Identification and Functional Implications of the E5 Oncogene Polymorphisms of Human Papillomavirus Type 16
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Characteristics
2.2. PCR Amplification and Sequencing
2.3. Sequence Analysis
2.4. Epitope Prediction
2.5. Phylogenetic Analysis
2.6. Selection Pressure Analysis
2.7. Three-Dimensional Structure Prediction
2.8. Codon Usage Analysis
2.9. Plasmid Constructs
2.10. Isolation of DNA from Recombinant Vectors, Cultivation, and Cell Transfection
2.11. Evaluation of Gene Expression through Luminescence
2.12. Statistical Analysis
3. Results
3.1. Clinical Samples
3.2. Identification of Polymorphic Sites
3.3. T-Cell Epitope Prediction
3.4. Phylogenetic Analysis
3.5. Determination of the Selection Pressure
3.6. Structural Analysis of the HPV16 E5 Protein
3.7. Genetic Variability and Preferential Codon Usage
3.8. Functional Activity of HPV16 E5 Protein Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, 359–386. [Google Scholar] [CrossRef]
- de Freitas, A.C.F.; de Oliveira, T.H.A.; Barros Junior, M.R.; Venuti, A. hrHPV E5 oncoprotein: Immune evasion and related immunotherapies. J. Exp. Clin. Cancer Res. 2017, 36, 71. [Google Scholar] [CrossRef]
- Chang, J.L.; Tsao, Y.P.; Liu, D.W.; Huang, S.J.; Lee, W.H.; Chen, S.L. The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J. Biomed Sci. 2001, 8, 206–213. [Google Scholar] [CrossRef]
- Ashrafi, G.H.; Haghshenas, M.R.; Marchetti, B.; O’Brien, P.M.; Campo, M.S. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int. J. Cancer 2005, 113, 276–283. [Google Scholar] [CrossRef]
- de Sanjose, S.; Quint, W.G.; Alemany, L.; Geraets, D.T.; Klaustermeier, J.E.; Lloveras, B.; Tous, S.; Feli, A.; Bravo, L.E.; Shin, H.R.; et al. Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol. 2010, 11, 1048–1056. [Google Scholar] [CrossRef]
- Chagas, B.S.; Batista, M.V.A.; Guimarães, V.; Balbino, V.Q.; Crovella, S.; Freitas, A.C. New variants of E6 and E7 oncogenes of human papillomavirus type 31 identified in Northeastern Brazil. Gynecol. Oncol. 2011, 123, 284–288. [Google Scholar] [CrossRef]
- Gurgel, A.P.; Chagas, B.S.; do Amaral, C.M.M.; Nascimento, K.C.; Leal, L.R.; Silva Neto, J.d.C.; Cartaxo Muniz, M.T.; de Freitas, A.C. Prevalence of papillomavirus variants and genetic diversity in the L1 gene and long control region of HPV16, HPV31 and HPV58 found in North-East Brazil. Biomed Res. Int. 2015, 2015, 130828. [Google Scholar] [CrossRef]
- Burk, R.D.; Harari, A.; Chen, Z. Human papillomavirus genome variants. Virology 2013, 445, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Cornet, I.; Gheit, T.; Clifford, G.M.; Combes, J.-D.; Dalstein, V.; Franceschi, S.; Tommasino, M.; Clavel, C. Human papillomavirus type 16 E6 variants in France and risk of viral persistence. Infect. Agent Cancer 2013, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Cornet, I.; Gheit, T.; Franceschi, S.; Vignat, J.; Burk, R.D.; Sylla, B.S.; Tommasino, M.; Clifford, G.M.; IARC HPV Variant Study Group. Human Papillomavirus Type 16 Genetic Variants: Phylogeny and Classification Based on E6 and LCR. J. Virol. 2012, 86, 6855–6861. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; Wentzensen, N. Human papillomavirus infection and the multistage carcinogenesis of cervical cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 553–560. [Google Scholar] [CrossRef]
- Chagas, B.S.; Batista, M.V.D.A.; Crovella, S.; Gurgel, A.P.A.D.; Serra, I.G.S.S.; Silva-Neto, J.C.; Amaral, C.M.M.; Balbino, V.Q.; Muniz, M.T.; de Freitas, A.C. Novel E6 and E7 oncogenes variants of human papillomavirus type 31 in Brazilian women with abnormal cervical cytology. Infect. Genet. Evol. 2013, 16, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Tornesello, M.L.; Losito, S.; Benincasa, G.; Fulciniti, F.; Botti, G.; Greggi, S.; Buonaguro, L.; Buonaguro, F.M. Human papillomavirus (HPV) genotypes and HPV16 variants and risk of adenocarcinoma and squamous cell carcinoma of the cervix. Gynecol. Oncol. 2011, 121, 32–42. [Google Scholar] [CrossRef]
- Mendoza, L.; Picconi, M.A.; Mirazo, S.; Mongelós, P.; Giménez, G.; Basiletti, J.; Arbiza, J. Distribution of HPV-16 variants among isolates from Paraguayan women with different grades of cervical lesion. Int. J. Gynaecol. Obstet. 2013, 122, 44–47. [Google Scholar] [CrossRef]
- de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.-U.; zur Hausen, H. Classification of papillomaviruses. Virology 2004, 324, 17–27. [Google Scholar] [CrossRef]
- Bernard, H.-U.; Burk, R.D.; Chen, Z.; van Doorslaer, K.; zur Hausen, H.; de Villiers, E.-M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 2010, 401, 70–79. [Google Scholar] [CrossRef]
- Chen, Z.; Schiffman, M.; Herrero, R.; DeSalle, R.; Anastos, K.; Segondy, M.; Sahasrabuddhe, V.V.; Hsing, A.W.; Burk, R.D. Evolution and Taxonomic Classification of Alphapapillomavirus 7 Complete Genomes: HPV18, HPV39, HPV45, HPV59, HPV68 and HPV70. PLoS ONE 2013, 8, e72565. [Google Scholar] [CrossRef]
- Venuti, A.; Paolini, F.; Nasir, L.; Corteggio, A.; Roperto, S.; Campo, M.S.; Borzacchiello, G. Papillomavirus E5: The smallest oncoprotein with many functions. Mol. Cancer 2011, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- DiMaio, D.; Petti, L.M. The E5 proteins. Virology 2013, 445, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, A.K.; Riemer, A.B. The invisible enemy—How human papillomaviruses avoid recognition and clearance by the host immune system. Open Virol. J. 2012, 6, 249–256. [Google Scholar] [CrossRef]
- Gruener, M.; Bravo, I.G.; Momburg, F.; Alonso, A.; Tomakidi, P. The E5 protein of the human papillomavirus type 16 down-regulates HLA-I surface expression in calnexin-expressing but not in calnexin-deficient cells. Virol. J. 2007, 4, 116. [Google Scholar] [CrossRef]
- Miura, S.; Kawana, K.; Schust, D.J.; Fujii, T.; Yokoyama, T.; Iwasawa, Y.; Nagamatsu, T.; Adachi, K.; Tomio, A.; Tomio, K.; et al. CD1d, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E5 protein: A possible mechanism for immune evasion by HPV. J. Virol. 2010, 84, 11614–11623. [Google Scholar] [CrossRef] [PubMed]
- Bravo, I.G.; Alonso, A. Mucosal human papillomavirus encode four different E5 proteins whose chemistry and phylogeny correlate with malignant or benign growth. J. Virol. 2004, 78, 13613–13626. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.C.O.; da Silva Júnior, A.H.P.; Gurgel, A.P.A.D.; Junior, M.R.B.; Santos, D.L.; de Lima, R.C.P.; Batista, M.V.A.; Pena, L.J.; Chagas, B.S.; Freitas, A.C. Structural and functional impacts of E5 genetic variants of human papillomavirus type 31. Virus Res. 2020, 29, 198143. [Google Scholar] [CrossRef] [PubMed]
- Amaral, C.M.; Cetkovská, K.; Gurgel, A.P.; Cardoso, M.V.; Chagas, B.S.; Paiva Júnior, S.S.; de Lima, R.d.C.; Silva-Neto, J.C.; Silva, L.A.; Muniz, M.T.; et al. MDM2 polymorphism associated with the development of cervical lesions in women infected with Human papillomavirus and using of oral contraceptives. Infect. Agent Cancer 2014, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Manos, M.M.; Ting, Y.; Wright, D.K.; Lewis, A.J.; Broker, T.R.; Wolinsky, S.M. The use of polymerase chain reac-tion amplification for the detection of genital human papillomaviruses. Cancer Cell 1989, 7, 209–214. [Google Scholar]
- Staden, R. The Staden sequence analysis package. Mol. Biotechnol. 1996, 5, 233–241. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 2012, 80, 1715–1735. [Google Scholar] [CrossRef]
- Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32, W526–W531. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y. Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-step Atomic-level Energy Minimization. Biophys. J. 2011, 101, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Melo, F.; Feytmans, E. Assessing Protein Structures with a Non-local Atomic Interaction Energy. J. Mol. Biol. 1998, 277, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
- van Gunsteren, W.F.; Billeter, S.R.; Eising, A.A.; Hünenberger, P.H.; Krüger, P.; Mark, A.E.; Scott, W.R.P.; Tironi, I.G. Biomolecular Simulation: The GROMOS96 Manual and User Guide; vdf Hochschulverlag AG an der ETH Zürich and BIOMOS b.v.: Zürich, Switzerland; Groningen, The Netherlands, 1996; pp. 1–1042. ISBN 9783728124227. [Google Scholar]
- Benkert, P.; Tosatto, S.C.E.; Schomburg, D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins 2008, 71, 261–277. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 2002, 11, 2714–2726. [Google Scholar] [CrossRef]
- Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577–2637. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, E.G.; Thornton, J.M. PROMOTIF—A program to identify and analyze structural motifs in proteins. Protein Sci. 1996, 5, 212–220. [Google Scholar] [CrossRef]
- Worth, C.L.; Preissner, R.; Blundell, T.L. SDM—A server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 2011, 39, W215–W222. [Google Scholar] [CrossRef]
- Gieswein, C.E.; Sharom, F.J.; Wildeman, A.G. Oligomerization of the E5 protein of human papillomavirus type 16 occurs through multiple hydrophobic regions. Virology 2003, 313, 415–426. [Google Scholar] [CrossRef]
- Paolini, F.; Curzio, G.; Cordeiro, M.N.; Massa, S.; Mariani, L.; Pimpinelli, F.; Venuti, A. HPV 16 E5 oncoprotein is expressed in early stage carcinogenesis and can be a target of immunotherapy. Hum. Vaccin. Immunother. 2016, 13, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Namvar, A.; Bolhassani, A.; Hashemi, M. HPV16 L2 improves HPV16 L1 gene delivery as an important approach for vaccine design against cervical cancer. Bratisl. Lek Listy 2016, 117, 179–184. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Zheng, Q.; Li, Z.; Fan, F.; Liu, X.; Song, S.; Gu, Y.; Xia, N.; Li, S. Preparation and Cryo-EM Structure Determination of Human Papillomavirus 16 Pseudovirion Derived from Suspension-adapted HEK293 Cells. Bing Du Xue Bao 2016, 32, 551–559. (In Chinese) [Google Scholar] [PubMed]
- Kim, S.-H.; Oh, J.-M.; No, J.-H.; Bang, Y.-J.; Juhnn, Y.-S.; Song, Y.-S. Involvement of NF-κB and AP-1 in COX-2 upregulation by human papillomavirus 16 E5 oncoprotein. Carcinogenesis 2009, 30, 753–757. [Google Scholar] [CrossRef]
- Li, Q.; Verma, I.M. NF-κaapaB regulation in the immune system. Nat. Rev. Immunol. 2002, 2, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Franceschi, S.; Howell-Jones, R.; Snijders, P.J.; Clifford, G.M. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. Int. J. Cancer 2011, 128, 927–935. [Google Scholar] [CrossRef]
- Sun, Z.; Lu, Z.; Liu, J.; Wang, G.; Zhou, W.; Yang, L.; Liu, C.; Wang, B.; Ruan, Q. Genetic variations of E6 and long control region of human papillomavirus type 16 from patients with cervical lesion in Liaoning, China. BMC Cancer 2013, 13, 459. [Google Scholar] [CrossRef] [PubMed]
- Pleasa, A.; Anton, G.; Iancu, I.V.; Diaconu, C.C.; Huica, I.; Stanescu, A.D.; Socolov, D.; Nistor, E.; Popa, E.; Stoian, M.; et al. Molecular variants of human papilloma virus 16 E2, E4, E5, E6 and E7 genes associated with cervical neoplasia in Romanian patients. Arch Virol. 2014, 159, 3305–3320. [Google Scholar] [CrossRef]
- Mirabello, L.; Yeager, M.; Cullen, M.; Boland, J.F.; Chen, Z.; Wentzensen, N.; Zhang, X.; Yu, K.; Yang, Q.; Mitchel, J.; et al. HPV16 sublineage associations with histology-specific câncer risk using HPV whole-genome sequences in 3200 women. JNCI J. Natl. Cancer Inst. 2016, 29, 108. [Google Scholar] [CrossRef] [PubMed]
- Hirose, Y.; Onuki, M.; Tenjimbayashi, Y.; Yamaguchi-Naka, M.; Mori, S.; Tasaka, N.; Kukimoto, I. Whole-Genome Analysis of Human Papillomavirus Type 16 Prevalent in Japanese Women with or without Cervical Lesions. Viruses 2019, 11, 350. [Google Scholar] [CrossRef]
- Sichero, L.; Ferreira, S.; Trottier, H.; Duarte-Franco, E.; Ferenczy, A.; Franco, E.L.; Villa, L.L. High grade cervical lesions are caused preferentially by non-European variants of HPVs 16 and 18. Int. J. Cancer 2007, 120, 1763–1768. [Google Scholar] [CrossRef]
- Aldarouish, M.; Wang, C. Trends and advances in tumor immunology and lung cancer immunotherapy. J. Exp. Clin. Cancer Res. 2016, 35, 157. [Google Scholar] [CrossRef]
- Campo, M.S.; Graham, S.V.; Cortese, M.S.; Ashrafi, G.H.; Araibi, E.H.; Dornan, E.S.; Man, S. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology 2010, 407, 137–142. [Google Scholar] [CrossRef]
- Zehbe, I.; Mytilineos, J.; Wikström, I.; Henriksen, R.; Edler, L.; Tommasino, M. Association between human papillomavirus 16 E6 variants and human leukocyte antigen class I polymorphism in cervical cancer of Swedish women. Hum. Immunol. 2003, 64, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; Wentzensen, N. From human papillomavirus to cervical cancer. Obstet. Gynecol. 2010, 116, 177–185. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, A.C.; Gurgel, A.P.A.D.; Chagas, B.S.; Coimbra, E.C.; Amaral, C.M.M. Susceptibility to cervical cancer: An overview. Gynecol. Oncol. 2012, 126, 304–311. [Google Scholar] [CrossRef]
- Smith, B.; Chen, Z.; Reimers, L.; van Doorslaer, K.; Schiffman, M.; Desalle, R.; Herrero, R.; Yu, K.; Wacholder, S.; Wang, T.; et al. Sequence imputation of HPV16 genomes for genetic association studies. PLoS ONE 2011, 6, e21375. [Google Scholar] [CrossRef] [PubMed]
- Zuna, R.E.; Moore, W.E.; Shanesmith, R.P.; Dunn, S.T.; Wang, S.S.; Schiffman, M.; Teel, T. Association of HPV16 E6 variants with diagnostic severity in cervical cytology samples of 354 women in a US population. Int. J. Cancer 2009, 125, 2609–2613. [Google Scholar] [CrossRef]
- Quint, K.D.; deKoning, M.N.; vanDoorn, L.J.; Quint, W.G.; Pirog, E.C. HPV genotyping and HPV16 variant analysis in glandular and squamous neoplastic lesions of the uterine cervix. Gynecol. Oncol. 2010, 117, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Zuna, R.E.; Tuller, E.; Wentzensen, N.; Mathews, C.; Allen, R.A.; Shanesmith, R.; Dunn, S.T.; Gold, M.A.; Wang, S.S.; Walker, J.; et al. HPV16 variant lineage, clinical stage, and survival in women with invasive cervical cancer. Infect. Agent Cancer 2011, 6, 19. [Google Scholar] [CrossRef]
- Nath, R.; Mant, C.A.; Kell, B.; Cason, J.; Bible, J.M. Analyses of variant human papillomavirus type-16 E5 proteins for their ability to induce mitogenesis of murine fibroblasts. Cancer Cell Int. 2006, 6, 19. [Google Scholar] [CrossRef]
- Ullman, C.G.; Haris, P.I.; Kell, B.; Cason, J.; Jewers, R.J.; Best, J.M.; Emery, V.C.; Perkins, S.J. Hypothetical structure of the membrane-associated E5 oncoprotein of human papillomavirus type 16. Biochem. Soc. Trans. 1994, 22, 439S. [Google Scholar] [CrossRef]
- Rodriguez, M.I.; Finbow, M.E.; Alonso, A. Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor receptor overactivation. Oncogene 2000, 19, 3727–3732. [Google Scholar] [CrossRef]
- Bible, J.M.; Mant, C.; Best, J.M.; Kell, B.; Starkey, W.G.; Raju, K.S.; Seed, P.; Biswas, C.; Muir, P.; Banatvala, J.E.; et al. Cervical lesions are associated with human papillomavirus type 16 intratypic variants that have high transcriptional activity and increased usage of common mammalian codons. J. Gen. Virol. 2000, 81, 1517–1527. [Google Scholar] [CrossRef]
- Saavedra, A.P.; Torres, T.P.; Amparán, L.C.; Gama, M.M.; Jaimes, A.M.G.; Guadarrama, F.E.; Xicotencatl, L.G. Molecular bases of human papillovirus pathogenesis in the development of cervical cancer. In Human Papillomavirus and Related Diseases–From Bench to Bedside–Reseach Aspects; InTech: London, UK, 2012; ISBN 978-953-307-855-7. [Google Scholar] [CrossRef]
- Karin, M.; Lin, A. NF-kappaB at the crossroads of life and death. Nat. Immunol. 2002, 3, 221–227. [Google Scholar] [CrossRef]
- Gerondakis, S.; Grumont, R.; Gugasyan, R.; Wong, L.; Isomura, I.; Ho, W.; Banerjee, A. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 2006, 25, 6781–6799. [Google Scholar] [CrossRef]
- Vallabhapurapu, S.; Karin, M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Ver. Immunol. 2009, 27, 693–733. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. NF-κB, the first quarter-century: Remarkable progress and outstanding questions. Genes Dev. 2012, 26, 203–234. [Google Scholar] [CrossRef]
- Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch. 2005, 446, 475–482. [Google Scholar] [CrossRef]
- Nees, M.; Geoghegan, J.M.; Hyman, T.; Frank, S.; Miller, L.; Woodworth, C.D. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J. Virol. 2001, 75, 4283–4296. [Google Scholar] [CrossRef]
- Havard, L.; Rahmouni, S.; Boniver, J.; Delvenne, P. High levels of p105 (NFKB1) and p100 (NFKB2) proteins in HPV16-transformed keratinocytes: Role of E6 and E7 oncoproteins. Virology 2005, 331, 357–366. [Google Scholar] [CrossRef]
- Spitkovsky, D.; Hehner, S.P.; Hofmann, T.G.; Moller, A.; Schmitz, M.L. The human papillomavirus oncoprotein E7 attenuates NF-kappa B activation by targeting the Ikappa B kinase complex. J. Biol. Chem. 2002, 277, 25576–25582. [Google Scholar] [CrossRef]
- Byg, L.M.; Vidlund, J.; Vasiljevic, N.; Clausen, D.; Forslund, O.; Norrild, B. NF-κB signalling is attenuated by the E7 protein from cutaneous human papillomaviruses. Virus Res. 2012, 169, 48–53. [Google Scholar] [CrossRef]
- Gutierrez-Xicotencatl, L.; Pedroza-Saavedra, A.; Chihu-Amparan, L.; Salazar-Piña, A.; Maldonado-Gama, M.; Esquivel-Guadarrama, F. Cellular Functions of HPV16 E5 Oncoprotein during Oncogenic Transformation. Mol. Cancer Res. 2021, 19, 167–179. [Google Scholar] [CrossRef]
Position of Polymorphic Nucleotides at Oncogene HPV16 E5 | ||||||
---|---|---|---|---|---|---|
Samples | 3979 | 3988 | 3991 | 4017 | 4042 | 4089 |
Reference K02718 | A | T | C | G | A | T |
HPV16E5sample_14PE | C | * | G | A | G | * |
HPV16E5sample_16PE | C | * | G | A | G | * |
HPV16E5sample_35PE | C | * | * | * | G | * |
HPV16E5sample_49PE | C | A | T | A | G | C |
HPV16E5sample_55PE | C | * | G | A | G | C |
HPV16E5sample_70PE | C | * | G | A | G | C |
HPV16E5sample_76PE | C | * | * | * | G | * |
HPV16E5sample_78PE | C | * | G | A | G | * |
HPV16E5sample_85PE | C | * | G | A | G | C |
HPV16E5sample_91PE | C | * | * | * | G | * |
HPV16E5sample_93PE | C | * | G | A | G | C |
ORF | Model | lnL | ω = dN/dS * | Parameters |
---|---|---|---|---|
E5 | M0 | −475.636423 | 0.81436 | ω = 0.81436 |
M1 | −472.450423 | 0.33674 | p0 = 0.66326 (p1 = 0.33674) ω0 = 0.00000; ω1 = 1.00000 | |
M2 | −466.217010 | 0.91480 | p0 = 0.96934; p1 = 0.00000 (p2 = 0.03066) ω0 = 0.35685; ω1 = 1.00000; ω2 = 18.55892 | |
M3 | −466.217010 | 0.91480 | p0 = 0.04767; p1 = 0.92168 (p2 = 0.03066) ω0 = 0.35685; ω1 = 0.35685; ω2 = 18.55893 | |
M7 | −472.486769 | 0.30000 | p = 0.00500; q = 0.01155 | |
M8 | −466.218500 | 0.91560 | p0 = 0.96934 (p1 = 0.03066) p = 55.05023; q = 99.00000; ωs = 18.56975 |
Mutation | Wild Residue | Residue Position | Mutant Residue | Predicted ΔΔG | Outcome |
---|---|---|---|---|---|
1 | I | 44 | L | 0.37 | Increased stability |
2 | L | 47 | I | −0.48 | Reduced stability |
3 | L | 48 | V | −0.67 | Reduced stability |
4 | I | 65 | V | −0.35 | Reduced stability |
Isolate | Position of Non-Synonymous Polymorphisms | Codon Usage | Percentage of Use (%) | Relative Adaptiveness (%) |
---|---|---|---|---|
K02718 | 44 | ATA | 17 | 36 |
47 | TTA | 8 | 20 | |
48 | CTA | 7 | 18 | |
65 | ATA | 17 | 36 | |
HPV16E5_14PE and HPV16E5_16PE | 44 | CTA | 7 | 18 |
47 | TTA | 8 | 20 | |
48 | GTA | 12 | 26 | |
65 | GTA | 12 | 26 | |
HPV16E5_49PE | 44 | CTA | 7 | 18 |
47 | ATA | 17 | 36 | |
48 | TTA | 8 | 20 | |
65 | GTA | 12 | 26 | |
HPV16E5_35PE, HPV16E5_76PE and HPV16E5_91PE | 44 | CTA | 7 | 18 |
47 | TTA | 8 | 20 | |
48 | CTA | 7 | 18 | |
65 | ATA | 17 | 36 | |
HPV16E5_55PE, HPV16E5_70PE, HPV16E5_78PE, HPV16E5_85PE and HPV16E5_93PE | 44 | CTA | 7 | 18 |
47 | TTA | 8 | 20 | |
48 | GTA | 12 | 26 | |
65 | GTA | 12 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva-Júnior, A.H.P.; de Oliveira Silva, R.C.; Gurgel, A.P.A.D.; Barros-Júnior, M.R.; Nascimento, K.C.G.; Santos, D.L.; Pena, L.J.; Lima, R.d.C.P.; Batista, M.V.d.A.; Chagas, B.S.; et al. Identification and Functional Implications of the E5 Oncogene Polymorphisms of Human Papillomavirus Type 16. Trop. Med. Infect. Dis. 2024, 9, 140. https://doi.org/10.3390/tropicalmed9070140
da Silva-Júnior AHP, de Oliveira Silva RC, Gurgel APAD, Barros-Júnior MR, Nascimento KCG, Santos DL, Pena LJ, Lima RdCP, Batista MVdA, Chagas BS, et al. Identification and Functional Implications of the E5 Oncogene Polymorphisms of Human Papillomavirus Type 16. Tropical Medicine and Infectious Disease. 2024; 9(7):140. https://doi.org/10.3390/tropicalmed9070140
Chicago/Turabian Styleda Silva-Júnior, Antônio Humberto P., Ruany Cristyne de Oliveira Silva, Ana Pavla A. Diniz Gurgel, Marconi Rêgo Barros-Júnior, Kamylla Conceição Gomes Nascimento, Daffany Luana Santos, Lindomar J. Pena, Rita de Cássia Pereira Lima, Marcus Vinicius de Aragão Batista, Bárbara Simas Chagas, and et al. 2024. "Identification and Functional Implications of the E5 Oncogene Polymorphisms of Human Papillomavirus Type 16" Tropical Medicine and Infectious Disease 9, no. 7: 140. https://doi.org/10.3390/tropicalmed9070140
APA Styleda Silva-Júnior, A. H. P., de Oliveira Silva, R. C., Gurgel, A. P. A. D., Barros-Júnior, M. R., Nascimento, K. C. G., Santos, D. L., Pena, L. J., Lima, R. d. C. P., Batista, M. V. d. A., Chagas, B. S., & Freitas, A. C. d. (2024). Identification and Functional Implications of the E5 Oncogene Polymorphisms of Human Papillomavirus Type 16. Tropical Medicine and Infectious Disease, 9(7), 140. https://doi.org/10.3390/tropicalmed9070140