Field-Applicable Loop-Mediated Isothermal Amplification for the Detection of Seven Common Human Papillomavirus Subtypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples and Recombinant Plasmids
2.2. Design of Primers
2.3. Simple and Efficient Sample Lysis
2.4. Optimization of LAMP Reaction Conditions
2.5. Specificity and Sensitivity of LAMP Assays for HPV Detection
2.6. LAMP Detection Coupled with a Microfluidic Chip (LAMP-Chip)
2.7. Detection of Clinical Samples and Statistical Analysis
3. Results
3.1. Selection of Primers and HPV Standard Assessment
3.2. Specificity of Two LAMP Assays for HPV Detection
3.3. Sensitivity of Two LAMP Assays for HPV Detection
3.4. Clinical Evaluation and Comparison between the LAMP Assays and qPCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajaram, S.; Gupta, B. Screening for cervical cancer: Choices & dilemmas. Indian J. Med. Res. 2021, 154, 210–220. [Google Scholar] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Xicotencatl, L.; Pedroza-Saavedra, A.; Chihu-Amparan, L.; Salazar-Piña, A.; Maldonado-Gama, M.; Esquivel-Guadarrama, F. Cellular Functions of HPV16 E5 Oncoprotein during Oncogenic Transformation. Mol. Cancer Res. MCR 2021, 19, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Srinivasan, G.; Jain, A. Cervical cancer: Novel treatment strategies offer renewed optimism. Pathol. Res. Pract. 2024, 254, 155136. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Nie, K.; Yang, M.-J.; Wang, M.; Li, J.; Zhang, C.; Liu, H.-T.; Ma, X.-J. Visual detection of high-risk human papillomavirus genotypes 16, 18, 45, 52, and 58 by loop-mediated isothermal amplification with hydroxynaphthol blue dye. J. Clin. Microbiol. 2011, 49, 3545–3550. [Google Scholar] [CrossRef] [PubMed]
- Wieland, U.; Kreuter, A. HPV-induced anal lesions. Der Hautarzt Z. Dermatol. Venerol. Verwandte Geb. 2015, 66, 439–445. [Google Scholar]
- Shidham, V.B. Role of immunocytochemistry in cervical cancer screening. CytoJournal 2022, 19, 42. [Google Scholar] [CrossRef]
- Vallely, A.J.B.; Saville, M.; Badman, S.G.; Gabuzzi, J.; Bolnga, J.; Mola, G.D.L.; Kuk, J.; Wai, M.; Munnull, G.; Garland, S.M.; et al. Point-of-care HPV DNA testing of self-collected specimens and same-day thermal ablation for the early detection and treatment of cervical pre-cancer in women in Papua New Guinea: A prospective, single-arm intervention trial (HPV-STAT). Lancet. Glob. Health 2022, 10, e1336–e1346. [Google Scholar] [CrossRef]
- WHO Guideline for Screening and Treatment of Cervical Pre-Cancer Lesions for Cervical Cancer Prevention; World Health Organization: Geneva, Switzerland, 2021.
- Ding, N.; Qi, W.; Wu, Z.; Zhang, Y.; Xu, R.; Lin, Q.; Zhu, J.; Zhang, H. Development of Enzymatic Recombinase Amplification Assays for the Rapid Visual Detection of HPV16/18. J. Microbiol. Biotechnol. 2023, 33, 1091–1100. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, C.; Zhang, X.; Hu, B.; Zhang, H.; Zhang, Z.; Kuang, W.; Zheng, Q.; Cao, J. Establishment of a Rapid LAMP Assay for Aeromonas hydrophila and Comparison with the Application of qPCR. Metabolites 2023, 13, 841. [Google Scholar] [CrossRef]
- Wang, J.; Jing, G.; Huang, W.; Xin, L.; Du, J.; Cai, X.; Xu, Y.; Lu, X.; Chen, W. Rapid In Situ Hydrogel LAMP for On-Site Large-Scale Parallel Single-Cell HPV Detection. Anal. Chem. 2022, 94, 18083–18091. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.-P.; Othman, S.; Lau, Y.-L.; Radu, S.; Chee, H.-Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.-Y.; Li, Q.-Y.; Zhang, H.; Ye, L.; Shi, L.; Feng, Y.-H. Development and comparison of qPCR and qLAMP for rapid detection of the decapod iridescent virus 1 (DIV1). J. Invertebr. Pathol. 2021, 182, 107567. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, M.; Sasaki, H.; Matsuo, K.; Honda, M.; Kawase, M.; Nakagawa, H. Loop-mediated isothermal amplification method for detection of human papillomavirus type 6, 11, 16, and 18. J. Med. Virol. 2007, 79, 605–615. [Google Scholar] [CrossRef]
- Saetiew, C.; Limpaiboon, T.; Jearanaikoon, P.; Daduang, S.; Pientong, C.; Kerdsin, A.; Daduang, J. Rapid detection of the most common high-risk human papillomaviruses by loop-mediated isothermal amplification. J. Virol. Methods 2011, 178, 22–30. [Google Scholar] [CrossRef]
- Kumvongpin, R.; Jearanaikool, P.; Wilailuckana, C.; Sae-Ung, N.; Prasongdee, P.; Daduang, S.; Wongsena, M.; Boonsiri, P.; Kiatpathomchai, W.; Swangvaree, S.S.; et al. High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18. J. Virol. Methods 2016, 234, 90–95. [Google Scholar] [CrossRef]
- Daskou, M.; Tsakogiannis, D.; Dimitriou, T.; Amoutzias, G.; Mossialos, D.; Kottaridi, C.; Gartzonika, C.; Markoulatos, P. WarmStart colorimetric LAMP for the specific and rapid detection of HPV16 and HPV18 DNA. J. Virol. Methods 2019, 270, 87–94. [Google Scholar] [CrossRef]
- Kumvongpin, R.; Jearanaikoon, P.; Wilailuckana, C.; Sae-Ung, N.; Prasongdee, P.; Daduang, S.; Wongsena, M.; Boonsiri, P.; Kiatpathomchai, W.; Swangvaree, S.S.; et al. Detection assay for HPV16 and HPV18 by loop-mediated isothermal amplification with lateral flow dipstick tests. Mol. Med. Rep. 2017, 15, 3203–3209. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Yang, W.; Peng, J.; Huang, J.; Mi, S. An integrated microfluidic detection system for the automated and rapid diagnosis of high-risk human papillomavirus. Analyst 2021, 146, 5102–5114. [Google Scholar] [CrossRef]
- Mao, Z.; Deng, A.; Jin, X.; Li, M.; Lv, W.; Huang, L.; Zhong, H.; Yang, H.; Wang, S.; Shi, Y.; et al. A microfluidic-chip-based system with loop-mediated isothermal amplification for rapid and parallel detection of Trichomonas vaginalis and human papillomavirus. Analyst 2023, 148, 4820–4828. [Google Scholar] [CrossRef] [PubMed]
- Vo, D.T.; Story, M.D. Facile and direct detection of human papillomavirus (HPV) DNA in cells using loop-mediated isothermal amplification (LAMP). Mol. Cell. Probes 2021, 59, 101760. [Google Scholar] [CrossRef] [PubMed]
- Karnosky, J.; Dietmaier, W.; Knuettel, H.; Freigang, V.; Koch, M.; Koll, F.; Zeman, F.; Schulz, C. HPV and lung cancer: A systematic review and meta-analysis. Cancer Rep. 2021, 4, e1350. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Salari, F.; Eplite, A.; Giacomelli, A.; Moschese, D.; Dalu, D.; Cossu, M.V.; Lorusso, R.; Pozza, G.; Morellia, L.; et al. Detection and typization of HPV genotypes in subjects with oral and upper respiratory tract lesions, Milan, Italy. Infect. Dis. 2024, 56, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Neagu, N.; Dianzani, C.; Venuti, A.; Bonin, S.; Voidăzan, S.; Zalaudek, I.; Conforti, C. The role of HPV in keratinocyte skin cancer development: A systematic review. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 40–46. [Google Scholar] [CrossRef]
- Shishkova, K.; Gergova, R.; Tasheva, E.; Shishkov, S.; Sirakov, I. Molecular Screening for High-Risk Human Papillomaviruses in Patients with Periodontitis. Viruses 2023, 15, 809. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. = Chung-Kuo Yen Cheng Yen Chiu 2020, 32, 720–728. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, G.; Mao, R.; Wang, Z.; Sun, Y.-Z.; Du, Y.-G.; Gao, X.-H.; Qi, R.-Q.; Chen, H.-D. Genotyping of 30 kinds of cutaneous human papillomaviruses by a multiplex microfluidic loop-mediated isothermal amplification and visual detection method. Virol. J. 2020, 17, 99. [Google Scholar] [CrossRef]
- Xu, X.; Jia, Y.; Li, R.; Wen, Y.; Liang, Y.; Lao, G.; Liu, X.; Zhou, W.; Liu, H.; Xie, J.; et al. RAPID and simultaneous detection of multiple pathogens in the lower reproductive tract during pregnancy based on loop-mediated isothermal amplification-microfluidic chip. BMC Microbiol. 2022, 22, 260. [Google Scholar] [CrossRef]
- Mitra, P.; Sharma, P. POCT in Developing Countries. Ejifcc 2021, 32, 195–199. [Google Scholar]
- Layne, T.R.; Scott, A.; Cunha, L.L.; Turiello, R.; Landers, J.P. Three-Dimensional-Printed Instrument for Isothermal Nucleic Acid Amplification with Real-Time Colorimetric Imaging. Micromachines 2024, 15, 271. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, S.-Y.; Kim, U.; Oh, S.-W. Diverse methods of reducing and confirming false-positive results of loop-mediated isothermal amplification assays: A review. Anal. Chim. Acta 2023, 1280, 341693. [Google Scholar] [CrossRef] [PubMed]
Primer | Amplification Region | Amplicon Length | Sequences(5′→3′) 1 |
---|---|---|---|
HPV6-F3 | E6 | 204 | GGATATGCAACAACWGTTGAAG |
HPV6-B3 2 | TTAGGGTAACAWGTCTTCCAT | ||
HPV6-FIP | TCTACTTCACACAGCGGTTTGTCAAGACATYTTAGACGTGCTAA | ||
HPV6-BIP | ACTAACCAAGGCACGGTTYATCATGTTGTCCAGCAGTGT | ||
HPV6-LF | GACACAGGTAGCACCGAA | ||
HPV6-LB | ATTGTACGTGGAAGGGTCG | ||
HPV11-F3 2 | E6 | 198 | GTAAAGATGCCTCCACGT |
HPV11-B3 | CTAAGCAACAGGCACACG | ||
HPV11-FIP | CCTGCAAAACACGCACTGAAGACCAGTTGTGCAAGACG | ||
HPV11-BIP | ACTGACCACCGCAGAGATATAAGGGAAAGTTGTCTCGC | ||
HPV11-LF | GCAGAGTGTGCAAAGAAAG | ||
HPV11-LB | GCATATGCCTATAAGAACC | ||
HPV16-F3 | E7 | 189 | AGACAACTGATCTCTACTGTT |
HPV16-B3 | CTTCCAAAGTACGAATGTCTAC | ||
HPV16-FIP | TTCTGCTTGTCCAGCTGGACGCAATTAAATGACAGCTCAGAG | ||
HPV16-BIP | CCGGACAGAGCCCATTACAATGTGTGTGCTTTGTACGCA | ||
HPV16-LF | CATCTATTTCATCCTCCTC | ||
HPV16-LB | TGCAAGTGTGACTCTACGCT | ||
HPV18-F3 | L1 3 | 207 | CGCGTCCTTTATCACAGG |
HPV18-B3 | TGGAATCCCCATAAGGATC | ||
HPV18-FIP | GGCACCATATCCAGTATCTACCATAATTGCCCCCCTTTAGAACT | ||
HPV18-BIP | TGCAAGATACTAAATGTGAGGTACCGCAGACATTTGTAAATAATCAGGAT | ||
HPV18-LF | TCACCATCTTCCAAAACTG | ||
HPV18-LB | ATTGGATATTTGTCAGTCT | ||
HPV45-F3 | L1 | 220 | ACTAAGTTTAAGCASTATAGTAGAC |
HPV45-B3 | CCTTTTGACAGGTAACAGC | ||
HPV45-FIP | ATGACATAACCTCTGCAGTTAAAGTTGTGGAGGAATATGATTTACAGTT | ||
HPV45-BIP | AATTGGAATTTTGGTGTMCCTCCACTGATTGCACAAAACGATA | ||
HPV45-LF | AGTGCACAACTGAAAA | ||
HPV45-LB | ACCACCTACTACAAGTTTRGTGGA | ||
HPV52-F3 | L1 3 | 193 | GGCAATACTGCCACTGTAC |
HPV52-B3 | ATAAAGTCATGTTAGTGCTACG | ||
HPV52-FIP | ACGTTGTAACCAGTACGGTTTATTAAAGCAGTGCTTTTTTTCCTAC | ||
HPV52-BIP | CAGGGCCACAATAATGGCATTGTGTGAGTGGTATCCACAACTGTGA | ||
HPV52-LF | GGGATTCTGAGGTTACCATAGAACC | ||
HPV52-LB | GTTGGGGCAATCAGTTGTTTG | ||
HPV58-F3 | E7 | 238 | ACATCCTGAACCAAYTGACC |
HPV58-B3 | GCTRGGGCACACAATRGTAC | ||
HPV58-FIP | CTGTGGCCGGTTGTGCTTGTTTTTTGTGACAGCTCAGACGAGG | ||
HPV58-BIP | TACACTTGTRRCRCCACGGTTTTTTCCCATAAGCAGCTGCTGTAG | ||
HPV58-LF | CCATCTGGCCCGTCCAA | ||
HPV58-LB | GTGTATCAACAGTACARCAACYGAM | ||
ACTB-F3 | 203 | GCTCAGGGCTTCTTGTCC | |
ACTB-B3 | TCGGGAGCCACACGCA | ||
ACTB-FIP | TTGCTCTGGGCCTCGTCGCTTTTTTTCCTTCCCAGGGCGT | ||
ACTB-BIP | AGAGGCATCCTCACCCTGAAGTTTTTGTGGTGCCAGATTTTCTCCA | ||
ACTB-LF | TGACCCATGCCCACCATC | ||
ACTB-LB | CCATCGAGCACGGCATC |
HPV Subtype Samples | Results of HNB-LAMP/Results of qPCR | Results of LAMP-Chip/Results of qPCR | Total |
---|---|---|---|
HPV6 | 29/29 | 28/29 | 236 |
HPV11 | 10/10 | 10/10 | |
HPV16 | 23/24 | 23/24 | |
HPV18 | 22/23 | 23/23 | |
HPV45 | 9/9 | 9/9 | |
HPV52 | 104/108 | 106/108 | |
HPV58 | 23/23 | 23/23 | |
Negative sample | 10 | 10 |
HNB-LAMP | qPCR | Total | Sensitivity | Specificity | PPV | NPV | Kappa | |
---|---|---|---|---|---|---|---|---|
+ | − | |||||||
+ | 220 | 0 | 220 | 97.35% | 100% | 100% | 62.5% | 0.757 |
− | 6 | 10 | 16 | |||||
Total | 226 | 10 | 236 |
LAMP-Chip | qPCR | Total | Sensitivity | Specificity | PPV | NPV | Kappa | |
---|---|---|---|---|---|---|---|---|
+ | − | |||||||
+ | 222 | 0 | 222 | 98.23% | 100% | 100% | 71.43% | 0.825 |
− | 4 | 10 | 14 | |||||
Total | 226 | 10 | 236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Tan, H.; Lv, X.; Han, Z.; Wang, Y.; Gao, S.; Zhang, R.; Shen, X.; Ma, X.; Tie, Y. Field-Applicable Loop-Mediated Isothermal Amplification for the Detection of Seven Common Human Papillomavirus Subtypes. Trop. Med. Infect. Dis. 2024, 9, 240. https://doi.org/10.3390/tropicalmed9100240
Li H, Tan H, Lv X, Han Z, Wang Y, Gao S, Zhang R, Shen X, Ma X, Tie Y. Field-Applicable Loop-Mediated Isothermal Amplification for the Detection of Seven Common Human Papillomavirus Subtypes. Tropical Medicine and Infectious Disease. 2024; 9(10):240. https://doi.org/10.3390/tropicalmed9100240
Chicago/Turabian StyleLi, Hongyi, He Tan, Xiaona Lv, Zhiqiang Han, Yuxin Wang, Shijue Gao, Ruiqin Zhang, Xinxin Shen, Xuejun Ma, and Yanqing Tie. 2024. "Field-Applicable Loop-Mediated Isothermal Amplification for the Detection of Seven Common Human Papillomavirus Subtypes" Tropical Medicine and Infectious Disease 9, no. 10: 240. https://doi.org/10.3390/tropicalmed9100240
APA StyleLi, H., Tan, H., Lv, X., Han, Z., Wang, Y., Gao, S., Zhang, R., Shen, X., Ma, X., & Tie, Y. (2024). Field-Applicable Loop-Mediated Isothermal Amplification for the Detection of Seven Common Human Papillomavirus Subtypes. Tropical Medicine and Infectious Disease, 9(10), 240. https://doi.org/10.3390/tropicalmed9100240