A Nomogram for Predicting Prognosis of Advanced Schistosomiasis japonica in Dongzhi County—A Case Study
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Study Population
2.2. Inclusion and Exclusion Criteria of Participants
2.3. Candidate Variables for Prediction
2.4. Establishment of Training Set and Validation Set
2.5. Model Derivation
2.6. Assessment of Model Performance
3. Results
3.1. General Information of Patients
3.2. Risk Factors Affecting Outcomes
3.3. Fitted Model and Constructed Nomogram
3.4. Assessment of Nomogram
3.5. Clinical Use
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aula, O.P.; McManus, D.P.; Jones, M.K.; Gordon, C.A. Schistosomiasis with a Focus on Africa. Trop. Med. Infect. Dis. 2021, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef] [PubMed]
- Deol, A.K.; Fleming, F.M.; Calvo-Urbano, B.; Walker, M.; Bucumi, V.; Gnandou, I.; Tukahebwa, E.M.; Jemu, S.; Mwingira, U.J.; Alkohlani, A.; et al. Schistosomiasis—Assessing Progress toward the 2020 and 2025 Global Goals. N. Engl. J. Med. 2019, 381, 2519–2528. [Google Scholar] [CrossRef] [PubMed]
- Pisarski, K. The Global Burden of Disease of Zoonotic Parasitic Diseases: Top 5 Contenders for Priority Consideration. Trop. Med. Infect. Dis. 2019, 4, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, A.R.; al Karawi, M.; Yasawy, M.I. Schistosomal colonic disease. Gut 1990, 31, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Cheever, A.W. A quantitative post-mortem study of Schistosomiasis mansoni in man. Am. J. Trop. Med. Hyg. 1968, 17, 38–64. [Google Scholar] [CrossRef]
- Richter, J.; Correia Dacal, A.R.; Vergetti Siqueira, J.G.; Poggensee, G.; Mannsmann, U.; Deelder, A.; Feldmeier, H. Sonographic prediction of variceal bleeding in patients with liver fibrosis due to Schistosoma mansoni. Trop. Med. Int. Health 1998, 3, 728–735. [Google Scholar] [CrossRef]
- Khalaf, I.; Shokeir, A.; Shalaby, M. Urologic complications of genitourinary schistosomiasis. World J. Urol. 2012, 30, 31–38. [Google Scholar] [CrossRef]
- Kjetland, E.F.; Leutscher, P.D.; Ndhlovu, P.D. A review of female genital schistosomiasis. Trends Parasitol. 2012, 28, 58–65. [Google Scholar] [CrossRef]
- Song, L.; Wu, X.; Zhang, B.; Liu, J.; Ning, A.; Wu, Z. A cross-sectional survey comparing a free treatment program for advanced schistosomiasis japonica to a general assistance program. Parasitol. Res. 2017, 116, 2901–2909. [Google Scholar] [CrossRef]
- Hong, Z.; Li, L.; Zhang, L.; Wang, Q.; Xu, J.; Li, S.; Zhou, X.N. Elimination of Schistosomiasis Japonica in China: From the One Health Perspective. China CDC Wkly 2022, 4, 130–134. [Google Scholar] [CrossRef]
- Zhang, J.F.; Xu, J.; Bergquist, R.; Yu, L.L.; Yan, X.L.; Zhu, H.Q.; Wen, L.Y. Development and Application of Diagnostics in the National Schistosomiasis Control Programme in The People’s Republic of China. Adv. Parasitol. 2016, 92, 409–434. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.C.; Yang, Z.; Xie, H.Q.; Li, Y.L.; Liu, J.X.; Ding, G.J.; Zhu, Y.H.; Jing, Q.S.; Kong, G.Q.; Lin, D.D.; et al. Diagnosis and treatment of schistosomiasis japonica-concensuses among ex- perts in Hunan, Hubei and Jiangxi provinces. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2015, 27, 451–456. [Google Scholar] [PubMed]
- Jia, T.W.; Utzinger, J.; Deng, Y.; Yang, K.; Li, Y.Y.; Zhu, J.H.; King, C.H.; Zhou, X.N. Quantifying quality of life and disability of patients with advanced schistosomiasis japonica. PLoS Negl. Trop. Dis. 2011, 5, e966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.L.; Hu, H.H.; Zhang, X.; Zhou, X.N.; Jia, T.W.; Wang, C.; Hong, Z.; Xu, J. Cost-effectiveness analysis of the integrated control strategy for schistosomiasis japonica in a lake region of China: A case study. Infect. Dis. Poverty 2021, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Xie, S.Y.; Yuan, M.; Li, Y.F.; Li, Z.J.; Gao, Z.L.; Lan, W.M.; Liu, Y.M.; Xu, J.; Lin, D.D. The Dynamics of Hepatic Fibrosis Related to Schistosomiasis and Its Risk Factors in a Cohort of China. Pathogens 2021, 10, 1532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Xu, Z.M.; Yang, F.; He, J.Y.; Dang, H.; Li, Y.L.; Cao, C.L.; Xu, J.; Li, S.Z.; Zhou, X.N. Progress of schistosomiasis control in People’s Republic of China in 2021. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2022, 34, 329–336. [Google Scholar] [CrossRef]
- Liang, W.; Yao, J.; Chen, A.; Lv, Q.; Zanin, M.; Liu, J.; Wong, S.; Li, Y.; Lu, J.; Liang, H.; et al. Early triage of critically ill COVID-19 patients using deep learning. Nat. Commun. 2020, 11, 3543. [Google Scholar] [CrossRef]
- Li, G.; Lian, L.; Huang, S.; Miao, J.; Cao, H.; Zuo, C.; Liu, X.; Zhu, Z. Nomograms to predict 2-year overall survival and advanced schistosomiasis-specific survival after discharge: A competing risk analysis. J. Transl. Med. 2020, 18, 187. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- He, C.; Zhang, Y.; Cai, Z.; Lin, X. Competing risk analyses of overall survival and cancer-specific survival in patients with combined hepatocellular cholangiocarcinoma after surgery. BMC Cancer 2019, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Yoon, J.G.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. Stroke 2019, 50, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhou, X.; Liu, J.; Chen, Y.; Zhang, H.; Chen, Y.; Liu, J.; Jiang, H.; Yang, J.; Nie, S. Comparison of three data mining models for prediction of advanced schistosomiasis prognosis in the Hubei province. PLoS Negl. Trop. Dis. 2018, 12, e0006262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, Y.; Qiu, Z.; Chen, G.; Hong, S.; Chen, X.; Zhang, Z.; Huang, Y.; Zhang, L. Nomogram to Predict Cause-Specific Mortality in Patients With Surgically Resected Stage I Non-Small-Cell Lung Cancer: A Competing Risk Analysis. Clin Lung Cancer 2018, 19, e195–e203. [Google Scholar] [CrossRef]
- Liu, L.; Xie, J.; Wu, W.; Chen, H.; Li, S.; He, H.; Yu, Y.; Hu, M.; Li, J.; Zheng, R.; et al. A simple nomogram for predicting failure of non-invasive respiratory strategies in adults with COVID-19: A retrospective multicentre study. Lancet Digit Health 2021, 3, e166–e174. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, H.; Cai, J.; Chen, R.; Zuo, X.; Cheng, H.; Yan, D. A prediction nomogram for the 3-year risk of incident diabetes among Chinese adults. Sci. Rep. 2020, 10, 21716. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, K.; Su, Y.; Zhuge, J.; Li, W.; Wang, S.; Yao, H. Nomogram Model for Screening the Risk of Type II Diabetes in Western Xinjiang, China. Diabetes Metab. Syndr. Obes. 2021, 14, 3541–3553. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Lian, L.; Song, X.; Sun, W.; Miao, J.; Li, B.; Yuan, Y.; Wu, S.; Liu, X.; et al. Derivation and external validation of a model to predict 2-year mortality risk of patients with advanced schistosomiasis after discharge. EBioMedicine 2019, 47, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef]
- Garcia-Carretero, R.; Vigil-Medina, L.; Barquero-Perez, O.; Mora-Jimenez, I.; Soguero-Ruiz, C.; Goya-Esteban, R.; Ramos-Lopez, J. Logistic LASSO and Elastic Net to Characterize Vitamin D Deficiency in a Hypertensive Obese Population. Metab. Syndr. Relat. Disord. 2020, 18, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Mullah, M.A.S.; Hanley, J.A.; Benedetti, A. LASSO type penalized spline regression for binary data. BMC Med. Res. Methodol. 2021, 21, 83. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Pan, C.; Guo, S.; Wu, H. Dietary Intake and Asthma in Preschoolers: A Logistic Lasso Regression Analysis. Front Pediatr. 2022, 10, 870529. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Li, L.; Hu, M.; Chen, L.; Xu, B.; Song, Q. A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: A population-based analysis. Cancer Commun. 2020, 40, 301–312. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Saville, B.R.; Lewis, R.J. Decision curve analysis. JAMA 2015, 313, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Making 2006, 26, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Wu, X.; Ren, J.; Gao, Z.; Xu, Y.; Xie, H.; Li, D.; Gong, Z.; Hu, F.; Liu, H.; et al. Assessment of the effect of treatment and assistance program on advanced patients with schistosomiasis japonica in China from 2009 to 2014. Parasitol. Res. 2016, 115, 4267–4273. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xu, J.; Lü, S.; Cao, C.L.; Li, S.Z.; Zhang, L.J. Analysis on epidemiological characteristics of current advanced schistosomiasis cases in China based on the Epidemiological Dynamic Data Collection Platform (EDDC). Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2021, 33, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.Y. Analysis of right hepatic lobe atrophy caused by advanced schistosomiasis by color Doppler ultrasound. Chin. J. Ctrl. Endem. Dis. 2014, 29, 1. [Google Scholar]
- Yang, K.H.; Ge, S.L.; Zhang, M.H.; Chen, H.; Wang, H.; Han, M.L.; Du, L.F. Investigation of the causes for right lobe atrophy in schistosomisis japonica patients using ultrasound. Chin. J. Med. Imaging Technol. 2013, 29, 802–850. [Google Scholar] [CrossRef]
- Adike, A.; Rakela, J.; Czaplicki, C.; Moss, A.; Carey, E. Right hepatic lobe resection and thrombocytopenia. Ann. Hepatol. 2017, 16, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Trotter, J.F.; Gillespie, B.W.; Terrault, N.A.; Abecassis, M.M.; Merion, R.M.; Brown, R.S., Jr.; Olthoff, K.M.; Hayashi, P.H.; Berg, C.L.; Fisher, R.A.; et al. Laboratory test results after living liver donation in the adult-to-adult living donor liver transplantation cohort study. Liver Transpl. 2011, 17, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.Q.; Yang, J.; Yang, J.Y.; Wang, W.T.; Yan, L.N. Low immediate postoperative platelet count is associated with hepatic insufficiency after hepatectomy. World J. Gastroenterol. 2014, 20, 11871–11877. [Google Scholar] [CrossRef]
- Amitrano, L.; Guardascione, M.A.; Brancaccio, V.; Balzano, A. Coagulation disorders in liver disease. Semin Liver Dis. 2002, 22, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Northup, P.G.; Caldwell, S.H. Coagulation in liver disease: A guide for the clinician. Clin. Gastroenterol. Hepatol. 2013, 11, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Kar, R.; Kar, S.S.; Sarin, S.K. Hepatic coagulopathy-intricacies and challenges; a cross-sectional descriptive study of 110 patients from a superspecialty institute in North India with review of literature. Blood Coagul. Fibrinolysis 2013, 24, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Kunugi, H. Hypoproteinemia predicts disease severity and mortality in COVID-19: A call for action. Diagn Pathol. 2021, 16, 31. [Google Scholar] [CrossRef]
- Katalinic, L.; Premuzic, V.; Basic-Jukic, N.; Barisic, I.; Jelakovic, B. Hypoproteinemia as a factor in assessing malnutrition and predicting survival on hemodialysis. J. Artif. Organs 2019, 22, 230–236. [Google Scholar] [CrossRef]
- Sun, W.; Li, G.; Zhang, J.; Zhu, J.; Zhang, Z. The role of nutritional assessment for predicting radiotherapy-induced adverse events in patients with gastric cancer. Br. J. Radiol. 2022, 95, 20201004. [Google Scholar] [CrossRef]
- Garbuzenko, D.V.; Arefyev, N.O. Current approaches to the management of patients with cirrhotic ascites. World J. Gastroenterol. 2019, 25, 3738–3752. [Google Scholar] [CrossRef]
- Jiang, H.; Deng, W.; Zhou, J.; Ren, G.; Cai, X.; Li, S.; Hu, B.; Li, C.; Shi, Y.; Zhang, N.; et al. Machine learning algorithms to predict the 1 year unfavourable prognosis for advanced schistosomiasis. Int. J. Parasitol. 2021, 51, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Kikowicz, M.; Gozdowska, J.; Durlik, M. Massive Ascites of Unknown Origin: A Case Report. Transplant. Proc. 2020, 52, 2527–2529. [Google Scholar] [CrossRef] [PubMed]
- Muhie, O.A. Causes and Clinical Profiles of Ascites at University of Gondar Hospital, Northwest Ethiopia: Institution-Based Cross-Sectional Study. Can J. Gastroenterol. Hepatol. 2019, 2019, 5958032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, M.; Kozuch, P. Treatment of malignant ascites. Curr. Treat. Options. Oncol. 2008, 9, 215–233. [Google Scholar] [CrossRef]
- Zhao, R.; Lu, J.; Shi, Y.; Zhao, H.; Xu, K.; Sheng, J. Current management of refractory ascites in patients with cirrhosis. J. Int. Med. Res. 2018, 46, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Li, G.F.; Teng, Z.; Tian, J.G.; Yu, X.; Yu, X.Q.; Sun, X.D. Quality of life and its influencing factors of advanced schistosomiasis patients in Qingpu District, Shanghai. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2014, 26, 303–307. [Google Scholar]
- Zhou, R.H.; Yu, H.Q.; Liu, J.X.; Xiao, C.L.; Pan, J.; Lai, R.Y.; Li, L.L. Effect of rational emotive therapy on negative emotion in advanced schistosomiasis patients with repeated hospitalization. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2020, 32, 308–310. [Google Scholar] [CrossRef]
- Ottka, C.; Vapalahti, K.; Määttä, A.M.; Huuskonen, N.; Sarpanen, S.; Jalkanen, L.; Lohi, H. High serum creatinine concentration is associated with metabolic perturbations in dogs. J. Vet. Intern. Med. 2021, 35, 405–414. [Google Scholar] [CrossRef]
- Conner, B.J. Treating Hypoalbuminemia. Vet. Clin. N. Am. Small Anim. Pract. 2017, 47, 451–459. [Google Scholar] [CrossRef]
- Siew, E.D.; Matheny, M.E. Choice of Reference Serum Creatinine in Defining Acute Kidney Injury. Nephron 2015, 131, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Calès, P.; Oberti, F.; Michalak, S.; Hubert-Fouchard, I.; Rousselet, M.C.; Konaté, A.; Gallois, Y.; Ternisien, C.; Chevailler, A.; Lunel, F. A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology 2005, 42, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.M.; Bai, S.M.; Zhang, G.M.; Ma, X.B.; Goyal, H. A Novel Method for Estimating Low-Density Lipoprotein (LDL) Levels: Total Cholesterol and Non-High-Density Lipoprotein (HDL) Can Be Used to Predict Abnormal LDL Level in an Apparently Healthy Population. Med. Sci. Monit. 2018, 24, 1688–1692. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.E.; Christodoulidis, G.; Cheng, J.W.; Vittorio, T.J.; Lerakis, S. High-density lipoprotein functionality in coronary artery disease. Am. J. Med. Sci. 2014, 347, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Bosch, N.; Frishman, W.H. Newer therapeutic strategies to alter high-density lipoprotein level and function. Cardiol. Rev. 2014, 22, 17–24. [Google Scholar] [CrossRef]
- Rye, K.A. High density lipoprotein structure, function, and metabolism: A new Thematic Series. J. Lipid. Res. 2013, 54, 2031–2033. [Google Scholar] [CrossRef] [Green Version]
- Kon, V.; Yang, H.C.; Smith, L.E.; Vickers, K.C.; Linton, M.F. High-Density Lipoproteins in Kidney Disease. Int. J. Mol. Sci. 2021, 22. [Google Scholar] [CrossRef]
- Chen, S.D.; Fang, L.L.; Zhang, C.X.; Lian, M.J. Diagnostic Value of HA, LN, CIV and PⅢNP in Patients With Liver Fibrosis and Cirrhosis of Hepatitis B. China Health Stand. Manag. 2022, 12, 5–8. [Google Scholar] [CrossRef]
- Hu, F.; Hu, A.Z.; Li, Y.X.; Tang, G.C.; Zhang, B.L.; Liu, H.Y.; Gao, Z.L.; Xu, J.; Ning, A. Study on the clinical usefulness of the serum fibrosis index to diagnose hepatic fibrosis in patients with schistosomiasis. J. Pathog. Biol. 2014, 12, 1130–1133. [Google Scholar] [CrossRef]
Variables | Assigned Variable | Categories | Training Set | Validation Set | p-Value |
---|---|---|---|---|---|
outcome # | Y | 0 = live | 382 (87%) | 164 (87%) | 0.99 |
1 = death | 58 (13%) | 24 (13%) | |||
age # | X1 | 0 = younger than or equal to 65 | 196 (45%) | 86 (46%) | 0.85 |
1 = older than 65 | 244 (55%) | 102 (54%) | |||
gender # | X2 | 0 = male | 185 (42%) | 94 (50%) | 0.08 |
1 = female | 255 (58%) | 94 (50%) | |||
cholecystectomy # | X3 | 0 = no | 374 (85%) | 155 (82%) | 0.49 |
1 = yes | 66 (15%) | 33 (18%) | |||
splenectomy # | X4 | 0 = no splenectomy | 271 (62%) | 101 (54%) | 0.08 |
1 = splenectomy | 169 (38%) | 87 (46%) | |||
hypertension # | X5 | 0 = no | 302 (69%) | 136 (73%) | 0.35 |
1 = yes | 138 (31%) | 51 (27%) | |||
hypoalbuminemia # | X6 | 0 = no | 335 (76%) | 135 (72%) | 0.30 |
1 = yes | 105 (24%) | 53 (28%) | |||
hypokalemia # | X7 | 0 = no | 380 (86%) | 165 (88%) | 0.73 |
1 = yes | 60 (14%) | 23 (12%) | |||
gastrointestinal bleeding # | X8 | 0 = no | 417 (95%) | 176 (94%) | 0.70 |
1 = yes | 23 (5%) | 12 (6%) | |||
coagulopathy # | X9 | 0 = no | 321 (73%) | 143 (76%) | 0.48 |
1 = yes | 119 (27%) | 45 (24%) | |||
liver fibrosis level # | X10 | 0 = II level | 383 (87%) | 161 (86%) | 0.73 |
1 = III level | 57 (13%) | 27 (14%) | |||
ARL # | X11 | 0 = no | 377 (86%) | 156 (83%) | 0.46 |
1 = yes | 63 (14%) | 32 (17%) | |||
gallbladder disease # | X12 | 0 = no | 300 (68%) | 127 (68%) | 0.95 |
1 = yes | 140 (32%) | 61 (32%) | |||
diabetes # | X13 | 0 = no | 411 (93%) | 173 (92%) | 0.65 |
1 = yes | 29 (7%) | 15 (8%) | |||
HBV infection # | X14 | 0 = no | 428 (97%) | 183 (97%) | 1 & |
1 = yes | 12 (3%) | 5 (3%) | |||
hepatic encephalopathy # | X15 | 0 = no | 436 (99%) | 186 (99%) | 1 & |
1 = yes | 4 (1%) | 2 (1%) | |||
other cancer # | X16 | 0 = no | 432 (98%) | 184 (98%) | 0.76 |
1 = yes | 8 (2%) | 4 (2%) | |||
occupation # | ref | 0 = farmer | 409 (93%) | 176 (93%) | 0.94 |
X17 | 1 = fisher | 2 (1%) | 1 (1%) | ||
X18 | 1 = other | 29 (6%) | 11 (6%) | ||
anemia level # | ref | 0 = normal | 326 (74%) | 145 (77%) | 0.81 |
X19 | 1 = I level | 71 (16%) | 29 (15%) | ||
X20 | 1 = II level | 34 (8%) | 12 (6%) | ||
X21 | 1 = III level | 9 (2%) | 2 (1%) | ||
ascites level # | ref | 0 = I level | 362 (82%) | 151 (80%) | 0.65 |
X22 | 1 = II level | 43 (10%) | 23 (12%) | ||
X23 | 1 = III level | 35 (8%) | 14 (8%) | ||
AST/ALT # | ref | 0 = 1.0 to 1.2 | 63 (14%) | 24 (13%) | 0.21 |
X24 | 1 = less than 1.0 | 66 (15%) | 39 (21%) | ||
X25 | 2 = greater than or equal to 1.2 | 311 (71%) | 125 (66%) | ||
ALB # | ref | 0 = 36.0 to 55.0 g/L | 246 (56%) | 103 (55%) | 0.97 |
X26 | 1 = less than 36.0 g/L | 183 (42%) | 80 (42%) | ||
X27 | 2 = greater than or equal to 55.0 g/L | 11 (2%) | 5 (3%) | ||
TP # | ref | 0 = 65.0 to 85.0 g/L | 219 (50%) | 79 (42%) | 0.17 |
X28 | 1 = less than 65.0 g/L | 190 (43%) | 91 (48%) | ||
X29 | 2 = greater than or equal to 85.0 g/L | 31 (7%) | 18 (10%) | ||
A/G # | ref | 0 = 1.0 to 2.5 | 399 (91%) | 175 (93%) | 0.66 |
X30 | 1 = less than 1.0 | 36 (8%) | 12 (6%) | ||
X31 | 2 = greater than or equal to 2.5 | 5 (1%) | 1 (1%) | ||
CREA # | ref | 0 = 57.0 to 111.0 umol/L | 346 (79%) | 144 (77%) | 0.70 |
X32 | 1 = less than 57.0 umol/L | 35 (8%) | 14 (7%) | ||
X33 | 2 = greater than or equal to 111.0 umol/L | 59 (13%) | 30 (16%) | ||
HDL # | ref | 0 = 0.9 to 2.0 mmol/L | 400 (91%) | 177 (94%) | 0.39 |
X34 | 1 = less than 0.9 mmol/L | 32 (7%) | 8 (4%) | ||
X35 | 2 = greater than or equal to 2.0 mmol/L | 8 (2%) | 3 (2%) | ||
BMI # | ref | 0 = 18.5 to 23.9 | 263 (60%) | 110 (58%) | 0.75 |
X36 | 1 = less than 18.5 | 71 (16%) | 26 (14%) | ||
X37 | 2 = 23.9 to 27.9 | 86 (20%) | 43 (23%) | ||
X38 | 3 = greater than or equal to 27.9 | 20 (4%) | 9 (5%) | ||
CA125 # | X39 | 0 = less than or equal to 35.0 KU/L | 315 (72%) | 130 (69%) | 0.60 |
1 = greater than 35.0 KU/L | 125 (28%) | 58 (31%) | |||
HA # | X40 | 0 = less than or equal to 106.0 ng/mL | 209 (48%) | 80 (43%) | 0.29 |
1 = greater than 106.0 ng/mL | 231 (52%) | 108 (57%) | |||
LN # | X41 | 0 = less than or equal to 133.0 ng/mL | 429 (97%) | 185 (98%) | 0.57 |
1 = greater than 133.0 ng/mL | 11 (3%) | 3 (2%) | |||
PIIIPN-P # | X42 | 0 = less than or equal to 17.0 ng/mL | 350 (80%) | 148 (79%) | 0.90 |
1 = greater than 17.0 ng/mL | 90 (20%) | 40 (21%) | |||
CIV # | X43 | 0 = less than or equal to 98.0 ng/mL | 306 (70%) | 120 (64%) | 0.19 |
1 = greater than 98.0 ng/mL | 134 (30%) | 68 (36%) | |||
TBIL # | X44 | 0 = less than or equal to 19 umol/L | 310 (70%) | 136 (72%) | 0.70 |
1 = greater than 19.0 umol/L | 130 (30%) | 52 (28%) | |||
DBIL # | X45 | 0 = less than or equal to 6.8 umol/L | 289 (66%) | 127 (68%) | 0.72 |
1 = greater than 6.8 umol/L | 151 (34%) | 61 (32%) |
Variables | Coefficient | Variables | Coefficient | Variables | Coefficient |
---|---|---|---|---|---|
(Intercept) | −3.029813 | X16 | . | X32 | . |
X1 | . | X17 | . | X33 | 1.2633524 |
X2 | . | X18 | . | X34 | 0.1707879 |
X3 | . | X19 | . | X35 | . |
X4 | . | X20 | . | X36 | . |
X5 | . | X21 | . | X37 | . |
X6 | . | X22 | . | X38 | . |
X7 | . | X23 | 0.778357 | X39 | 0.2489765 |
X8 | . | X24 | . | X40 | . |
X9 | . | X25 | . | X41 | . |
X10 | . | X26 | . | X42 | 0.9806545 |
X11 | 0.913022 | X27 | . | X43 | . |
X12 | . | X28 | . | X44 | . |
X13 | . | X29 | . | X45 | . |
X14 | . | X30 | 0.1122175 | ||
X15 | . | X31 | . |
Estimate | Std. Error | Z Value | p Value | Exp (Estimate) | Exp (Estimate) 95% CI | |
---|---|---|---|---|---|---|
(Intercept) | −5.119 | 0.580 | −8.834 | <0.001 *** | 0.006 | (0.002–0.016) |
X11 | 1.063 | 0.538 | 1.976 | 0.048 * | 2.894 | (0.991–8.273) |
X23 | 1.723 | 0.661 | 2.606 | 0.009 ** | 5.599 | (1.579–21.618) |
X30 | 0.356 | 0.675 | 0.527 | 0.598 | 1.428 | (0.382–5.509) |
X33 | 2.057 | 0.516 | 3.986 | <0.001 *** | 7.825 | (2.883–22.133) |
X34 | 1.446 | 0.724 | 1.997 | 0.046 * | 4.244 | (1.048–18.350) |
X39 | 0.922 | 0.654 | 1.409 | 0.159 | 2.514 | (0.709–9.596) |
X42 | 2.445 | 0.594 | 4.116 | <0.001 *** | 11.532 | (3.761–39.682) |
Estimate | Std. Error | Z Value | p Value | Exp (Estimate) | Exp (Estimate) 95% CI | |
---|---|---|---|---|---|---|
(Intercept) | −4.930 | 0.534 | −9.234 | <0.001 *** | 0.007 | (0.002–0.018) |
X11 | 1.191 | 0.530 | 2.248 | 0.025 * | 3.290 | (1.146–9.276) |
X23 | 2.071 | 0.632 | 3.278 | 0.001 ** | 7.936 | (2.369–28.975) |
X33 | 2.286 | 0.492 | 4.645 | <0.001 *** | 9.838 | (3.802–26.572) |
X34 | 1.598 | 0.666 | 2.401 | 0.016 * | 4.942 | (1.377–19.168) |
X42 | 2.876 | 0.537 | 5.353 | <0.001 *** | 17.749 | (6.527–55.271) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Z.; Zhang, S.; Li, L.; Li, Y.; Liu, T.; Guo, S.; Xu, X.; Yang, Z.; Zhang, H.; Xu, J. A Nomogram for Predicting Prognosis of Advanced Schistosomiasis japonica in Dongzhi County—A Case Study. Trop. Med. Infect. Dis. 2023, 8, 33. https://doi.org/10.3390/tropicalmed8010033
Hong Z, Zhang S, Li L, Li Y, Liu T, Guo S, Xu X, Yang Z, Zhang H, Xu J. A Nomogram for Predicting Prognosis of Advanced Schistosomiasis japonica in Dongzhi County—A Case Study. Tropical Medicine and Infectious Disease. 2023; 8(1):33. https://doi.org/10.3390/tropicalmed8010033
Chicago/Turabian StyleHong, Zhong, Shiqing Zhang, Lu Li, Yinlong Li, Ting Liu, Suying Guo, Xiaojuan Xu, Zhaoming Yang, Haoyi Zhang, and Jing Xu. 2023. "A Nomogram for Predicting Prognosis of Advanced Schistosomiasis japonica in Dongzhi County—A Case Study" Tropical Medicine and Infectious Disease 8, no. 1: 33. https://doi.org/10.3390/tropicalmed8010033
APA StyleHong, Z., Zhang, S., Li, L., Li, Y., Liu, T., Guo, S., Xu, X., Yang, Z., Zhang, H., & Xu, J. (2023). A Nomogram for Predicting Prognosis of Advanced Schistosomiasis japonica in Dongzhi County—A Case Study. Tropical Medicine and Infectious Disease, 8(1), 33. https://doi.org/10.3390/tropicalmed8010033