Rapid Discriminative Identification of the Two Predominant Echinococcus Species from Canine Fecal Samples in the Tibetan Region of China by Loop-Mediated Isothermal Amplification–Lateral Flow Dipstick Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tibet Autonomous Region Parasites and Samples
2.2. Assessment of ELISA
2.3. DNA Extraction
2.4. Design of Primers and Probe
2.5. Construction of Positive Plasmids
2.6. The Real-Time LAMP Reaction System
2.7. LAMP–Lateral-Flow Dipstick (LAMP-LFD)
2.8. Assessment of the Specificity and Sensitivity of the LAMP-LFD Method
3. Results
3.1. Specificity of the Established LAMP-LFD Method
3.2. Sensitivity of the Proven LAMP-LFD Method
3.3. Dog Fecal Sample Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group, 2007–2015. Available online: https://apps.who.int/iris/handle/10665/199350 (accessed on 18 September 2020).
- Agudelo, H.N.; Brunetti, E.; McCloskey, C. Cystic Echinococcosis. J. Clin. Microbiol. 2016, 54, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Piarroux, M.; Piarroux, R.; Giorgi, R.; Knapp, J.; Bardonnet, K.; Sudre, B.; Watelet, J.; Dumortier, J.; Gérard, A.; Beytout, J.; et al. Clinical features and evolution of alveolar echinococcosis in France from 1982 to 2007: Results of a survey in 387 patients. J. Hepatol. 2011, 55, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.P.; Hu, W.; Qian, W.; Zhou, X.N.; Wang, L.Y.; Zheng, C.J.; Cao, J.P.; Xiao, N.; Wang, Y.; Zhu, Y.Y.; et al. A nationwide sampling survey on echinococcosis in China during 2012–2016. Chin. J. Parasitol. Parasit. Dis. 2018, 36, 1–14. (In Chinese) [Google Scholar]
- Li, B.; Quzhen, G.; Xue, C.Z.; Han, S.; Chen, W.Q.; Yan, X.L.; Li, Z.J.; Quick, M.L.; Huang, Y.; Xiao, N.; et al. Epidemiological survey of echinococcosis in Tibet Autonomous Region of China. Infect. Dis. Poverty 2019, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.L.; Ge, G.Y.; Wang, Q.; Tian, T.; Liu, F.; Diao, N.C.; Nie, L.B.; Zong, Y.; Li, J.M.; Shi, K.; et al. Meta-analysis of the prevalence of Echinococcus in dogs in China from 2010 to 2019. PLoS Negl. Trop. Dis. 2021, 15, e0009268. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Jiang, D.; Hao, M.; Fan, P.; Zhang, S.; Quzhen, G.; Xue, C.; Han, S.; Wu, W.; Zheng, C.; et al. Geographical Detector-based influence factors analysis for Echinococcosis prevalence in Tibet, China. PLoS Negl. Trop. Dis. 2021, 15, e0009547. [Google Scholar] [CrossRef] [PubMed]
- Alvi, M.A.; Ali, R.M.A.; Khan, S.; Saqib, M.; Qamar, W.; Li, L.; Fu, B.Q.; Yan, H.B.; Jia, W.Z. Past and present of diagnosis of echinococcosis: A review (1999–2021). Acta Trop. 2023, 243, 106925. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Q.; Cai, H.; Wang, H.; Huang, Y.; Feng, Y.; Bai, X.; Qin, M.; Manguin, S.; Gavotte, L.; et al. Evaluation of fecal immunoassays for canine Echinococcus infection in China. PLoS Negl. Trop. Dis. 2021, 15, e0008690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.J.; Li, J.Z.; Pang, H.S.; Luo, Z.H.; Zhang, T.; Mo, X.J.; Yang, S.J.; Cai, Y.C.; Lu, Y.; Chu, Y.H.; et al. Advances in the study of molecular identification technology of Echinococcus species. Trop. Biomed. 2022, 39, 434–443. [Google Scholar]
- Stefanić, S.; Shaikenov, B.S.; Deplazes, P.; Dinkel, A.; Torgerson, P.R.; Mathis, A. Polymerase chain reaction for detection of patent infections of Echinococcus granulosus (“sheep strain”) in naturally infected dogs. Parasitol. Res. 2004, 92, 347–351. [Google Scholar] [CrossRef]
- Hao, L.; Yang, A.; Yuan, D.; Guo, L.; Hou, W.; Mo, Q.; Lu, Z.; Nie, C. Detection of Echinococcus multilocularis in domestic dogs of Shiqu County in the summer herding. Parasitol. Res. 2018, 117, 1965–1968. [Google Scholar] [CrossRef] [PubMed]
- Kohansal, M.H.; Nourian, A.; Haniloo, A.; Fazaeli, A. Molecular detection of Taenia spp. in dogs’ feces in Zanjan Province, Northwest of Iran. Vet. World 2017, 10, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Knapp, J.; Umhang, G.; Poulle, M.L.; Millon, L. Development of a Real-Time PCR for a Sensitive One-Step Coprodiagnosis Allowing both the Identification of Carnivore Feces and the Detection of Toxocara spp. and Echinococcus multilocularis. Appl. Environ. Microbiol. 2016, 82, 2950–2958. [Google Scholar] [CrossRef] [PubMed]
- Bucher, B.J.; Muchaamba, G.; Kamber, T.; Kronenberg, P.A.; Abdykerimov, K.K.; Isaev, M.; Deplazes, P.; Alvarez Rojas, C.A. LAMP Assay for the Detection of Echinococcus multilocularis Eggs Isolated from Canine Faeces by a Cost-Effective NaOH-Based DNA Extraction Method. Pathogens 2021, 10, 847. [Google Scholar] [CrossRef]
- Avila, H.G.; Mozzoni, C.; Trangoni, M.D.; Cravero, S.L.P.; Pérez, V.M.; Valenzuela, F.; Gertiser, M.L.; Butti, M.J.; Kamenetzky, L.; Jensen, O.; et al. Development of a copro-LAMP assay for detection of several species of Echinococcus granulosus sensu lato complex. Vet. Parasitol. 2020, 277, 109017. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Lalle, M.; Possenti, A.; Dubey, J.P.; Pozio, E. Loop-Mediated Isothermal Amplification-Lateral-Flow Dipstick (LAMP-LFD) to detect Toxoplasma gondii oocyst in ready-to-eat salad. Food Microbiol. 2018, 70, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Lizarazo-Zuluaga, A.P.; Carvajal-Gamez, B.I.; Wilkowsky, S.; Cravero, S.; Trangoni, M.; Mosqueda, J. Development and standardization of a Loop-mediated isothermal amplification (LAMP) test for the detection of Babesia bigemina. Front. Vet. Sci. 2022, 9, 1056355. [Google Scholar] [CrossRef]
- Grab, D.J.; Nikolskaia, O.V.; Courtioux, B.; Thekisoe, O.M.M.; Magez, S.; Bogorad, M.; Dumler, J.S.; Bisser, S. Using detergent-enhanced LAMP for African trypanosome detection in human cerebrospinal fluid and implications for disease staging. PLoS Negl. Trop. Dis. 2019, 13, e0007631. [Google Scholar] [CrossRef]
- Xu, X.Z.; Jin, X.L.; Li, J.; Jiang, W.C.; Jiang, G. Preliminary study on detection of Echinococcus granulosus DNA by loop-mediated isothermal amplification. Chin. J. Schistosomiasis Control. 2011, 23, 558–560, 565. [Google Scholar]
- Khanbabaie, S.; Riazi, M.; Chang, C.H.; Yunus, M.H.; Noordin, R. Lateral flow dipstick antigen assay for human cystic echinococcosis. Acta Trop. 2019, 190, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Kong, Q.; Ding, H.; Xie, C.; Zheng, B.; Zhuo, X.; Ding, J.; Tong, Q.; Lou, D.; Lu, S.; et al. A novel loop-mediated isothermal amplification-lateral-flow-dipstick (LAMP-LFD) device for rapid detection of Toxoplasma gondii in the blood of stray cats and dogs. Parasite 2021, 28, 41. [Google Scholar] [CrossRef] [PubMed]
- Sunita, T.; Khurana, S.; Malla, N.; Dubey, M.L. Immunodiagnosis of cystic echinocooccosis by antigen detection in serum, urine, and saliva samples. Trop. Parasitol. 2011, 1, 33–38. [Google Scholar] [PubMed]
- Fathi, S.; Jalousian, F.; Hosseini, S.H.; Najafi, A.; Darabi, E.; Koohsar, F. Design and construction of a new recombinant fusion protein (2b2t+EPC1) and its assessment for serodiagnosis of cystic echinococcosis. APMIS 2018, 126, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Aregawi, W.G.; Agga, G.E.; Abdi, R.D.; Büscher, P. Systematic review and meta-analysis on the global distribution, host range, and prevalence of Trypanosoma evansi. Parasit Vectors 2019, 12, 67. [Google Scholar] [CrossRef]
- Craig, P.S. Detection of specific circulating antigen, immune complexes and antibodies in human hydatidosis from Turkana (Kenya) and Great Britain, by enzyme-immunoassay. Parasite Immunol. 1986, 8, 171–188. [Google Scholar] [CrossRef]
Primer | Size (bp) | Sequence (5′→3′) |
---|---|---|
Echinococcus granulosus | ||
Eg-F3 | 20 | GCATGTGTGTGAATGCAAGC |
Eg-B3 | 18 | GGGCAATCGCAGTGAAGT |
Eg-FIP | 39 | AACTACCTCCACAGCACGGCAGCAGATGCCTACCCATCC |
Eg-BIP | 42 | TAAGACATCGGTGCGAGCACTCTGCCTTCGTTAGGTGGAGAT |
Eg-LF | 25 | CCACTGGTAAGTTAAATGCTTTTCC |
Eg-LB | 24 | TTCTCACTCATCTCACTGAATGTG |
Echinococcus multilocularis | ||
Em-F3 | 20 | AACCACCAACCTTTCGGTTA |
Em-B3 | 19 | GGAATGGGAAGGTGATGGC |
Em-FIP | 35 | GCAGTGTAGCGCGTGGCACAGCCGAACGCGCTAAC |
Em-BIP | 39 | GCAAGCCGCCGCCTCTTCTGATGGTGAGGTAGTGTTGCA |
Em-LF | 17 | AGCCTTCGTGGCGCAAT |
Em-LB | 20 | TCTCTCCCACCACCACCACC |
City | Regions (Number) | Canine Fecal Samples (Number) | LAMP-LFD | ELISA | ||||
---|---|---|---|---|---|---|---|---|
Positive Samples | Positive Rate/% | Positive Samples | Positive Rate/% | |||||
E.m | E.g | Total | ||||||
Lhasa City | 1 | 16 | 3 | 5 | 8 | 50 | 8 | 50 |
Nagqu | 8 | 124 | 1 | 4 | 5 | 4.03 | 0 | 0 |
Shannan | 10 | 113 | 1 | 12 | 13 | 11.50 | 4 | 3.54 |
Shigatse | 11 | 189 | 7 | 42 | 49 | 25.93 | 52 | 27.51 |
Nyingchi | 7 | 146 | 1 | 2 | 3 | 2.05 | 0 | 0 |
Chamdo | 10 | 238 | 2 | 5 | 7 | 2.94 | 0 | 0 |
Ngari | 7 | 156 | 1 | 11 | 12 | 7.69 | 12 | 7.69 |
Total | 54 | 982 | 16 | 81 | 97 | 9.88 | 76 | 7.74 |
Sample Size | LAMP-LFD | Sensitivity | Specificity | |||
---|---|---|---|---|---|---|
Positive | Negative | |||||
76 | ELISA | positive | 73 | 3 | 96.05% (73/76) | 97.35% (882/906) |
906 | negative | 24 | 882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Ai, J.; Mo, X.; Ding, H.; Litchev, S.; Lu, E.; Weng, Y.; He, Q.; Gongsang, Q.; Yang, S.; et al. Rapid Discriminative Identification of the Two Predominant Echinococcus Species from Canine Fecal Samples in the Tibetan Region of China by Loop-Mediated Isothermal Amplification–Lateral Flow Dipstick Assay. Trop. Med. Infect. Dis. 2024, 9, 136. https://doi.org/10.3390/tropicalmed9060136
Lv X, Ai J, Mo X, Ding H, Litchev S, Lu E, Weng Y, He Q, Gongsang Q, Yang S, et al. Rapid Discriminative Identification of the Two Predominant Echinococcus Species from Canine Fecal Samples in the Tibetan Region of China by Loop-Mediated Isothermal Amplification–Lateral Flow Dipstick Assay. Tropical Medicine and Infectious Disease. 2024; 9(6):136. https://doi.org/10.3390/tropicalmed9060136
Chicago/Turabian StyleLv, Xinyue, Jiajia Ai, Xiaojin Mo, Haojie Ding, Sofia Litchev, Entung Lu, Youhong Weng, Qing He, Quzhen Gongsang, Shijie Yang, and et al. 2024. "Rapid Discriminative Identification of the Two Predominant Echinococcus Species from Canine Fecal Samples in the Tibetan Region of China by Loop-Mediated Isothermal Amplification–Lateral Flow Dipstick Assay" Tropical Medicine and Infectious Disease 9, no. 6: 136. https://doi.org/10.3390/tropicalmed9060136
APA StyleLv, X., Ai, J., Mo, X., Ding, H., Litchev, S., Lu, E., Weng, Y., He, Q., Gongsang, Q., Yang, S., Ma, X., Li, J., Pang, H., Lu, S., & Kong, Q. (2024). Rapid Discriminative Identification of the Two Predominant Echinococcus Species from Canine Fecal Samples in the Tibetan Region of China by Loop-Mediated Isothermal Amplification–Lateral Flow Dipstick Assay. Tropical Medicine and Infectious Disease, 9(6), 136. https://doi.org/10.3390/tropicalmed9060136