Antimicrobial Resistance in E. coli Isolated from Chicken Cecum Samples and Factors Contributing to Antimicrobial Resistance in Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.3. Study Population and Sampling
2.3.1. Quantitative
2.3.2. Qualitative
2.4. Study Variables, Sources, and Data Collection
2.4.1. Quantitative
2.4.2. Qualitative
2.5. Data Analysis
3. Results
3.1. Quantitative Findings
3.2. Qualitative Findings
3.2.1. Overuse of Antimicrobials
“Our pharmacy, hospital is selling antimicrobials, also the pesticides shop, animal husbandry centers are using antimicrobials a lot.”(WC-6)
“Yes, antimicrobials are overused in broiler chickens, but also common in cows during mastitis.”(V001)
- No guidelines regarding the sale of antimicrobials
“Especially in rural areas, the same store has human medicine, veterinary medicine, pesticides, and grocery items, there are no standard guidelines against such practices. Hence, we as a consumer should also be aware, the seller should also have awareness and medicines should be available only in pharmacies. In order to do so, laws and regulations should be prepared and follow up should be done at local level.”(K001)
- 2.
- Lack of training among veterinary personnel
“We have 4 veterinary clinics in our ward, most of the staff are not well trained, and that’s why there is overuse of antimicrobials. There is overuse but we don’t have the exact data.”(WC-12)
- 3.
- Irrational sales of antimicrobials
“According to law, we can only sell ‘ga’ categories of over the counter (OTC) drugs. We are not allowed to sell ‘ka’ and ‘Kha’ categories of drugs without prescription. Everything is listed as rules but no one follows it.”(V001)
3.2.2. Issues Related to Livestock Farmers
- 1.
- Poor financial status
“They don’t agree, if we recommend that they be fed for three days, they insist on purchasing for one day or ask us for half a dose of medicine. This is one of the main problems raised due to poor financial conditions.”(V002)
“At first it’s due to lack of education …and then it’s the poor economic condition that needs to be addressed. The doctor recommends medicine for 3 days, but they request to dispense it only for 2 days so we send them incomplete doses.”(V001)
- 2.
- Carelessness among the livestock farmers
“Initially, we give medicine only for 3 days, not for 5 days. If we dispense medicine for 5 or 7 days, then the farmer might not feed full course. If it is to be fed for 5 days, he might give only one dose and forget. But if we dispense medicine for 3 days, he will return back for follow-up once the medicine is over.”(V001)
“It’s very difficult to feed medicine to cows and buffaloes for 5 or 7 days, feeding them is not an easy task.”(V001)
3.2.3. Availability of Falsified/Substandard Drugs
“Usually most of the farmers are illiterate, they can’t even find out if it is expired or not, they will buy and use the medicines from medical stores on the basis of trust.”(WC-12)
“The use of such drugs could be at higher rates than in humans.”(WC-6)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2015; Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, Sweden, 2017; Available online: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf (accessed on 8 February 2022).
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 2008, 29, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, H.; Younas, S.; Abosalif, K.O.; Junaid, K.; Alzahrani, B.; Alsrhani, A.; Abdalla, A.E.; Ullah, M.I.; Qamar, M.U.; Hamam, S.S. Molecular analysis of bla SHV, bla TEM, and bla CTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE 2021, 16, e0245126. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef]
- Parvin, M.; Talukder, S.; Ali, M.; Chowdhury, E.H.; Rahman, M.; Islam, M. Antimicrobial resistance pattern of Escherichia coli isolated from frozen chicken meat in Bangladesh. Pathogens 2020, 9, 420. [Google Scholar] [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef]
- Landoni, M.F.; Albarellos, G. The use of antimicrobial agents in broiler chickens. Vet. J. 2015, 205, 21–27. [Google Scholar] [CrossRef]
- Agunos, A.; Léger, D.; Carson, C. Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. Can. Vet. J. 2012, 53, 1289. [Google Scholar]
- Wegener, H.C. A15 Antibiotic resistance—Linking human and animal health. In Improving Food Safety through a One Health Approach: Workshop Summary; Wegner, H.C., Ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Allcock, S.; Young, E.H.; Holmes, M.; Gurdasani, D.; Dougan, G.; Sandhu, M.S.; Solomon, L.; Török, M. Antimicrobial resistance in human populations: Challenges and opportunities. Glob. Health Epidemiol. Genom. 2017, 2, e4. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine: Ranking of Antimicrobial Agents for Risk Management of Antimicrobial Resistance Due to Non-Human Use. 2017. Available online: https://apps.who.int/iris/handle/10665/2550279 (accessed on 19 July 2022).
- World Health Organization. Stop Using Antibiotics in Healthy Animals to Prevent the Spread of Antibiotic Resistance. World Health Organization Media Center. 2017. Available online: http://www.who.int/mediacentre/news/releases/2017/antibiotics-animalseffectiveness/en. (accessed on 19 July 2022).
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Lees, P.; Pelligand, L.; Giraud, E.; Toutain, P.L. A history of antimicrobial drugs in animals: Evolution and revolution. J. Vet. Pharmacol. Ther. 2021, 44, 137–171. [Google Scholar] [CrossRef]
- Badau, E. A One Health perspective on the issue of the antibiotic resistance. Parasite 2021, 28, 16. [Google Scholar] [CrossRef]
- Parmley, J.; Leung, Z.; Léger, D.; Finley, R.; Irwin, R.; Pintar, K.; Pollari, F.; Reid-Smith, R.; Waltner-Toews, D.; Karmali, M. One health and food saftey-the Canadian experience: A holistic approach toward enteric bacterial pathogens and antimicrobial resistance surveillance. In Improving Food Safety through a One Health Approach: Workshop Summary; Wegner, H.C., Ed.; The National Academies Press: Washington, DC, USA, 2012; p. 176. Available online: https://www.ncbi.nlm.nih.gov/books/NBK114511/ (accessed on 17 July 2022).
- Scott, A.M.; Beller, E.; Glasziou, P.; Clark, J.; Ranakusuma, R.W.; Byambasuren, O.; Bakhit, M.; Page, S.W.; Trott, D.; Del Mar, C. Is antimicrobial administration to food animals a direct threat to human health? A rapid systematic review. Int. J. Antimicrob. Agents 2018, 52, 316–323. [Google Scholar] [CrossRef]
- Hoelzer, K.; Wong, N.; Thomas, J.; Talkington, K.; Jungman, E.; Coukell, A. Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Vet. Res. 2017, 13, 1–38. [Google Scholar] [CrossRef]
- Wasyl, D.; Hoszowski, A.; Szulowski, K.; Zając, M. Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter. Front. Microbiol. 2013, 4, 221. [Google Scholar] [CrossRef]
- Juricova, H.; Matiasovicova, J.; Kubasova, T.; Cejkova, D.; Rychlik, I. The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Sci. Rep. 2021, 11, 1–10. [Google Scholar]
- Shrestha, K. Potential Antimicrobial Resistance Threat–Nepal. Available online: https://www.academia.edu/86635748/POTENTIAL_ANTIMICROBIAL_RESISTANCE_THREAT_NEPAL (accessed on 17 July 2022).
- Ramdam, N. Study of Antimicrobial Use Pattern, Residue and Resistance in Poultry of Nepal. Master’s Thesis, Agriculture and Forestry University, Rampur, Nepal, 2015. Available online: https://www.nepjol.info/index.php/nvj/article/download/25240/21155/76480 (accessed on 20 March 2022).
- Acharya, K.P.; Wilson, R.T. Antimicrobial Resistance in Nepal. Front. Med. 2019, 6, 105. [Google Scholar] [CrossRef]
- Neupane, R.; Kaphle, K. Bacteriological Quality of Poultry Meat in Nepal. 2019. Available online: https://www.veterinarypaper.com/pdf/2019/vol4issue5/PartA/4-2-22-316.pdf (accessed on 2 August 2022).
- Acharya, K.R. Antimicrobial Residue and Prevalence of Indicator Bacteria Having Antimicrobial Resistance Isolated from Marketed Poultry in Kathmandu, Nepal. Ph.D. Thesis, Chiang Mai University and Freie Universitat Berlin, Berlin, Germany, 2011. Available online: http://cmuir.cmu.ac.th/bitstream/6653943832/35850/2/vph20911ak_abs.pdf (accessed on 13 March 2022).
- Karki, R.; Talchabhadel, R.; Aalto, J.; Baidya, S.K. New climatic classification of Nepal. Theor. Appl. Climatol. 2016, 125, 799–808. [Google Scholar] [CrossRef]
- Bhatta, B.; Kaphle, K.; Yadav, K. Situation of Livestock, Production and its Products in Nepal. Arch. Vet. Sci. Med. 2018, 1, 1–8. [Google Scholar]
- Ministry of Agriculture and Livestock Development. Statistical Information on Nepalese Agriculture; Singha Durbar: Kathmandu, Nepal, 2014; p. 2015. Available online: http://doanepal.gov.np/downloadfile/Statistical%20information%20on%20Nepalese%20agriculture_1601976502.pdf (accessed on 7 June 2022).
- Poudel, U.; Dahal, U.; Upadhyaya, N.; Chaudhari, S.; Dhakal, S. Livestock and poultry production in Nepal and current status of vaccine development. Vaccines 2020, 8, 322. [Google Scholar] [CrossRef]
- Saleem, R.; Ejaz, H.; Zafar, A.; Younas, S.; Rathore, A.W. Phenotypic characterization of extended-spectrum-beta-lactamase producing E. coli from healthy individuals, patients, sewage sludge, cattle, chickens and raw meat. Pak. J. Med. Sci. 2017, 33, 886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Rehman, M.U.; Li, K.; Luo, H.; Lan, Y.; Nabi, F.; Shahzad, M.; Huang, S.; Liu, X.; Mehmood, K. Antimicrobial resistance of Escherichia coli isolated from Tibetan piglets suffering from white score diarrhea. Pak. Vet. J. 2017, 37, 43–46. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014; pp. 100–122. [Google Scholar]
- Ejaz, H.; Javeed, A.; Zubair, M. Bacterial contamination of Pakistani currency notes from hospital and community sources. Pak. J. Med. Sci. 2018, 34, 1225. [Google Scholar] [CrossRef] [PubMed]
- Kahlmeter, G.; Giske, C.G.; Kirn, T.J.; Sharp, S.E. Point-counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute recommendations for reporting antimicrobial susceptibility results. J. Clin. Microbiol. 2019, 57, e01129-19. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Bickman, L.; Rog, D.J. The SAGE Handbook of Applied Social Research Methods; SAGE Publications: Thousand Oaks, CA, USA, 2008; Available online: https://sk.sagepub.com/reference/the-sage-handbook-of-applied-social-research-methods-2e (accessed on 26 May 2022).
- Sofaer, S. Qualitative methods: What are they and why use them? Health Serv. Res. 1999, 34, 1101. [Google Scholar]
- Magnusson, U.; Moodley, A.; Osbjer, K. Antimicrobial resistance at the livestock-human interface: Implications for Veterinary Services. Rev. Sci. Et Tech. Int. Off. Epizoot. 2021, 40, 511–521. [Google Scholar] [CrossRef]
- Dawadi, P.; Bista, S.; Bista, S. Prevalence of colistin-resistant Escherichia coli from poultry in South Asian developing countries. Vet. Med. Int. 2021, 2021, 6398838. [Google Scholar] [CrossRef]
- Kabiswa, W.; Nanteza, A.; Tumwine, G.; Majalija, S. Phylogenetic groups and antimicrobial susceptibility patterns of Escherichia coli from healthy chicken in Eastern and Central Uganda. J. Vet. Med. 2018, 2018, 9126467. [Google Scholar] [CrossRef]
- Zhang, P.; Shen, Z.; Zhang, C.; Song, L.; Wang, B.; Shang, J.; Yue, X.; Qu, Z.; Li, X.; Wu, L. Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015. Vet. Microbiol. 2017, 203, 49–55. [Google Scholar] [CrossRef]
- Sarker, M.S.; Mannan, M.S.; Ali, M.Y.; Bayzid, M.; Ahad, A.; Bupasha, Z.B. Antibiotic resistance of Escherichia coli isolated from broilers sold at live bird markets in Chattogram, Bangladesh. J. Adv. Vet. Anim. Res. 2019, 6, 272. [Google Scholar] [CrossRef]
- Javed, H.; Saleem, S.; Zafar, A.; Ghafoor, A.; Shahzad, A.B.; Ejaz, H.; Junaid, K.; Jahan, S. Emergence of plasmid-mediated mcr genes from Gram-negative bacteria at the human-animal interface. Gut Pathog. 2020, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Subedi, M.; Luitel, H.; Devkota, B.; Bhattarai, R.K.; Phuyal, S.; Panthi, P.; Shrestha, A.; Chaudhary, D.K. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. 2018, 14, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gyles, C.L. Antimicrobial resistance in selected bacteria from poultry. Anim. Health Res. Rev. 2008, 9, 149–158. [Google Scholar] [CrossRef]
- Global Antibiotic Resistance Partnership—Nepal Working Group; Nepal Public Health Foundation. Situation Analysis and Recommendations: Antibiotic Use and Resistance in Nepal; Nepal Public Health Foundation: Kathmandu, Nepal, 2015. [Google Scholar]
- World Health Organization. Antimicrobial Resistance. 2021. Available online: https://www.who.int/health-topics/antimicrobial-resistance (accessed on 15 March 2022).
- Iskandar, K.; Molinier, L.; Hallit, S.; Sartelli, M.; Catena, F.; Coccolini, F.; Craig Hardcastle, T.; Roques, C.; Salameh, P. Drivers of antibiotic resistance transmission in low-and middle-income countries from a “one health” perspective—A review. Antibiotics 2020, 9, 372. [Google Scholar] [CrossRef]
- Puvača, N.; de Llanos Frutos, R. Antimicrobial resistance in escherichia coli strains isolated from humans and Pet animals. Antibiotics 2021, 10, 69. [Google Scholar] [CrossRef]
- Pormohammad, A.; Nasiri, M.J.; Azimi, T. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A systematic review and meta-analysis. Infect. Drug Resist. 2019, 12, 1181. [Google Scholar] [CrossRef]
- Nonga, H.; Simon, C.; Karimuribo, E.; Mdegela, R. Assessment of antimicrobial usage and residues in commercial chicken eggs from smallholder poultry keepers in Morogoro municipality, Tanzania. Zoonoses Public Health 2010, 57, 339–344. [Google Scholar] [CrossRef]
- Prajapati, M.; Ranjit, E.; Shrestha, R.; Shrestha, S.; Adhikari, S.; Khanal, D. Status of antibiotic residues in poultry meat of Nepal. Nepal. Vet. J. 2018, 35, 55–62. [Google Scholar] [CrossRef]
- Koirala, A.; Bhandari, P.; Shewade, H.D.; Tao, W.; Thapa, B.; Terry, R.; Zachariah, R.; Karki, S. Antibiotic use in broiler poultry farms in Kathmandu valley of Nepal: Which antibiotics and why? Trop. Med. Infect. Dis. 2021, 6, 47. [Google Scholar] [CrossRef]
- Mo, Y.; Seah, I.; Lye, P.S.P.; Kee, X.L.J.; Wong, K.Y.M.; Ko, K.K.K.; Ong, R.T.-H.; Tambyah, P.A.; Cook, A.R. Relating knowledge, attitude and practice of antibiotic use to extended-spectrum beta-lactamase-producing Enterobacteriaceae carriage: Results of a cross-sectional community survey. BMJ Open 2019, 9, e023859. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- Yadav, U.; Pant, N.; Thapa, R.; Majnhi, R. Antimicrobial resistance: An emerging threat to public in Nepal. Palliat. Med. Care 2016, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Total | E. coli Present | MDR # | ||
---|---|---|---|---|---|
N | (%) | N | (%) | ||
Total | 170 | 159 | (93.5) | 113 | (71.1) |
Types of meat sold | |||||
Other * animal meat along with chicken | 120 | 112 | (93.3) | 88 | (78.6) |
Only chicken | 50 | 47 | (94.0) | 25 | (53.2) |
Type of shop | |||||
Only sale | 48 | 45 | (93.8) | 34 | (75.6) |
Slaughter house attached | 122 | 114 | (93.4) | 79 | (69.3) |
Source of water | |||||
Piped into dwelling | 170 | 159 | (93.5) | 113 | (71.1) |
Ward | |||||
Ward-2 | 48 | 45 | (93.8) | 34 | (75.6) |
Ward-6 | 122 | 114 | (93.4) | 79 | (69.3) |
Antimicrobial | Sensitive | Intermediate | Resistant | |||
---|---|---|---|---|---|---|
N | (%) | N | (%) | N | (%) | |
Cefotaxime | 150 | (90.9) | 3 | (1.8) | 12 | (7.3) |
Ciprofloxacin | 27 | (16.4) | 29 | (17.6) | 109 | (66.1) |
Ampicillin | 47 | (28.5) | 19 | (11.5) | 99 | (60.0) |
Tetracycline | 24 | (14.5) | 0 | (0.0) | 141 | (85.5) |
Chloramphenicol | 102 | (61.8) | 12 | (7.3) | 21 | (12.7) |
Gentamicin | 127 | (77.0) | 17 | (10.3) | 21 | (12.7) |
Cotrimoxazole | 77 | (46.7) | 4 | (2.4) | 84 | (50.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koju, P.; Shrestha, R.; Shrestha, A.; Tamrakar, S.; Rai, A.; Shrestha, P.; Madhup, S.K.; Katuwal, N.; Shrestha, A.; Shrestha, A.; et al. Antimicrobial Resistance in E. coli Isolated from Chicken Cecum Samples and Factors Contributing to Antimicrobial Resistance in Nepal. Trop. Med. Infect. Dis. 2022, 7, 249. https://doi.org/10.3390/tropicalmed7090249
Koju P, Shrestha R, Shrestha A, Tamrakar S, Rai A, Shrestha P, Madhup SK, Katuwal N, Shrestha A, Shrestha A, et al. Antimicrobial Resistance in E. coli Isolated from Chicken Cecum Samples and Factors Contributing to Antimicrobial Resistance in Nepal. Tropical Medicine and Infectious Disease. 2022; 7(9):249. https://doi.org/10.3390/tropicalmed7090249
Chicago/Turabian StyleKoju, Pramesh, Rajeev Shrestha, Abha Shrestha, Sudichhya Tamrakar, Anisha Rai, Priyanka Shrestha, Surendra Kumar Madhup, Nishan Katuwal, Archana Shrestha, Akina Shrestha, and et al. 2022. "Antimicrobial Resistance in E. coli Isolated from Chicken Cecum Samples and Factors Contributing to Antimicrobial Resistance in Nepal" Tropical Medicine and Infectious Disease 7, no. 9: 249. https://doi.org/10.3390/tropicalmed7090249
APA StyleKoju, P., Shrestha, R., Shrestha, A., Tamrakar, S., Rai, A., Shrestha, P., Madhup, S. K., Katuwal, N., Shrestha, A., Shrestha, A., Shrestha, S., K.C, S., Karki, P., Tamang, P., Thekkur, P., & Shakya Shrestha, S. (2022). Antimicrobial Resistance in E. coli Isolated from Chicken Cecum Samples and Factors Contributing to Antimicrobial Resistance in Nepal. Tropical Medicine and Infectious Disease, 7(9), 249. https://doi.org/10.3390/tropicalmed7090249