonam | R | R | R | R | R | R |
Gentamicin | R | R | R | R | R | R |
Tobramycin | R | R | R | R | R | R |
Amikacin | S | S | S | S | S | S |
Ciprofloxacin | R | R | R | S | R | R |
Levofloxacin | R | R | R | S | R | R |
Trimethoprim-sulfamethoxazole | R | R | R | R | R | R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yehouenou, C.L.; Soleimani, R.; Kpangon, A.A.; Simon, A.; Dossou, F.M.; Dalleur, O. Carbapenem-Resistant Organisms Isolated in Surgical Site Infections in Benin: A Public Health Problem. Trop. Med. Infect. Dis. 2022, 7, 200. https://doi.org/10.3390/tropicalmed7080200
Yehouenou CL, Soleimani R, Kpangon AA, Simon A, Dossou FM, Dalleur O. Carbapenem-Resistant Organisms Isolated in Surgical Site Infections in Benin: A Public Health Problem. Tropical Medicine and Infectious Disease. 2022; 7(8):200. https://doi.org/10.3390/tropicalmed7080200
Chicago/Turabian StyleYehouenou, Carine Laurence, Reza Soleimani, Arsène A. Kpangon, Anne Simon, Francis M. Dossou, and Olivia Dalleur. 2022. "Carbapenem-Resistant Organisms Isolated in Surgical Site Infections in Benin: A Public Health Problem" Tropical Medicine and Infectious Disease 7, no. 8: 200. https://doi.org/10.3390/tropicalmed7080200
APA StyleYehouenou, C. L., Soleimani, R., Kpangon, A. A., Simon, A., Dossou, F. M., & Dalleur, O. (2022). Carbapenem-Resistant Organisms Isolated in Surgical Site Infections in Benin: A Public Health Problem. Tropical Medicine and Infectious Disease, 7(8), 200. https://doi.org/10.3390/tropicalmed7080200