Strongyloides and COVID-19: Challenges and Opportunities for Future Research
Abstract
:1. Introduction
2. Previously Reported Cases of Strongyloides Co-infection in Persons with COVID-19
3. Risk Factors for SHS in COVID-19
3.1. Epidemiologic Risk
3.2. Immunosuppression
4. Diagnosis
4.1. Clinical and Radiologic Features
4.2. Eosinophilia
4.3. Laboratory Techniques for Strongyloides Diagnosis
5. Screening
5.1. Proposed Screening Protocols
5.2. Previous Studies Screening for Strongyloides in the Setting of COVID-19
6. Treatment of Strongyloides in COVID-19
6.1. Presumptive Treatment as an Alternative to Diagnostic Screening Tests
6.2. Treatment of Strongyloidiasis and Hyperinfection Syndrome in the Setting of COVID-19
6.3. Ivermectin Use in COVID-19 Clinical Trial Settings
7. Impact of Strongyloides on COVID-19
8. Discussion of the Challenges in Prevention, Diagnosis, and Management of Strongyloides Hyperinfection and COVID-19
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Nutman, T.B. Human infection with Strongyloides stercoralis and other related Strongyloides species. Parasitology 2017, 144, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Geri, G.; Rabbat, A.; Mayaux, J.; Zafrani, L.; Chalumeau-Lemoine, L.; Guidet, B.; Azoulay, E.; Pène, F. Strongyloides stercoralis hyperinfection syndrome: A case series and a review of the literature. Infection 2015, 43, 691–698. [Google Scholar] [CrossRef]
- Luvira, V.; Siripoon, T.; Phiboonbanakit, D.; Somsri, K.; Watthanakulpanich, D.; Dekumyoy, P. Strongyloides stercoralis: A Neglected but Fatal Parasite. Trop. Med. Infect. Dis. 2022, 7, 310. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Pacheco, F.T.; Souza, J.N.; Silva, M.L.; Inês, E.J.; Soares, N.M. Strongyloides stercoralis Infection in Alcoholic Patients. Biomed. Res. Int. 2016, 2016, 4872473. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.V.M.; Mastandrea, G.R.A.; Medeiros, A.C.C.S.; Gryschek, R.C.B.; Paula, F.M.; Corral, M.A. COVID-19 and strongyloidiasis: What to expect from this coinfection? Clinics 2021, 76, e3528. [Google Scholar] [CrossRef]
- Thomas, M.C.; Costello, S.A. Disseminated strongyloidiasis arising from a single dose of dexamethasone before stereotactic radiosurgery. Int. J. Clin. Pract. 1998, 52, 520–521. [Google Scholar]
- Ghosh, K.; Ghosh, K. Strongyloides stercoralis septicaemia following steroid therapy for eosinophilia: Report of three cases. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 1163–1165. [Google Scholar] [CrossRef]
- West, B.C.; Wilson, J.P. Subconjunctival corticosteroid therapy complicated by hyperinfective strongyloidiasis. Am. J. Ophthalmol. 1980, 89, 854–857. [Google Scholar] [CrossRef]
- COVID-19 Excess Mortality Collaborators. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- World Health Organization. Corticosteroids for COVID-19: Living Guidance, 2 September 2020. World Health Organization. Available online: https://apps.who.int/iris/handle/10665/334125 (accessed on 20 December 2022).
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 30 December 2022).
- Mewara, A.; Sahni, N.; Jain, A. Considering opportunistic parasitic infections in COVID-19 policies and recommendations. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 1345–1347. [Google Scholar] [CrossRef]
- Fleitas, P.E.; Kehl, S.D.; Lopez, W.; Travacio, M.; Nieves, E.; Gil, J.F.; Cimino, R.O.; Krolewiecki, A.J. Mapping the global distribution of Strongyloides stercoralis and hookworms by ecological niche modeling. Parasites Vectors 2022, 15, 197. [Google Scholar] [CrossRef]
- Kim, J.M.; Sivasubramanian, G. Strongyloides Hyperinfection Syndrome among COVID-19 Patients Treated with Corticosteroids. Emerg. Infect. Dis. 2022, 28, 1531–1533. [Google Scholar] [CrossRef]
- Gautam, D.; Gupta, A.; Meher, A.; Siddiqui, F.; Singhai, A. Corticosteroids in Covid-19 pandemic have the potential to unearth hidden burden of strongyloidiasis. IDCases 2021, 25, e01192. [Google Scholar] [CrossRef]
- Lier, A.J.; Tuan, J.J.; Davis, M.W.; Paulson, N.; McManus, D.; Campbell, S.; Peaper, D.R.; Topal, J.E. Case Report: Disseminated Strongyloidiasis in a Patient with COVID-19. Am. J. Trop. Med. Hyg. 2020, 103, 1590–1592. [Google Scholar] [CrossRef]
- Núñez-Gómez, L.; Comeche, B.; Subirats, M. Strongyloidiasis: An Important Coinfection in the COVID-19 Era. Am. J. Trop. Med. Hyg. 2021, 105, 1134–1135. [Google Scholar] [CrossRef]
- O’Dowling, A.; Gillis, A. Strongyloides Hyperinfection Syndrome in a Patient with Asymptomatic COVID-19 Infection. Ir. Med. J. 2022, 115, 591. [Google Scholar]
- Babazadeh, S.; Shokri-Shirvani, J.; Ranaee, M. Strongyloides Hyperinfection Syndrome Following Corticosteroid Therapy in a Patient with COVID-19 infection: A Case Report. Iran. J. Med. Microbiol. 2022, 16, 267–270. [Google Scholar] [CrossRef]
- Patel, A.; Bender, W.; Gonzalez, E.; Williamson, M. A Case of Disseminated Strongyloidiasis During Treatment for COVID-19. Chest 2021, 160, A278. [Google Scholar] [CrossRef]
- Marchese, V.; Crosato, V.; Gulletta, M.; Castelnuovo, F.; Cristini, G.; Matteelli, A.; Castelli, F. Strongyloides infection manifested during immunosuppressive therapy for SARS-CoV-2 pneumonia. Infection 2021, 49, 539–542. [Google Scholar] [CrossRef]
- Feria, L.; Torrado, M.; Anton-Vazquez, V. Reactivation of Strongyloides stercoralis in patients with SARS-CoV-2 pneumonia receiving dexamethasone. Med. Clin. 2022, 158, 242–243. [Google Scholar] [CrossRef]
- Pintos-Pascual, I.; López-Dosil, M.; Castillo-Núñez, C.; Múñez-Rubio, E. Eosinophilia and abdominal pain after severe pneumonia due to COVID 19. Enferm. Infecc. Microbiol. Clin. 2021, 39, 478–480. [Google Scholar] [CrossRef]
- Alkaabba, F.; Li, H.; Ibrahim, F. Activating dormant strongyloidiasis secondary to COVID-19 treatment. Glob. J. Med. Clin. Case Rep. 2022, 9, 015–017. [Google Scholar] [CrossRef]
- Busaidi, N.; Al-Farsi, F.; Batashi, H.; Kashoub, M.; Sinani, A.; Balushi, Z.; Khamis, F. Steroid-induced Strongyloidiasis with Cholestasis Post-COVID-19 Pneumonia. Oman Med. J. 2022. [Google Scholar] [CrossRef]
- Stylemans, D.; Van Cauwelaert, S.; D’Haenens, A.; Slabbynck, H. COVID-19—Associated eosinopenia in a patient with chronic eosinophilia due to chronic strongyloidiasis. Infect. Dis. Clin. Pract. 2021, 29, e305–e306. [Google Scholar] [CrossRef]
- Singh, S.; Singh, U.S. Coinfection with Strongyloides and Ascaris in a COVID-19-positive male presenting with acute abdomen: A case report. Future Microbiol. 2022, 17, 1099–1105. [Google Scholar] [CrossRef]
- Lorenzo, H.; Carbonell, C.; Vicente Santiago, M.B.; López-Bernus, A.; Pendones Ulerio, J.; Muñoz Bellido, J.L.; Muro, A.; Belhassen-García, M. Influence of the drugs used in migrant patients with severe acute respiratory syndrome coronavirus 2 and the development of symptomatic strongyloidiasis. Trans. R Soc. Trop. Med. Hyg. 2022, 116, 440–445. [Google Scholar] [CrossRef]
- Buonfrate, D.; Bisanzio, D.; Giorli, G.; Odermatt, P.; Fürst, T.; Greenaway, C.; French, M.; Reithinger, R.; Gobbi, F.; Montresor, A.; et al. The Global Prevalence of Strongyloides stercoralis Infection. Pathogens 2020, 9, 468. [Google Scholar] [CrossRef]
- Schär, F.; Trostdorf, U.; Giardina, F.; Khieu, V.; Muth, S.; Marti, H.; Vounatsou, P.; Odermatt, P. Strongyloides stercoralis: Global Distribution and Risk Factors. PLoS Negl Trop. Dis. 2013, 11, e2288. [Google Scholar] [CrossRef] [Green Version]
- Prasongdee, T.K.; Laoraksawong, P.; Kanarkard, W.; Kraiklang, R.; Sathapornworachai, K.; Naonongwai, S.; Laummaunwai, P.; Sanpool, O.; Intapan, P.M.; Maleewong, W. An eleven-year retrospective hospital-based study of epidemiological data regarding human strongyloidiasis in northeast Thailand. BMC Infect. Dis. 2017, 17, 627. [Google Scholar] [CrossRef] [Green Version]
- Chankongsin, S.; Wampfler, R.; Ruf, M.T.; Odermatt, P.; Marti, H.; Nickel, B.; Keoluangkhot, V.; Neumayr, A. Strongyloides stercoralis prevalence and diagnostics in Vientiane, Lao People’s Democratic Republic. Infect. Dis. Poverty 2020, 9, 133. [Google Scholar] [CrossRef]
- Walzer, P.D.; Milder, J.E.; Banwell, J.G.; Kilgore, G.; Klein, M.; Parker, R. Epidemiologic features of Strongyloides stercoralis infection in an endemic area of the United States. Am. J. Trop. Med. Hyg. 1982, 31, 313–319. [Google Scholar] [CrossRef]
- Russell, E.S.; Gray, E.B.; Marshall, R.E.; Davis, S.; Beaudoin, A.; Handali, S.; McAuliffe, I.; Davis, C.; Woodhall, D. Prevalence of Strongyloides stercoralis antibodies among a rural Appalachian population—Kentucky, 2013. Am. J. Trop. Med. Hyg. 2014, 91, 1000–1001. [Google Scholar] [CrossRef] [Green Version]
- Singer, R.; Sarkar, S. Modeling strongyloidiasis risk in the United States. Int. J. Infect. Dis. 2020, 100, 366–372. [Google Scholar] [CrossRef]
- Vazquez Guillamet, L.J.; Saul, Z.; Miljkovich, G.; Vilchez, G.A.; Mendonca, N.; Gourineni, V.; Lillo, N.; Pinto, M.; Baig, A.; Gangcuangco, L.M. Strongyloides Stercoralis infection among Human Immunodeficiency Virus (HIV)-infected patients in the United States of America: A Case Report and Review of Literature. Am. J. Case Rep. 2017, 18, 339–346. [Google Scholar] [CrossRef] [Green Version]
- McKenna, M.L.; McAtee, S.; Bryan, P.E.; Jeun, R.; Ward, T.; Kraus, J.; Bottazzi, M.E.; Hotez, P.J.; Flowers, C.C.; Mejia, R. Human intestinal parasite burden and poor sanitation in rural Alabama. Am. J. Trop. Med. Hyg. 2017, 97, 1623–1628. [Google Scholar] [CrossRef]
- Puthiyakunnon, S.; Boddu, S.; Li, Y.; Zhou, X.; Wang, C.; Li, J.; Chen, X. Strongyloidiasis—An insight into its global prevalence and management. PLoS Negl. Trop. Dis. 2014, 8, e3018. [Google Scholar] [CrossRef] [Green Version]
- Valerio, L.; Roure, S.; Fernández-Rivas, G.; Basile, L.; Martínez-Cuevas, O.; Ballesteros, Á.L.; Ramos, X.; Sabrià, M. North Metropolitan Working Group on Imported Diseases. Strongyloides stercoralis, the hidden worm. Epidemiological and clinical characteristics of 70 cases diagnosed in the North Metropolitan Area of Barcelona, Spain, 2003–2012. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Asundi, A.; Beliavsky, A.; Liu, X.J.; Akaberi, A.; Schwarzer, G.; Bisoffi, Z.; Requena-Méndez, A.; Shrier, I.; Greenaway, C. Prevalence of strongyloidiasis and schistosomiasis among migrants: A systematic review and meta-analysis. Lancet Glob. Health 2019, 7, e236–e248. [Google Scholar] [CrossRef] [Green Version]
- Posey, D.L.; Blackburn, B.G.; Weinberg, M.; Flagg, E.W.; Ortega, L.; Wilson, M.; Secor, W.E.; Sanders-Lewis, K.; Won, K.; Maguire, J.H. High prevalence and presumptive treatment of schistosomiasis and strongyloidiasis among African refugees. Clin. Infect. Dis. 2007, 45, 1310–1315. [Google Scholar] [CrossRef] [Green Version]
- Diaz, E.; Mamelund, S.E.; Eid, J.; Aasen, H.S.; Kaarbøe, O.M.; Brokstad, R.J.C.; Gloppen, S.; Beyer, A.; Kumar, B.N. Learning from the COVID-19 pandemic among migrants: An innovative, system-level, interdisciplinary approach is needed to improve public health. Scand. J. Public Health 2021, 49, 804–808. [Google Scholar] [CrossRef]
- Migration Data Portal. Available online: https://www.migrationdataportal.org/themes/migration-data-relevant-covid-19-pandemic (accessed on 10 January 2023).
- Krolewiecki, A.; Nutman, T.B. Strongyloidiasis: A Neglected Tropical Disease. Infect. Dis. Clin. N. Am. 2019, 33, 135–151. [Google Scholar] [CrossRef]
- Abdoli, A. Helminths and COVID-19 Co-Infections: A Neglected Critical Challenge. ACS Pharmacol. Transl. Sci. 2020, 3, 1039–1041. [Google Scholar] [CrossRef]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The impact of COVID-19 on pregnancy outcomes: A systematic review and meta-analysis. CMAJ 2021, 193, E540–E548. [Google Scholar] [CrossRef]
- Barratt, J.L.N.; Sapp, S.G.H. Machine learning-based analyses support the existence of species complexes for Strongyloides fuelleborni and Strongyloides stercoralis. Parasitology 2020, 147, 1184–1195. [Google Scholar] [CrossRef]
- Rubel, M.A.; Abbas, A.; Taylor, L.J.; Connell, A.; Tanes, C.; Bittinger, K.; Ndze, V.N.; Fonsah, J.Y.; Ngwang, E.; Essiane, A.; et al. Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biol. 2020, 21, 122. [Google Scholar] [CrossRef]
- Araujo Navas, A.L.; Hamm, N.A.; Soares Magalhães, R.J.; Stein, A. Mapping Soil Transmitted Helminths and Schistosomiasis under Uncertainty: A Systematic Review and Critical Appraisal of Evidence. PLoS Negl. Trop. Dis. 2016, 10, e0005208. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar] [CrossRef]
- REMAP-CAP Investigators. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Schiff, M.H.; Kremer, J.M.; Jahreis, A.; Vernon, E.; Isaacs, J.D.; van Vollenhoven, R.F. Integrated safety in tocilizumab clinical trials. Arthritis Res. Ther. 2011, 13, R141. [Google Scholar] [CrossRef] [Green Version]
- Winthrop, K.L.; Mariette, X.; Silva, J.T.; Benamu, E.; Calabrese, L.H.; Dumusc, A.; Smolen, J.S.; Aguado, J.M.; Fernández-Ruiz, M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Soluble immune effector molecules [II]: Agents targeting interleukins, immunoglobulins and complement factors). Clin. Microbiol. Infect. 2018, 24, S21–S40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriazopoulou, E.; Poulakou, G.; Milionis, H.; Metallidis, S.; Adamis, G.; Tsiakos, K.; Fragkou, A.; Rapti, A.; Damoulari, C.; Fantoni, M.; et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: A double-blind, randomized controlled phase 3 trial. Nat. Med. 2021, 10, 1752–1760. [Google Scholar] [CrossRef]
- Lequerré, T.; Quartier, P.; Rosellini, D.; Alaoui, F.; De Bandt, M.; Mejjad, O.; Kone-Paut, I.; Michel, M.; Dernis, E.; Khellaf, M.; et al. Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still disease: Preliminary experience in France. Ann. Rheum Dis. 2008, 67, 302–308. [Google Scholar] [CrossRef] [Green Version]
- RECOVERY Collaborative Group. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet 2022, 400, 359–368. [Google Scholar] [CrossRef]
- COV-BARRIER Study Group. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): A randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir. Med. 2021, 9, 1407–1418. [Google Scholar] [CrossRef]
- Stokes, E.K.; Zambrano, L.D.; Anderson, K.N.; Marder, E.P.; Raz, K.M.; El Burai Felix, S.; Tie, Y.; Fullerton, K.E. Coronavirus Disease 2019 Case Surveillance—United States, January 22–May 30, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef]
- Pichard, D.C.; Hensley, J.R.; Williams, E.; Apolo, A.B.; Klion, A.D.; DiGiovanna, J.J. Rapid development of migratory, linear, and serpiginous lesions in association with immunosuppression. J. Am. Acad Dermatol. 2014, 70, 1130–1134. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Cauhe, J.; Ortega-Quijano, D.; Suarez-Valle, A.; Dominguez-Santas, M.; Diaz-Guimaraens, B.; Fernandez-Nieto, D. Comment on “Are erythema multiforme and urticaria related to a better outcome of COVID 19?” Eosinophil count in seven patients with COVID-19 and urticarial rash. Dermatol. Ther. 2020, 33, e13844. [Google Scholar] [CrossRef]
- Tamarozzi, F.; Martello, E.; Giorli, G.; Fittipaldo, A.; Staffolani, S.; Montresor, A.; Bisoffi, Z.; Buonfrate, D. Morbidity Associated with Chronic Strongyloides stercoralis Infection: A Systematic Review and Meta-Analysis. Am. J. Trop. Med. Hyg. 2019, 100, 1305–1311. [Google Scholar] [CrossRef]
- Freeman, E.E.; McMahon, D.E.; Lipoff, J.B.; Rosenbach, M.; Kovarik, C.; Desai, S.R.; Harp, J.; Takeshita, J.; French, L.E.; Lim, H.W.; et al. The spectrum of COVID-19-associated dermatologic manifestations: An international registry of 716 patients from 31 countries. J. Am. Acad Dermatol. 2020, 83, 1118–1129. [Google Scholar] [CrossRef]
- Woodring, J.H.; Halfhill, H., 2nd; Reed, J.C. Pulmonary strongyloidiasis: Clinical and imaging features. AJR Am. J. Roentgenol. 1994, 162, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Parekh, M.; Donuru, A.; Balasubramanya, R.; Kapur, S. Review of the Chest CT Differential Diagnosis of Ground-Glass Opacities in the COVID Era. Radiology 2020, 297, E289–E302. [Google Scholar] [CrossRef]
- Fiorentini, L.F.; Bergo, P.; Meirelles, G.S.P.; Capobianco, J.; Mohammed, T.L.; Verma, N.; Marchiori, E.; Irion, K.L.; Hochhegger, B. Pictorial Review of Thoracic Parasitic Diseases: A Radiologic Guide. Chest 2020, 157, 1100–1113. [Google Scholar] [CrossRef]
- Bao, C.; Liu, X.; Zhang, H.; Li, Y.; Liu, J. Coronavirus Disease 2019 (COVID-19) CT Findings: A Systematic Review and Meta-analysis. J. Am. Coll. Radiol. 2020, 17, 701–709. [Google Scholar] [CrossRef]
- John, T.M.; Malek, A.E.; Mulanovich, V.E.; Adachi, J.A.; Raad, I.I.; Hamilton, A.R.; Shpall, E.J.; Rezvani, K.; Aitken, S.L.; Jain, N.; et al. Migratory Pulmonary Infiltrates in a Patient With COVID-19 Infection and the Role of Corticosteroids. Mayo Clin. Proc. 2020, 95, 2038–2040. [Google Scholar] [CrossRef]
- Santana, A.N.C.; Melo, F.X.; Xavier, F.D.; Amado, V.M. Migratory pulmonary infiltrates in a patient with COVID-19 and lymphoma. J. Bras. Pneumol. 2021, 47, e20200528. [Google Scholar] [CrossRef]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef]
- Buonfrate, D.; Fittipaldo, A.; Vlieghe, E.; Bottieau, E. Clinical and laboratory features of Strongyloides stercoralis infection at diagnosis and after treatment: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 1621–1628. [Google Scholar] [CrossRef]
- Keiser, P.B.; Nutman, T.B. Strongyloides stercoralis in the Immunocompromised Population. Clin. Microbiol. Rev. 2004, 17, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Tu, L.; Zhu, P.; Mu, M.; Wang, R.; Yang, P.; Wang, X.; Hu, C.; Ping, R.; Hu, P.; et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. Am. J. Respir Crit Care Med. 2020, 201, 1372–1379. [Google Scholar] [CrossRef] [Green Version]
- Tanni, F.; Akker, E.; Zaman, M.M.; Figueroa, N.; Tharian, B.; Hupart, K.H. Eosinopenia and COVID-19. J. Am. Osteopath Assoc. 2020. epub ahead of print. [Google Scholar] [CrossRef]
- Li, Q.; Ding, X.; Xia, G.; Chen, H.-G.; Chen, F.; Geng, Z.; Xu, L.; Lei, S.; Pan, A.; Wang, L.; et al. Eosinopenia and elevated C-reactive protein facilitate triage of Covid-19 patients in fever clinic: A retrospective case-control study. EClinicalMedicine 2020, 23, 100375. [Google Scholar] [CrossRef]
- Liu, F.; Xu, A.; Zhang, Y.; Xuan, W.; Yan, T.; Pan, K.; Yu, W.; Zhang, J. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int. J. Infect. Dis. 2020, 95, 183–191. [Google Scholar] [CrossRef]
- Xie, G.; Ding, F.; Han, L.; Yin, D.; Lu, H.; Zhang, M. The role of peripheral blood eosinophil counts in COVID-19 patients. Allergy 2021, 76, 471–482. [Google Scholar] [CrossRef]
- Schmid-Grendelmeier, P.; Steiger, P.; Naegeli, M.C.; Kolm, I.; Lang, C.C.V.; Maverakis, E.; Brüggen, M.-C. Benralizumab for severe DRESS in two COVID-19 patients. J. Allergy Clin. Immunol Pract. 2021, 9, 481–483. [Google Scholar] [CrossRef]
- Schramm, M.A.; Venhoff, N.; Wagner, D.; Thiel, J.; Huzly, D.; Craig-Mueller, N.; Panning, M.; Hengel, H.; Kern, W.V.; Voll, R.E. COVID-19 in a severely immunosuppressed patient with life-threatening eosinophilic granulomatosis with polyangiitis. Front. Immunol. 2020, 11, 2086. [Google Scholar] [CrossRef]
- Dreyer, G.; Fernandes-Silva, E.; Alves, S.; Rocha, A.; Albuquerque, R.; Addiss, D. Patterns of detection of Strongyloides stercoralis in stool specimens: Implications for diagnosis and clinical trials. J. Clin. Microbiol. 1996, 34, 2569–2571. [Google Scholar] [CrossRef] [Green Version]
- Gataz, L.; Castro, R.; Zamora, P.; Kramer, M.; Gareca, N.; Torrico-Espinoza, M.; Macias, J.; Lisarazu-Valasquez, S.; Rodriguez, G.; Valencia-Rivero, C.; et al. Epidemiology of Strongyloides stercoralis infection in Bolivian patients at high risk of complications. PLoS Negl. Trop. Dis. 2019, 13, e0007028. [Google Scholar] [CrossRef]
- Meurs, L.; Polderman, A.M.; Melchers, N.V.S.V.; Brienen, E.A.T.; Verweij, J.J.; Groosjohan, B.; Mendes, F.; Mechendura, M.; Hepp, D.H.; Langenberg, M.C.C.; et al. Diagnosing Polyparasitism in a High-Prevalence Setting in Beira, Mozambique: Detection of Intestinal Parasites in Fecal Samples by Microscopy and Real-Time PCR. PLoS Negl. Trop. Dis. 2017, 11, e0005310. [Google Scholar] [CrossRef] [Green Version]
- Luvira, V.; Trakulhun, K.; Mungthin, M.; Naaglor, T.; Chantawat, N.; Pakdee, W.; Phiboonbanakit, D.; Dekumyoy, P. Comparative Diagnosis of Strongyloidiasis in Immunocompromised Patients. Am. J. Trop. Med. Hyg. 2016, 95, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, R.; Nutman, T. Strongyloides stercoralis infection in the immunocompromised host. Curr. Infect. Dis Rep. 2008, 10, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Barkati, S.; Greenaway, C.; Libman, M.D. Strongyloidiasis in immunocompromised migrants to non-endemic countries in the era of COVID-19: What is the role for presumptive ivermectin? J. Travel Med. 2022, 29, taab155. [Google Scholar] [CrossRef]
- Boulware, D.R.; Stauffer, W.M.; Hendel-Paterson, B.R.; Rocha, J.L.; Seet, R.C.; Summer, A.P.; Nield, L.S.; Supparatpinyo, K.; Chaiwarith, R.; Walker, P.F. Maltreatment of Strongyloides infection: Case series and worldwide physicians-in-training survey. Am. J. Med. 2007, 120, 545.e1–545.e8. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, W.M.; Alpern, J.D.; Walker, P.F. COVID-19 and Dexamethasone: A potential strategy to avoid steroid-related Strongyloides hyperinfection. JAMA 2020, 324, 623–624. [Google Scholar] [CrossRef]
- Boggild, A.K.; Libman, M.; Greenaway, C.; McCarthy, A.E. Committee to Advise on Tropical Medicine; Travel (CATMAT). CATMAT statement on disseminated strongyloidiasis: Prevention, assessment and management guidelines. Can. Commun. Dis. Rep. 2016, 42, 12–19. [Google Scholar] [CrossRef]
- De Wilton, A.; Nabarro, L.E.; Godbole, G.S.; Chiodini, P.L. Risk of Strongyloides hyperinfection syndrome when prescribing dexamethasone in severe COVID-19. Travel. Med. Infect. Dis. 2021, 40, 101981. [Google Scholar] [CrossRef]
- Mohareb, A.M.; Rosenberg, J.M.; Bhattacharyya, R.P.; Kotton, C.N.; Chu, J.T.; Jilg, N.; Hysell, K.M.; Albin, J.S.; Sen, P.; Bloom, S.M.; et al. Preventing Infectious Complications of Immunomodulation in COVID-19 in Foreign-Born Patients. J. Immigr Minor. Health 2021, 23, 1343–1347. [Google Scholar] [CrossRef]
- Carnino, L.; Schwob, J.M.; Gétaz, L.; Nickel, B.; Neumayr, A.; Eperon, G. A Practical Approach to Screening for Strongyloides stercoralis. Trop. Med. Infect. Dis. 2021, 6, 203. [Google Scholar] [CrossRef]
- Olivera, M.J. Dexamethasone and COVID-19: Strategies in Low- and Middle-Income Countries to Tackle Steroid-Related Strongyloides Hyperinfection. Am. J. Trop. Med. Hyg. 2021, 104, 1611–1612. [Google Scholar] [CrossRef]
- Jenks, N.P.; Driscoll, B.; Locke, T. Strongyloidiasis Hyperinfection Syndrome in COVID-19 Positive Migrants Treated with Corticosteroids. J. Immigr. Minor. Health 2022, 24, 1431–1434. [Google Scholar] [CrossRef]
- Rodríguez-Guardado, A.; Álvarez-Martínez, M.J.; Flores, M.D.; Sulleiro, E.; Torrús-Tendero, D.; Velasco, M.; Membrillo, F.J. Imported Pathology Group of the SEIMC. Screening for strongyloidiasis in Spain in the context of the SARS-CoV-2 pandemic: Results of a survey on diagnosis and treatment. Enferm. Infecc. Microbiol. Clin. 2022, in press. [Google Scholar] [CrossRef]
- Wolday, D.; Gebrecherkos, T.; Arefaine, Z.G.; Kiros, Y.K.; Gebreegzabher, A.; Tasew, G.; Abdulkader, M.; Abraha, H.E.; Desta, A.A.; Hailu, A.; et al. Effect of co-infection with intestinal parasites on COVID-19 severity: A prospective observational cohort study. EClinicalMedicine 2021, 39, 101054. [Google Scholar] [CrossRef]
- Vellere, I.; Graziani, L.; Tilli, M.; Mantella, A.; Campolmi, I.; Mencarini, J.; Borchi, B.; Spinicci, M.; Antonelli, A.; Rossolini, G.M.; et al. Strongyloidiasis in the COVID era: A warning for an implementation of the screening protocol. Infection 2021, 49, 1065–1067. [Google Scholar] [CrossRef]
- Czeresnia, J.M.; Weiss, L.M. Strongyloides stercoralis. Lung 2022, 2, 141–148. [Google Scholar] [CrossRef]
- Buonfrate, D.; Salas-Coronas, J.; Muñoz, J.; Maruri, B.T.; Rodari, P.; Castelli, F.; Zammarchi, L.; Bianchi, L.; Gobbi, F.; Cabezas-Fernández, T.; et al. Multiple-dose versus single-dose ivermectin for Strongyloides stercoralis infection (Strong Treat 1 to 4): A multicentre, open-label, phase 3, randomised controlled superiority trial. Lancet Infect. Dis. 2019, 19, 1181–1190. [Google Scholar] [CrossRef]
- Martínez, A.; Garcia, R.C.; Martin, C.C.; De Lope, L.R.; Ramos, J.C.; Del Castillo, S.S.F. 4CPS-405 Strongyloides stercoralis prophylaxis with ivermectin in COVID-19 patients. Eur. J. Hosp. Pharm. 2021, 28, A115–A116. [Google Scholar] [CrossRef]
- Mejia, R.; Nutman, T.B. Screening, prevention, and treatment for hyperinfection syndrome and disseminated infections caused by Strongyloides stercoralis. Curr. Opin Infect. Dis. 2012, 25, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Buonfrate, D.; Rodari, P.; Barda, B.; Page, W.; Einsiedel, L.; Watts, M.R. Current pharmacotherapeutic strategies for Strongyloidiasis and the complications in its treatment. Expert Opin. Pharmacother. 2022, 23, 1617–1628. [Google Scholar] [CrossRef]
- Bitterman, A.; Martins, C.P.; Cices, A.; Nadendla, M.P. Comparison of Trials Using Ivermectin for COVID-19 between Regions With High and Low Prevalence of Strongyloidiasis: A Meta-analysis. JAMA Netw. Open 2022, 5, e223079. [Google Scholar] [CrossRef]
- Rodriguez Mega, E. Latin America’s embrace of an unproven COVID treatment is hindering drug trials. Nature 2020, 586, 481–482. [Google Scholar] [CrossRef]
- Ademe, M.; Girma, F. The Influence of Helminth Immune Regulation on COVID-19 Clinical Outcomes: Is it Beneficial or Detrimental? Infect. Drug Resist. 2021, 14, 4421–4426. [Google Scholar] [CrossRef]
- Pavel, A.B.; Glickman, J.W.; Michels, J.R.; Kim-Schulze, S.; Miller, R.L.; Guttman-Yassky, E. Th2/Th1 Cytokine Imbalance Is Associated With Higher COVID-19 Risk Mortality. Front. Genet. 2021, 12, 706902. [Google Scholar] [CrossRef]
- Rajamanickam, A.; Munisankar, S.; Thiruvengadam, K.; Menon, P.A.; Dolla, C.; Nutman, T.B.; Babu, S. Impact of Helminth Infection on Metabolic and Immune Homeostasis in Non-diabetic Obesity. Front. Immunol. 2020, 11, 2195. [Google Scholar] [CrossRef]
- Fonte, L.; Acosta, A.; Sarmiento, M.E.; Ginori, M.; García, G.; Norazmi, M.N. COVID-19 Lethality in Sub-Saharan Africa and Helminth Immune Modulation. Front. Immunol. 2020, 11, 574910. [Google Scholar] [CrossRef]
- Nookala, S.; Srinivasan, S.; Kaliraj, P.; Narayanan, R.B.; Nutman, T.B. Impairment of tetanus-specific cellular and humoral responses following tetanus vaccination in human lymphatic filariasis. Infect. Immun. 2004, 72, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Sabin, E.A.; Araujo, M.I.; Carvalho, E.M.; Pearce, E.J. Impairment of tetanus toxoid-specific Th1-like immune responses in humans infected with Schistosoma mansoni. J Infect. Dis. 1996, 173, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Nouatin, O.; Mengue, J.B.; Dejon-Agobé, J.C.; Fendel, R.; Ibáñez, J.; Ngoa, U.A.; Edoa, J.R.; Adégbité, B.R.; Honkpéhédji, Y.J.; Zinsou, J.F.; et al. Exploratory analysis of the effect of helminth infection on the immunogenicity and efficacy of the asexual blood-stage malaria vaccine candidate GMZ2. PLoS Negl. Trop. Dis. 2021, 15, e0009361. [Google Scholar] [CrossRef]
- Wait, L.F.; Dobson, A.P.; Graham, A.L. Do parasite infections interfere with immunisation? A review and meta-analysis. Vaccine 2020, 38, 5582–5590. [Google Scholar] [CrossRef]
- Brückner, S.; Agnandji, S.T.; Berberich, S.; Bache, E.; Fernandes, J.F.; Schweiger, B.; Massinga Loembe, M.; Engleitner, T.; Lell, B.; Mordmüller, B.; et al. Effect of Antihelminthic Treatment on Vaccine Immunogenicity to a Seasonal Influenza Vaccine in Primary School Children in Gabon: A Randomized Placebo-Controlled Trial. PLoS Negl. Trop. Dis. 2015, 9, e0003768. [Google Scholar] [CrossRef]
- Chacin-Bonilla, L.; Chacón-Fonseca, N.; Rodriguez-Morales, A.J. Emerging issues in COVID-19 vaccination in tropical areas: Impact of the immune response against helminths in endemic areas. Travel Med. Infect. Dis. 2021, 42, 102087. [Google Scholar] [CrossRef]
- Yansouni, C.P.; Papenburg, J.; Cheng, M.P.; Corsini, R.; Caya, C.; Vasquez Camargo, F.; Harrison, L.B.; Zaharatos, G.; Büscher, P.; Faye, B.; et al. Specificity of SARS-CoV-2 Antibody Detection Assays against S and N Proteins among Pre-COVID-19 Sera from Patients with Protozoan and Helminth Parasitic Infections. J. Clin. Microbiol. 2022, 60, e0171721. [Google Scholar] [CrossRef]
- Ben-Amram, H.; Bashi, T.; Werbner, N.; Neuman, H.; Fridkin, M.; Blank, M.; Shoenfeld, Y.; Koren, O. Tuftsin-Phosphorylcholine Maintains Normal Gut Microbiota in Collagen Induced Arthritic Mice. Front. Microbiol. 2017, 8, 1222. [Google Scholar] [CrossRef] [Green Version]
- Teerawattananon, Y.; Sarin, K.C.; Chi, Y.L.; Dabak, S.; Kazibwe, J.; Clapham, H.; Lopez Hernandez, C.; Leung, G.M.; Sharifi, H.; Habtemariam, M.; et al. Recalibrating the notion of modelling for policymaking during pandemics. Epidemics 2022, 38, 100552. [Google Scholar] [CrossRef]
Reference | Patient Age (Years) and Sex | Reporting Country | Patient’s Country of Birth | Time Since Immigration (Years) | COVID-19 Treatment | Strongyloides Diagnostic Methods Used | Estimated Interval Between COVID-19 Symptom Onset and Strongyloides Diagnosis (Days) | Diagnosis | Strongyloides Treatment | Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Kim [15] | 63 M | United States (California) | Cambodia | NS | Dexamethasone, barcitinib | Stool exam negative; BAL fluid microscopy positive; serology positive | 28 | SHS | Ivermectin | Died |
Gautam [16] | 53 M | India | India | NA | Methylprednisolone | Stool exam positive | 60 | SHS | Ivermectin and albendazole | Survived |
Lier [17] | 68 M | United States (Connecticut) | Ecuador | 20 | Methylprednisolone, tocilizumab | Stool exam negative; sputum sample positive | 27 | SHS | Ivermectin and albendazole | Survived |
Núñez-Gómez [18] | 45 M | Spain | Ecuador | 20 | Dexamethasone | Stool exam positive; Serology positive | 12 | SHS | Ivermectin | Survived |
O’Dowling [19] | 60 F | Ireland | Nigeria | 22 | None | Serology positive; pathology of small bowel resected with parasites | NA (asymptomatic SARS-CoV-2) | SHS | Ivermectin | Survived |
Babazadeh [20] | 70 M | Iran | Iran | NA | Dexamethasone | Histopathology of gastric and duodenal biopsy | 21 | SHS | Ivermectin and albendazole | Survived |
Patel [21] | 72 M | United States | Nicaragua | NS | Dexamethasone | Stool exam positive; BAL fluid microscopy | NS | SHS | Ivermectin | Survived |
Marchese [22] | 59 F | Northern Italy | Southern Italy | NS | Dexamethasone, tocilizumab | Stool exam positive; serology positive | 32 | Chronic strongyloidiasis | Ivermectin | Survived |
Feria [23] | 44 M | Spain | Bolivia | 17 | Dexamethasone | Serology positive | 7 | Chronic strongyloidiasis | Ivermectin | Survived |
Feria [23] | 74 F | Spain | Honduras | 7 | Dexamethasone | Serology positive | 10 | Chronic strongyloidiasis | Ivermectin | Survived |
Pintos-Pascual [24] | 70 M | Spain | Ecuador | 12 | Methylprednisolone, tocilizumab, anakinra | Stool exam positive; serology positive | 55 | Chronic strongyloidiasis | Ivermectin and albendazole | Survived |
Alkaabba [25] | 76 M | United States | United States | NA | Dexamethasone | Stool exam positive; histopathology of duodenum | 14 | Chronic strongyloidiasis | Ivermectin | Survived |
Busaidi [26] | 55 M | Oman | Oman | NA | Dexamethasone | Stool exam positive | 30 | Chronic strongyloidiasis | Ivermectin and albendazole | Survived |
Stylemans [27] | 59 M | Belgium | Ecuador | 7 | Methylprednisolone, anakinra | PCR on stool exam positive; serology positive | 60 | Chronic strongyloidiasis | Ivermectin | Survived |
Singh [28] | 58 M | India | India | NA | Methylprednisolone | Stool exam positive | 6 | Chronic strongyloidiasis | Ivermectin and albendazole | Survived |
Lorenzo [29] | 37 F | Spain | Bolivia | NS | Steroids | Serology positive | NS | Chronic strongyloidiasis | NS | Survived |
Lorenzo [29] | 47 F | Spain | Bolivia | NS | Steroids | Serology positive | NS | Chronic strongyloidiasis | NS | Survived |
Lorenzo [29] | 33 F | Spain | Honduras | NS | Steroids | Serology positive | NS | Chronic strongyloidiasis | NS | Survived |
Lorenzo [29] | 38 M | Spain | Honduras | NS | No steroids or tocilizumab | Serology positive | NS | Chronic strongyloidiasis | NS | Survived |
Lorenzo [29] | 22 M | Spain | Morocco | NS | No steroids or tocilizumab ^ | Serology positive | NS | Chronic strongyloidiasis | NS | Survived |
Lorenzo [29] | 69 F | Spain | Columbia | NS | No steroids or tocilizumab | Serology positive | NS | Chronic strongyloidiasis | NS | Survived |
Lorenzo [29] | 27 F | Spain | Peru | NS | No steroids or tocilizumab | Serology positive | NS | Chronic strongyloidiasis | NS | Survived |
Domain | Deficit |
---|---|
Immunology |
|
Epidemiology and public health |
|
Screening at risk populations |
|
Diagnostic testing |
|
Treatment |
|
Research study settings |
|
Other special populations |
|
Domain | Future Research Needed |
---|---|
Immunology |
|
Epidemiology and public health |
|
Screening at risk populations |
|
Diagnostic testing |
|
Treatment |
|
Research settings |
|
Special populations |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seeger, D.; Cornejo Cisneros, E.; Lucar, J.; Denyer, R. Strongyloides and COVID-19: Challenges and Opportunities for Future Research. Trop. Med. Infect. Dis. 2023, 8, 127. https://doi.org/10.3390/tropicalmed8020127
Seeger D, Cornejo Cisneros E, Lucar J, Denyer R. Strongyloides and COVID-19: Challenges and Opportunities for Future Research. Tropical Medicine and Infectious Disease. 2023; 8(2):127. https://doi.org/10.3390/tropicalmed8020127
Chicago/Turabian StyleSeeger, Daniel, Enrique Cornejo Cisneros, Jose Lucar, and Rachel Denyer. 2023. "Strongyloides and COVID-19: Challenges and Opportunities for Future Research" Tropical Medicine and Infectious Disease 8, no. 2: 127. https://doi.org/10.3390/tropicalmed8020127
APA StyleSeeger, D., Cornejo Cisneros, E., Lucar, J., & Denyer, R. (2023). Strongyloides and COVID-19: Challenges and Opportunities for Future Research. Tropical Medicine and Infectious Disease, 8(2), 127. https://doi.org/10.3390/tropicalmed8020127