Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview
Abstract
:1. Introduction
2. Epidemiology of DENV Infection and Correlation of Serotypes with Disease Severity
3. Vector Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Dengue and Severe Dengue. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 13 September 2022).
- Simmons, C.P.; Farrar, J.J.; van Vinh Chau, N.; Wills, B. Dengue. N. Engl. J. Med. 2012, 366, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Struchiner, C.; Rocklöv, J.; Wilder-Smith, A.; Massad, E. Increasing Dengue Incidence in Singapore over the Past 40 Years: Population Growth, Climate and Mobility. PLoS ONE 2015, 10, e0136286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilder-Smith, A.; Ooi, E.-E.; Vasudevan, S.G.; Gubler, D.J. Update on Dengue: Epidemiology, Virus Evolution, Antiviral Drugs, and Vaccine Development. Curr. Infect. Dis. Rep. 2010, 12, 157–164. [Google Scholar] [CrossRef]
- Lindsay, S.W.; Wilson, A.; Golding, N.; Scott, T.W.; Takken, W. Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bull. World Health Organ. 2017, 95, 607–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Sun, Z.; Faria, N.R.; Yang, J.; Cazelles, B.; Huang, S.; Xu, B.; Yang, Q.; Pybus, O.G.; Xu, B. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia. PLoS Negl. Trop. Dis. 2017, 11, e0005694. [Google Scholar] [CrossRef] [Green Version]
- Huhtamo, E.; Uzcátegui, N.Y.; Siikamäki, H.; Saarinen, A.; Piiparinen, H.; Vaheri, A.; Vapalahti, O. Molecular Epidemiology of Dengue Virus Strains from Finnish Travelers. Emerg. Infect. Dis. 2008, 14, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.L. Global dengue epidemiology trends. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 5–6. [Google Scholar] [CrossRef]
- Salje, H.; Paul, K.K.; Paul, R.; Rodriguez-Barraquer, I.; Rahman, Z.; Alam, M.S.; Rahman, M.; Al-Amin, H.M.; Heffelfinger, J.; Gurley, E. Nationally-representative serostudy of dengue in Bangladesh allows generalizable disease burden estimates. Elife 2019, 8, e42869. [Google Scholar] [CrossRef]
- Sharmin, S.; Viennet, E.; Glass, K.; Harley, D. The emergence of dengue in Bangladesh: Epidemiology, challenges and future disease risk. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 619–627. [Google Scholar] [CrossRef]
- Russell, P.K.; Buescher, E.L.; McCown, J.M.; Ordoñez, J. Recovery of Dengue Viruses from Patients during Epidemics in Puerto Rico and East Pakistan. Am. J. Trop. Med. Hyg. 1966, 15, 573–579. [Google Scholar] [CrossRef]
- Yunus, E.M.; Bangali, A.M.; Mahmood, M.A.H.; Rahman, M.M.; Chowdhury, A.R.; Talukder, K.R. Dengue Outbreak 2000 in Bangladesh: From Speculation to Reality and Exercises. Dengue Bull. 2001, 25, 15–20. [Google Scholar]
- Directorate General of Health Services of Bangladesh. Daily Dengue Status Report. 2019. Available online: https://old.dghs.gov.bd/images/docs/Notice/2019/dengue/Dengue_20191231.pdf (accessed on 2 May 2022).
- Hasan, M.M.; Sahito, A.M.; Muzzamil, M.; Mohanan, P.; Islam, Z.; Billah, M.; Islam, M.J.; Essar, M.Y. Devastating dengue outbreak amidst COVID-19 pandemic in Bangladesh: An alarming situation. Trop. Med. Health 2022, 50, 11. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Dengue Worldwide Overview. 2022. Available online: https://www.ecdc.europa.eu/en/dengue-monthly (accessed on 7 December 2022).
- Directorate General of Health Services of Bangladesh. Daily Dengue Status Report. 2022. Available online: https://old.dghs.gov.bd/images/docs/vpr/20221210_dengue_all.pdf (accessed on 10 December 2022).
- Shammi, M.; Doza, B.; Islam, A.R.M.T.; Rahman, M. Strategic assessment of COVID-19 pandemic in Bangladesh: Comparative lockdown scenario analysis, public perception, and management for sustainability. Environ. Dev. Sustain. 2020, 23, 6148–6191. [Google Scholar] [CrossRef] [PubMed]
- Reliefweb Report. Disease Outbreak News: Dengue in Rohingya Refugee/Forcibly Displaced Myanmar Nationals (FDMN) Camps in Cox’s Bazar-Bangladesh (3 August 2022). Available online: https://reliefweb.int/report/bangladesh/disease-outbreak-news-dengue-rohingya-refugeeforcibly-displaced-myanmar-nationals-fdmn-camps-coxs-bazar-bangladesh-3-august-2022 (accessed on 13 September 2022).
- Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; et al. Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell 2002, 108, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef]
- Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martínez, E.; et al. Dengue: A continuing global threat. Nat. Rev. Genet. 2010, 8, S7–S16. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Ni, H.; Xu, R.; Barrett, A.D.T.; Watowich, S.J.; Gubler, D.J.; Weaver, S.C. Evolutionary Relationships of Endemic/Epidemic and Sylvatic Dengue Viruses. J. Virol. 2000, 74, 3227–3234. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India 2015, 71, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, L.; Scott, T.W.; Gubler, D.J. Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission. PLoS Negl. Trop. Dis. 2010, 4, e646. [Google Scholar] [CrossRef]
- Mulyatno, K.C.; Yamanaka, A.; Yotopranoto, S.; Konishi, E. Vertical Transmission of Dengue Virus in Aedes aegypti Collected in Surabaya, Indonesia, during 2008–2011. Jpn. J. Infect. Dis. 2012, 65, 274–276. [Google Scholar] [CrossRef] [Green Version]
- Grunnill, M.; Boots, M. How Important is Vertical Transmission of Dengue Viruses by Mosquitoes (Diptera: Culicidae)? J. Med. Èntomol. 2015, 53, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Higa, Y. Dengue Vectors and their Spatial Distribution. Trop. Med. Health 2011, 39, S17–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, E.; Sandoval, E.; Téllez, Y.; Videa, E.; Amador, J.J.; Gonzalez, A.; Pérez, L.; A Campo, L.; Pérez, M.L.; Cuadra, R.; et al. Clinical, epidemiologic, and virologic features of dengue in the 1998 epidemic in Nicaragua. Am. J. Trop. Med. Hyg. 2000, 63, 5–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Htun, T.P.; Xiong, Z.; Pang, J. Clinical signs and symptoms associated with WHO severe dengue classification: A systematic review and meta-analysis. Emerg. Microbes Infect. 2021, 10, 1116–1128. [Google Scholar] [CrossRef]
- Srikiatkhachorn, A. Plasma leakage in dengue haemorrhagic fever. Thromb. Haemost. 2009, 102, 1042–1049. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, D.B.; Budhathoki, P.; Gurung, B.; Subedi, S.; Aryal, S.; Basukala, A.; Aryal, B.; Adhikari, A.; Poudel, A.; Yadav, G.K.; et al. Epidemiology of dengue in SAARC territory: A systematic review and meta-analysis. Parasit Vectors 2022, 15, 389. [Google Scholar] [CrossRef]
- Buhler, C.; Winkler, V.; Runge-Ranzinger, S.; Boyce, R.; Horstick, O. Environmental methods for dengue vector control–A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007420. [Google Scholar] [CrossRef]
- Guzman, M.G.; Gubler, D.J.; Izquierdo, A.; Martinez, E.; Halstead, S.B. Dengue infection. Nat. Rev. Dis. Prim. 2016, 2, 16055. [Google Scholar] [CrossRef]
- Rahman, S.; Faruk, O.; Tanjila, S.; Sabbir, N.M.; Haider, N.; Chowdhury, S. Entomological survey for identification of Aedes larval breeding sites and their distribution in Chattogram, Bangladesh. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 32. [Google Scholar] [CrossRef]
- Nguyen, N.M.; Kien, D.T.H.; Tuan, T.V.; Quyen, N.T.H.; Tran, C.N.B.; Thi, L.V.; Le Thi, D.; Nguyen, H.L.; Farrar, J.J.; Holmes, E.C.; et al. Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes. Proc. Natl. Acad. Sci. USA 2013, 110, 9072–9077. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.A.; Glasner, D.R.; Shah, S.; Michlmayr, D.; Kramer, L.D.; Harris, E. Mosquito Saliva Increases Endothelial Permeability in the Skin, Immune Cell Migration, and Dengue Pathogenesis during Antibody-Dependent Enhancement. PLoS Pathog. 2016, 12, e1005676. [Google Scholar] [CrossRef] [PubMed]
- Kittayapong, P.; Olanratmanee, P.; Maskhao, P.; Byass, P.; Logan, J.; Tozan, Y.; Louis, V.; Gubler, D.J.; Wilder-Smith, A. Mitigating Diseases Transmitted by Aedes Mosquitoes: A Cluster-Randomised Trial of Permethrin-Impregnated School Uniforms. PLoS Negl. Trop. Dis. 2017, 11, e0005197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, S.A. Wolbachia and the near cessation of dengue outbreaks in Northern Australia despite continued dengue importations via travellers. J. Travel Med. 2018, 25, tay084. [Google Scholar] [CrossRef]
- Aguas, R.; Dorigatti, I.; Coudeville, L.; Luxemburger, C.; Ferguson, N.M. Cross-serotype interactions and disease outcome prediction of dengue infections in Vietnam. Sci. Rep. 2019, 9, 9395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbons, R.V.; Kalanarooj, S.; Jarman, R.G.; Nisalak, A.; Vaughn, D.W.; Endy, T.P.; Mammen, M.P., Jr.; Srikiatkhachorn, A. Analysis of Repeat Hospital Admissions for Dengue to Estimate the Frequency of Third or Fourth Dengue Infections Resulting in Admissions and Dengue Hemorrhagic Fever, and Serotype Sequences. Am. J. Trop. Med. Hyg. 2007, 77, 910–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzelnick, L.C.; Gresh, L.; Halloran, M.E.; Mercado, J.C.; Kuan, G.; Gordon, A.; Balmaseda, A.; Harris, E. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017, 358, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Kayesh, M.E.H.; Tsukiyama-Kohara, K. Mammalian animal models for dengue virus infection: A recent overview. Arch. Virol. 2021, 167, 31–44. [Google Scholar] [CrossRef]
- Murphy, B.R.; Whitehead, S.S. Immune Response to Dengue Virus and Prospects for a Vaccine. Annu. Rev. Immunol. 2011, 29, 587–619. [Google Scholar] [CrossRef]
- Ahsan, A.; Haider, N.; Kock, R.; Benfield, C. Possible Drivers of the 2019 Dengue Outbreak in Bangladesh: The Need for a Robust Community-Level Surveillance System. J. Med. Èntomol. 2021, 58, 37–39. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Dengue around the World. 2022. Available online: https://www.cdc.gov/dengue/areaswithrisk/around-the-world.html (accessed on 2 May 2022).
- Islam, M.A.; Ahmed, M.U.; Begum, N.; Chowdhury, N.A.; Khan, A.H.; Parquet, M.D.C.; Bipolo, S.; Inoue, S.; Hasebe, F.; Suzuki, Y.; et al. Molecular characterization and clinical evaluation of dengue outbreak in 2002 in Bangladesh. Jpn. J. Infect. Dis. 2006, 59, 85–91. [Google Scholar]
- Huhn, N. Dengue Outbreak in Bangladesh. 2021. Available online: https://www.outbreakobservatory.org/outbreakthursday-1/9/23/2021/dengue-outbreak-in-bangladesh#:~:text=According%20to%20researchers%20at%20the,virus%20associated%20with%20higher%20mortality (accessed on 13 September 2022).
- Rahim, R.; Hasan, A.; Hasan, N.; Nakayama, E.E.; Shioda, T.; Rahman, M. Diversity of Dengue Virus Serotypes in Dhaka City: From 2017 to 2021. Bangladesh J. Med. Microbiol. 2021, 15, 23–29. [Google Scholar] [CrossRef]
- Ahmad, F.; Paul, S.; Aung, M.; Mazid, R.; Alam, M.; Ahmed, S.; Haque, N.; Hossain, M.; Sharmin, R.; Kobayashi, N. Co-circulation of dengue virus type 3-genotype I and type 2-Cosmopolitan genotype in 2018 outbreak in Dhaka, Bangladesh. New Microbes New Infect. 2019, 33, 100629. [Google Scholar] [CrossRef] [PubMed]
- Hsan, K.; Hossain, M.; Sarwar, S.; Wilder-Smith, A.; Gozal, D. Unprecedented rise in dengue outbreaks in Bangladesh. Lancet Infect. Dis. 2019, 19, 1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haider, N.; Chang, Y.-M.; Rahman, M.; Zumla, A.; Kock, R.A. Dengue outbreaks in Bangladesh: Historic epidemic patterns suggest earlier mosquito control intervention in the transmission season could reduce the monthly growth factor and extent of epidemics. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100063. [Google Scholar] [CrossRef]
- Loroño-Pino, M.A.; Cropp, C.B.; Farfán, J.A.; Vorndam, A.V.; Rodríguez-Angulo, E.M.; Rosado-Paredes, E.P.; Flores-Flores, L.F.; Beaty, B.J.; Gubler, D.J. Common occurrence of concurrent infections by multiple dengue virus serotypes. Am. J. Trop. Med. Hyg. 1999, 61, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Pervin, M.; Tabassum, S.; Islam, M.N. Isolation and serotyping of dengue viruses by mosquito inoculation technique from clinically suspected cases of dengue fever. Bangladesh Med. Res. Counc. Bull. 2002, 28, 104–111. [Google Scholar]
- Shirin, T.; Muraduzzaman, A.; Alam, A.; Sultana, S.; Siddiqua, M.; Khan, M.; Akram, A.; Sharif, A.; Hossain, S.; Flora, M. Largest dengue outbreak of the decade with high fatality may be due to reemergence of DEN-3 serotype in Dhaka, Bangladesh, necessitating immediate public health attention. New Microbes New Infect. 2019, 29, 100511. [Google Scholar] [CrossRef]
- Suzuki, K.; Phadungsombat, J.; Nakayama, E.E.; Saito, A.; Egawa, A.; Sato, T.; Rahim, R.; Hasan, A.; Lin, M.Y.-C.; Takasaki, T.; et al. Genotype replacement of dengue virus type 3 and clade replacement of dengue virus type 2 genotype Cosmopolitan in Dhaka, Bangladesh in 2017. Infect. Genet. Evol. 2019, 75, 103977. [Google Scholar] [CrossRef]
- Fried, J.R.; Gibbons, R.V.; Kalayanarooj, S.; Thomas, S.J.; Srikiatkhachorn, A.; Yoon, I.-K.; Jarman, R.G.; Green, S.; Rothman, A.L.; Cummings, D.A.T. Serotype-Specific Differences in the Risk of Dengue Hemorrhagic Fever: An Analysis of Data Collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl. Trop. Dis. 2010, 4, e617. [Google Scholar] [CrossRef] [Green Version]
- Dhanoa, A.; Hassan, S.S.; Ngim, C.F.; Lau, C.F.; Chan, T.S.; Adnan, N.A.A.; Eng, W.W.H.; Gan, H.M.; Rajasekaram, G. Impact of dengue virus (DENV) co-infection on clinical manifestations, disease severity and laboratory parameters. BMC Infect. Dis. 2016, 16, 406. [Google Scholar] [CrossRef] [Green Version]
- Soo, K.-M.; Khalid, B.; Ching, S.-M.; Chee, H.-Y. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections. PLoS ONE 2016, 11, e0154760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, L.; Huang, X.; Luo, J.; Zhao, Y.; Hong, S.; Wang, X.; Feng, K.; Pan, Y.; Sun, Q. Secondary cross infection with dengue virus serotype 2/3 aggravates vascular leakage in BALB/c mice. J. Med. Virol. 2022, 94, 4338–4347. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-Y.; Durbin, A.; Tsai, J.-J.; Hsieh, S.-C.; Whitehead, S.; Wang, W.-K. Complexity of Neutralizing Antibodies against Multiple Dengue Virus Serotypes after Heterotypic Immunization and Secondary Infection Revealed by In-Depth Analysis of Cross-Reactive Antibodies. J. Virol. 2015, 89, 7348–7362. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Basavaprabhu, A.; Shenoy, S.; Dsouza, N.V.; Hanaganahalli, B.S.; Kulkarni, V. Correlation of Clinical Severity and Laboratory Parameters with Various Serotypes in Dengue Virus: A Hospital-Based Study. Int. J. Microbiol. 2020, 2020, 6658445. [Google Scholar] [CrossRef]
- Halstead, S.B. Antibody, Macrophages, Dengue Virus Infection, Shock, and Hemorrhage: A Pathogenetic Cascade. Clin. Infect. Dis. 1989, 11, S830–S839. [Google Scholar] [CrossRef]
- Wang, T.T.; Sewatanon, J.; Memoli, M.J.; Wrammert, J.; Bournazos, S.; Bhaumik, S.K.; Pinsky, B.A.; Chokephaibulkit, K.; Onlamoon, N.; Pattanapanyasat, K.; et al. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science 2017, 355, 395–398. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.-Q.; Yang, X.; Wei, Y.; Chen, J.-T.; Wang, X.-J.; Peng, H.-J. A Review on Dengue Vaccine Development. Vaccines 2020, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K. Recent Insights into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front. Microbiol. 2021, 12, 744233. [Google Scholar] [CrossRef]
- Muraduzzaman, A.K.M.; Alam, A.N.; Sultana, S.; Siddiqua, M.; Khan, M.H.; Akram, A.; Haque, F.; Flora, M.S.; Shirin, T. Circulating dengue virus serotypes in Bangladesh from 2013 to 2016. Virusdisease 2018, 29, 303–307. [Google Scholar] [CrossRef]
- Clark, T.M.; Flis, B.J.; Remold, S.K. Differences in the effects of salinity on larval growth and developmental programs of a freshwater and a euryhaline mosquito species (Insecta: Diptera, Culicidae). J. Exp. Biol. 2004, 207, 2289–2295. [Google Scholar] [CrossRef] [Green Version]
- Dickson, L.B.; Jiolle, D.; Minard, G.; Moltini-Conclois, I.; Volant, S.; Ghozlane, A.; Bouchier, C.; Ayala, D.; Paupy, C.; Moro, C.V.; et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 2017, 3, e1700585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, R.; Surendran, S.N.; Jude, P.J.; Dharshini, S.; Vinobaba, M. Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases. PLoS Negl. Trop. Dis. 2011, 5, e1369. [Google Scholar] [CrossRef] [Green Version]
- Arduino, M.D.B.; Mucci, L.F.; Serpa, L.L.N.; Rodrigues, M.D.M. Effect of salinity on the behavior of Aedes aegypti populations from the coast and plateau of southeastern Brazil. J. Vector Borne Dis. 2015, 52, 79–87. [Google Scholar]
- Ramasamy, R.; Thiruchenthooran, V.; Jayadas, T.T.P.; Eswaramohan, T.; Santhirasegaram, S.; Sivabalakrishnan, K.; Naguleswaran, A.; Uzest, M.; Cayrol, B.; Voisin, S.N.; et al. Transcriptomic, proteomic and ultrastructural studies on salinity-tolerant Aedes aegypti in the context of rising sea levels and arboviral disease epidemiology. BMC Genom. 2021, 22, 253. [Google Scholar] [CrossRef] [PubMed]
- Barrera, R. New tools for Aedes control: Mass trapping. Curr. Opin. Insect Sci. 2022, 52, 100942. [Google Scholar] [CrossRef] [PubMed]
- Saied, K.G.; Al-Taiar, A.; Altaire, A.; Alqadsi, A.; Alariqi, E.F.; Hassaan, M. Knowledge, attitude and preventive practices regarding dengue fever in rural areas of Yemen. Int. Health 2015, 7, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Local Government Division Bangladesh. National Guidelines for Prevention of Other Mosquito-Borne Diseases Including Dengue. 2021. Available online: http://www.lgd.gov.bd/site/publications/95e60e7d-92bd-45e3-91e9-dd1c486c56bd/National-guidelines-for-prevention-of-other-mosquito-borne-diseases-including-dengue. (accessed on 28 October 2022).
- Paul, K.K.; Dhar-Chowdhury, P.; Haque, C.E.; Al-Amin, H.M.; Goswami, D.R.; Kafi, M.A.H.; Drebot, M.A.; Lindsay, L.R.; Ahsan, G.U.; Brooks, W.A. Risk factors for the presence of dengue vector mosquitoes, and determinants of their prevalence and larval site selection in Dhaka, Bangladesh. PLoS ONE 2018, 13, e0199457. [Google Scholar] [CrossRef] [Green Version]
- Bowman, L.R.; Donegan, S.; McCall, P.J. Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis. PLoS Negl. Trop. Dis. 2016, 10, e0004551. [Google Scholar] [CrossRef] [Green Version]
- Che-Mendoza, A.; Medina-Barreiro, A.; Koyoc-Cardeña, E.; Uc-Puc, V.; Contreras-Perera, Y.; Herrera-Bojórquez, J.; Dzul-Manzanilla, F.; Morales, F.C.; Ranson, H.; Lenhart, A.; et al. House screening with insecticide-treated netting provides sustained reductions in domestic populations of Aedes aegypti in Merida, Mexico. PLoS Negl. Trop. Dis. 2018, 12, e0006283. [Google Scholar] [CrossRef]
- George, L.S.; Paul, N.; Leelamoni, K. Community based interventional study on dengue awareness and vector control in a rural population in Ernakulam, Kerala. Int. J. Community Med. Public Health 2017, 4, 962. [Google Scholar] [CrossRef] [Green Version]
- Tapia-Conyer, R.; Méndez-Galván, J.; Burciaga-Zúñiga, P. Community participation in the prevention and control of dengue: The patio limpio strategy in Mexico. Paediatr. Int. Child Health 2012, 32, 10–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanlerberghe, V.; Toledo, M.E.; Rodríguez, M.; Gómez, D.; Baly, A.; Benítez, J.R.; Van Der Stuyft, P. Community involvement in dengue vector control: Cluster randomised trial. MEDICC Rev. 2010, 12, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, H.V.D.; Zaim, M.; Yadav, R.S.; Soares, A.; Ameneshewa, B.; Mnzava, A.; Hii, J.; Dash, A.P.; Ejov, M. Global Trends in the Use of Insecticides to Control Vector-Borne Diseases. Environ. Health Perspect. 2012, 120, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.B.; Kasai, S.; Scott, J.G. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pestic. Biochem. Physiol. 2016, 133, 1–12. [Google Scholar] [CrossRef]
- The Business Standard. Dengue on Rise as Dhaka’s Mosquito Control Drive Works Little. 2021. Available online: https://www.tbsnews.net/bangladesh/dengue-rise-dhakas-mosquito-control-drive-works-little-310597 (accessed on 30 October 2022).
- Eisen, L.; Beaty, B.J.; Morrison, A.C.; Scott, T.W. Proactive Vector Control Strategies and Improved Monitoring and Evaluation Practices for Dengue Prevention. J. Med. Èntomol. 2009, 46, 1245–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esu, E.; Lenhart, A.; Smith, L.; Horstick, O. Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop. Med. Int. Health 2010, 15, 619–631. [Google Scholar] [CrossRef]
- Deming, R.; Manrique-Saide, P.; Barreiro, A.M.; Cardeña, E.U.K.; Che-Mendoza, A.; Jones, B.; Liebman, K.; Vizcaino, L.; Vazquez-Prokopec, G.; Lenhart, A. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites Vectors 2016, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Al-Amin, H.M.; Johora, F.T.; Irish, S.R.; Hossainey, M.R.H.; Vizcaino, L.; Paul, K.K.; Khan, W.A.; Haque, R.; Alam, M.S.; Lenhart, A. Insecticide resistance status of Aedes aegypti in Bangladesh. Parasites Vectors 2020, 13, 622. [Google Scholar] [CrossRef]
- Dalpadado, R.; Gunathilaka, N.; Amarasinghe, D.; Udayanaga, L. A Challenge for a Unique Dengue Vector Control Programme: Assessment of the Spatial Variation of Insecticide Resistance Status amongst Aedes aegypti and Aedes albopictus Populations in Gampaha District, Sri Lanka. BioMed Res. Int. 2021, 2021, 6619175. [Google Scholar] [CrossRef]
- Herrera-Bojórquez, J.; Trujillo-Peña, E.; Vadillo-Sánchez, J.; Riestra-Morales, M.; Che-Mendoza, A.; Delfín-González, H.; Pavía-Ruz, N.; Arredondo-Jimenez, J.; Santamaria, E.; Flores-Suárez, A.E.; et al. Efficacy of Long-lasting Insecticidal Nets with Declining Physical and Chemical Integrity on Aedes aegypti (Diptera: Culicidae). J. Med. Èntomol. 2020, 57, 503–510. [Google Scholar] [CrossRef]
- Ross, P.A.; Callahan, A.G.; Yang, Q.; Jasper, M.; Arif, M.A.K.; Afizah, A.N.; Nazni, W.A.; Hoffmann, A.A. An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti? Ecol. Evol. 2020, 10, 1581–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, H.A.; De Bruyne, J.T.; O’Donnell, T.B.; Nhu, V.T.; Giang, N.T.; Trang, H.T.X.; Van, H.T.T.; Long, V.T.; Dui, L.T.; Huy, H.L.A.; et al. Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathog. 2020, 16, e1008433. [Google Scholar] [CrossRef] [PubMed]
- McMeniman, C.J.; Lane, R.V.; Cass, B.N.; Fong, A.W.C.; Sidhu, M.; Wang, Y.-F.; O’Neill, S.L. Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti. Science 2009, 323, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, L.A.; Iturbe-Ormaetxe, I.; Jeffery, J.A.; Lu, G.; Pyke, A.T.; Hedges, L.M.; Rocha, B.C.; Hall-Mendelin, S.; Day, A.; Riegler, M.; et al. A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell 2009, 139, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.; Johnson, P.H.; Moreira, L.A.; Iturbe-Ormaetxe, I.; Frentiu, F.D.; McMeniman, C.J.; Leong, Y.S.; Dong, Y.; Axford, J.; Kriesner, P.; et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 2011, 476, 450–453. [Google Scholar] [CrossRef]
- Utarini, A.; Indriani, C.; Ahmad, R.A.; Tantowijoyo, W.; Arguni, E.; Ansari, M.R.; Supriyati, E.; Wardana, D.S.; Meitika, Y.; Ernesia, I.; et al. Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue. N. Engl. J. Med. 2021, 384, 2177–2186. [Google Scholar] [CrossRef]
- Leitner, M.; Bishop, C.; Asgari, S. Transcriptional Response of Wolbachia to Dengue Virus Infection in Cells of the Mosquito Aedes aegypti. mSphere 2021, 6, e0043321. [Google Scholar] [CrossRef]
- Hoffmann, A.A. Incompatible mosquitoes. Nature 2005, 436, 189. [Google Scholar] [CrossRef]
- Bourtzis, K.; Dobson, S.L.; Xi, Z.; Rasgon, J.L.; Calvitti, M.; Moreira, L.A.; Bossin, H.C.; Moretti, R.; Baton, L.A.; Hughes, G.L.; et al. Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Trop. 2014, 132, S150–S163. [Google Scholar] [CrossRef]
- Khadka, S.; Proshad, R.; Thapa, A.; Acharya, K.P.; Kormoker, T. Wolbachia: A possible weapon for controlling dengue in Nepal. Trop. Med. Health 2020, 48, 50. [Google Scholar] [CrossRef]
- Han, W.W.; Lazaro, A.; McCall, P.; George, L.; Runge-Ranzinger, S.; Toledo, J.; Velayudhan, R.; Horstick, O. Efficacy and community effectiveness of larvivorous fish for dengue vector control. Trop. Med. Int. Health 2015, 20, 1239–1256. [Google Scholar] [CrossRef] [PubMed]
- Seng, C.M.; Setha, T.; Nealon, J.; Socheat, D.; Chantha, N.; Nathan, M.B. Community-based use of the larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water storage containers in rural Cambodia. J. Vector Ecol. 2008, 33, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Weeratunga, P.; Rodrigo, C.; Fernando, S.D.; Rajapakse, S. Control methods for Aedes albopictus and Aedes aegypti. Cochrane Database Syst. Rev. 2017, 2017, CD012759. [Google Scholar] [CrossRef]
- Paiva, C.N.; Lima, J.W.D.O.; Camelo, S.S.; Lima, C.D.F.; Cavalcanti, L.P.D.G. Survival of larvivorous fish used for biological control of Aedes aegypti (Diptera: Culicidae) combined with different larvicides. Trop. Med. Int. Health 2014, 19, 1082–1086. [Google Scholar] [CrossRef]
- Brown, M.D.; Kay, B.H.; Hendrikz, J.K. Evaluation of Australian Mesocyclops (Cyclopoida: Cyclopidae) for Mosquito Control. J. Med. Èntomol. 1991, 28, 618–623. [Google Scholar] [CrossRef]
- Udayanga, N.L.; Ranathunge, T.; Iqbal, M.C.M.; Abeyewickreme, W.; Hapugoda, M. Predatory efficacy of five locally available copepods on Aedes larvae under laboratory settings: An approach towards bio-control of dengue in Sri Lanka. PLoS ONE 2019, 14, e0216140. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-J.S.; Higgs, S.; Van Landingham, D.L. Biological Control Strategies for Mosquito Vectors of Arboviruses. Insects 2017, 8, 21. [Google Scholar] [CrossRef]
- Liu, T.; Xie, Y.; Lin, F.; Xie, L.; Yang, W.; Su, X.; Ou, C.; Luo, L.; Xiao, Q.; Gan, L.; et al. A long-lasting biological larvicide against the dengue vector mosquito Aedes albopictus. Pest Manag. Sci. 2020, 77, 741–748. [Google Scholar] [CrossRef]
- Couret, J.; Notarangelo, M.; Veera, S.; LeClaire-Conway, N.; Ginsberg, H.S.; LeBrun, R.L. Biological control of Aedes mosquito larvae with carnivorous aquatic plant, Utricularia macrorhiza. Parasites Vectors 2020, 13, 208. [Google Scholar] [CrossRef] [Green Version]
- Oliva, C.F.; Jacquet, M.; Gilles, J.; Lemperiere, G.; Maquart, P.-O.; Quilici, S.; Schooneman, F.; Vreysen, M.J.B.; Boyer, S. The Sterile Insect Technique for Controlling Populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: Mating Vigour of Sterilized Males. PLoS ONE 2012, 7, e49414. [Google Scholar] [CrossRef] [Green Version]
- Dumont, Y.; Chiroleu, F. Vector control for the Chikungunya disease. Math. Biosci. Eng. 2010, 7, 313–345. [Google Scholar] [CrossRef] [PubMed]
- Yakob, L.; Funk, S.; Camacho, A.; Brady, O.; Edmunds, W.J. Aedes aegypti Control Through Modernized, Integrated Vector Management. PLoS Curr. 2017, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alphey, L.; Benedict, M.; Bellini, R.; Clark, G.G.; Dame, D.A.; Service, M.W.; Dobson, S.L. Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis. Vector-Borne Zoonotic Dis. 2010, 10, 295–311. [Google Scholar] [CrossRef]
- Lima, E.P.; Goulart, M.; Neto, M.R. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti. BMC Public Heal. 2015, 15, 858. [Google Scholar] [CrossRef]
- Amaku, M.; Coutinho, F.A.B.; Raimundo, S.M.; Lopez, L.F.; Burattini, M.N.; Massad, E. A Comparative Analysis of the Relative Efficacy of Vector-Control Strategies Against Dengue Fever. Bull. Math. Biol. 2014, 76, 697–717. [Google Scholar] [CrossRef] [PubMed]
- Kahamba, N.F.; Limwagu, A.J.; Mapua, S.A.; Msugupakulya, B.J.; Msaky, D.S.; Kaindoa, E.W.; Ngowo, H.S.; Okumu, F.O. Habitat characteristics and insecticide susceptibility of Aedes aegypti in the Ifakara area, south-eastern Tanzania. Parasites Vectors 2020, 13, 53. [Google Scholar] [CrossRef] [Green Version]
- Marcombe, S.; Chonephetsarath, S.; Thammavong, P.; Brey, P.T. Alternative insecticides for larval control of the dengue vector Aedes aegypti in Lao PDR: Insecticide resistance and semi-field trial study. Parasites Vectors 2018, 11, 616. [Google Scholar] [CrossRef]
- Berg, H.V.D.; Bezerra, H.S.D.S.; Al-Eryani, S.; Chanda, E.; Nagpal, B.N.; Knox, T.B.; Velayudhan, R.; Yadav, R.S. Recent trends in global insecticide use for disease vector control and potential implications for resistance management. Sci. Rep. 2021, 11, 23867. [Google Scholar] [CrossRef]
- Nazni, W.A.; Hoffmann, A.A.; NoorAfizah, A.; Cheong, Y.L.; Mancini, M.V.; Golding, N.; Kamarul, G.M.R.; Arif, M.A.K.; Thohir, H.; NurSyamimi, H.; et al. Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control. Curr. Biol. 2019, 29, 4241–4248.e5. [Google Scholar] [CrossRef] [Green Version]
- Iturbe-Ormaetxe, I.; Walker, T.; Neill, S.L.O. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011, 12, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Oliva, C.; Benedict, M.; Collins, C.; Baldet, T.; Bellini, R.; Bossin, H.; Bouyer, J.; Corbel, V.; Facchinelli, L.; Fouque, F.; et al. Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. Insects 2021, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Dame, D.A.; Curtis, C.F.; Benedict, M.Q.; Robinson, A.S.; Knols, B.G. Historical applications of induced sterilisation in field populations of mosquitoes. Malar. J. 2009, 8, S2. [Google Scholar] [CrossRef] [PubMed]
- Soumare, M.K.F.; Cilek, J.E. The Effectiveness of Mesocyclops longisetus (Copepoda) for the Control of Container-Inhabiting Mosquitoes in Residential Environments. J. Am. Mosq. Control Assoc. 2011, 27, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Pauly, I.; Jakoby, O.; Becker, N. Efficacy of native cyclopoid copepods in biological vector control with regard to their predatory behavior against the Asian tiger mosquito, Aedes albopictus. Parasites Vectors 2022, 15, 351. [Google Scholar] [CrossRef]
- Johansson, M.A.; Dominici, F.; Glass, G.E. Local and Global Effects of Climate on Dengue Transmission in Puerto Rico. PLoS Negl. Trop. Dis. 2009, 3, e382. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.N.; Munshi, S.U.; Anwar, N.; Alam, M.S. Climatic factors influencing dengue cases in Dhaka city: A model for dengue prediction. Indian J. Med. Res. 2012, 136, 32–39. [Google Scholar]
- Mutsuddy, P.; Jhora, S.T.; Shamsuzzaman, A.K.M.; Kaisar, S.M.G.; Khan, N.A. Dengue Situation in Bangladesh: An Epidemiological Shift in terms of Morbidity and Mortality. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 3516284. [Google Scholar] [CrossRef]
- Dhar-Chowdhury, P.; Paul, K.K.; Haque, C.E.; Hossain, S.; Lindsay, L.R.; Dibernardo, A.; Brooks, W.A.; Drebot, M.A. Dengue seroprevalence, seroconversion and risk factors in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 2017, 11, e0005475. [Google Scholar] [CrossRef] [Green Version]
- Islam, F.; Prithul, H. Abundance of Mosquito Larvae at Jagannath University and Dhaka University Campus of Dhaka, Bangladesh. Bangladesh J. Zool. 2021, 49, 321–329. [Google Scholar] [CrossRef]
- Mamun, M.; Misti, J.M.; Griffiths, M.D.; Gozal, D. The dengue epidemic in Bangladesh: Risk factors and actionable items. Lancet 2019, 394, 2149–2150. [Google Scholar] [CrossRef] [Green Version]
- Sharmin, S.; Glass, K.; Viennet, E.; Harley, D. Geostatistical mapping of the seasonal spread of under-reported dengue cases in Bangladesh. PLoS Negl. Trop. Dis. 2018, 12, e0006947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Daily Star. DNCC Opens Control Room to Provide Free Dengue Test. 2022. Available online: https://www.thedailystar.net/news/bangladesh/governance/news/dncc-opens-control-room-provide-free-dengue-test-3071836 (accessed on 13 September 2022).
- Dhaka Tribune. DNCC, DSCC Open Control Rooms to Tackle Uptick in Dengue Cases. 2022. Available online: https://www.dhakatribune.com/dhaka/2022/07/17/dncc-dscc-open-control-rooms-to-tackle-uptick-in-dengue-cases (accessed on 13 September 2022).
- Wagatsuma, Y.; Breiman, R.F.; Hossain, A.; Rahman, M. Dengue Fever Outbreak in a Recreation Club, Dhaka, Bangladesh. Emerg. Infect. Dis. 2004, 10, 747–750. [Google Scholar] [CrossRef]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.; Nimmannitaya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; et al. Dengue Viremia Titer, Antibody Response Pattern, and Virus Serotype Correlate with Disease Severity. J. Infect. Dis. 2000, 181, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pervin, M.; Tabassum, S.; Kumar Sil, B.; Islam, M.N. Isolation and serotyping of dengue viruses by mosquito inoculation and cell culture technique: An experience in Bangladesh. Dengue Bull. 2003, 27, 81–90. [Google Scholar]
- Gubler, D.J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Trop. Med. Health 2011, 39 (Suppl. S4), S3–S11. [Google Scholar] [CrossRef]
Vector Control Methods | Application to Mosquitoes or Breeding Sites/Habitats | Strengths | Limitations |
---|---|---|---|
Physical control: Habitat management | Can be applied on a wide range of artificial containers | Proper habitat management may prevent or reduce the breeding of Aedes mosquitoes in the used tires, discarded containers, flowerpots, etc. [115] | Requires continuous surveillance for habitat removal |
Chemical control: insecticides, larvicides | Can be used against adult mosquitoes and larvae including as space treatment, indoor residual spraying and insecticide-treated bed nets [106]. Can be used in small water-storage containers [116]. | Mainstay of vector control worldwide, playing a major role in the prevention and control of vector-borne diseases, including dengue [117]. | Insecticide resistance may compromise vector control efficacy [117], requiring resistance monitoring systems; might not be ecologically friendly |
Biological control: Wolbachia-mediated biological method | Release of Wolbachia-infected mosquitoes to the local mosquito populations [118,119]. | Wolbachia-mediated dengue vector control is novel, economic, and more ecologically friendly than using pesticides [99,106]. It can induce complete cytoplasmic incompatibility [92]. | Transmission may not occur because some of the mosquitoes may not live for a period longer than extrinsic incubation period of arboviruses [92]. Further studies are warranted for confirmation of dengue vector control for the effectiveness of the method |
Sterile insect technique (SIT) | Applied to mass-reared male mosquitoes to make the males sterile [112] | Could be used as a powerful complement to most commonly used approaches because of its ecologically benign, specific, and non-persistent nature in the environment once releases are stopped [120] | Manual separation of males and females is required [106]; successful reduction in populations only achieved in a few instances [121] |
Use of larvivorous fish Poecilia reticulata (guppy) and Gambusia affinis (mosquito fish) | Can be used in water storage containers [101] | It helps in the reduction of immature larvae [100] | The chance of off-target effects such as targeting of other arthropod species cannot be ignored. |
Use of copepods (mainly Mesocyclops and Macrocyclops species) | Can be applied to control of container-inhabiting mosquitoes [122] | High predation efficiency [123] | Most effective against first instar larvae [106] |
Use of biological larvicides: Bacillus thuringiensis subspecies israelensis (Bti) | Can be applied to water-storage containers [116] | Little or no impact on non-target organisms and no accumulation in the environment | Difficulty in maintenance, storage, and transportation [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayesh, M.E.H.; Khalil, I.; Kohara, M.; Tsukiyama-Kohara, K. Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview. Trop. Med. Infect. Dis. 2023, 8, 32. https://doi.org/10.3390/tropicalmed8010032
Kayesh MEH, Khalil I, Kohara M, Tsukiyama-Kohara K. Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview. Tropical Medicine and Infectious Disease. 2023; 8(1):32. https://doi.org/10.3390/tropicalmed8010032
Chicago/Turabian StyleKayesh, Mohammad Enamul Hoque, Ibrahim Khalil, Michinori Kohara, and Kyoko Tsukiyama-Kohara. 2023. "Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview" Tropical Medicine and Infectious Disease 8, no. 1: 32. https://doi.org/10.3390/tropicalmed8010032
APA StyleKayesh, M. E. H., Khalil, I., Kohara, M., & Tsukiyama-Kohara, K. (2023). Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview. Tropical Medicine and Infectious Disease, 8(1), 32. https://doi.org/10.3390/tropicalmed8010032