Semantic Trajectory Analytics and Recommender Systems in Cultural Spaces
Abstract
:1. Introduction
- Exploitation of raw spatiotemporal trajectory data
- Semantic segmentation and annotation of the trajectory
- Trajectory description using suitable ontologies
- Semantic trajectory enrichment with Linked Open Data (LOD)
- Semantic annotation of cultural spaces and points of interest (POI) to provide context and capability for semantic integration with user trajectories
- Trajectory analytics for pattern recognition and classification
- Future location prediction
- Dynamic user profiling
- Integration of User Knowledge Graph (UKG)
- Integration of Cultural Space (CS) and POI Knowledge Graph (KG)
- Integration of KG-Based recommender system (RS) for path-based and KG-based recommendations
- Integration of context-aware RS
- Integration of hybrid RS
- Integration of collaborative filtering RS
- Inference and proposal of a possible synthesis of visitor trajectories
2. Preliminaries
2.1. Semantic Trajectories (STs)
2.2. Recommender Systems (RS)
- ▪
- User–Item relation: This relation is based on the user profile and the explicitly documented preferences of the user towards a specific type of Item.
- ▪
- Item–Item relation: This relation occurs based on the similarity or the complementarity of the attributes or descriptions of the Items.
- ▪
- User–User relation: This relation describes the Users that possibly have similar tastes with respect to specific Items, such as mutual friends, age group, location, etc.
2.3. Knowledge Graphs
- Knowledge graph meaning is expressed as structure.
- Knowledge graph statements are unambiguous.
- Knowledge graphs use a limited set of relation types.
- Centrality: discovers the nodes with the most connections and the biggest impact in the graph.
- Community Detection: discovers sub-graphs that are more closely connected internally, compared to the rest of the graph.
- Connectivity: evaluates the quality of the connections in the graph, in terms of resilience, reachability, etc.
- Node Similarity: measures which neighbour nodes are in a specific area of the graph, based on their features and connections.
- Path Finding: discovers possible reachable paths between predefined terminal nodes.
- KG Embeddings: transforms graph representations to a low-dimensional vector space (graph embeddings), to allow ML applications to handle them efficiently.
- KG Recommendations: KGs, by design, provide the technical means to integrate various heterogeneous information sources, for instance, POIs and user preferences. Thus, feature similarity discovery algorithms can be applied to enhance recommendation techniques.
3. Survey Methodology
- semantic recommender systems
- trajectory-based recommender systems
- semantic trajectory-based recommender systems
- cultural recommender systems
- semantic trajectories
- trajectory annotation
- trajectory segmentation
- POI extraction and annotation
- trajectory enrichment
- human movement trajectories
- cultural semantic trajectories
4. State of the Art in STs and RSs
4.1. Semantic Trajectories (ST)
4.1.1. Annotation of Trajectories
4.1.2. Semantic Trajectory Management
4.1.3. Semantic Trajectory Modelling
4.1.4. Semantic Trajectory Analytics
4.2. Recommender Systems (RS)
4.2.1. Cultural RS
4.2.2. Semantic and Knowledge-Based Recommender Systems
4.2.3. Trajectory-Based Recommender Systems for Cultural Spaces
5. Evaluation and Discussion
- Exploitation of raw spatiotemporal trajectory data: raw trajectory data include useful spatial information combined with time-specific stops, speed, and direction of the visitor, needed for the initial segmentation.
- Semantic segmentation and annotation of the trajectory: for raw trajectories to be converted to semantic trajectories and analysed as such, segmentation of the trajectory and annotation of the parts are necessary.
- Trajectory description using suitable ontologies: Ontologies provided a structured and unified way of semantically describing instances of entities and fuse them with domain knowledge
- Semantic trajectory enrichment with linked open data (LOD): LOD grant a plethora of continuously updated information from different data sources regarding the context of the trajectory
- Semantic annotation of cultural spaces and points of interest (POI) to provide context and capability for semantic integration with user trajectories: semantically described POIs and spaces can make trajectory segmentation and recommendations more effective, and the interlinking of POIs and trajectories possible
- Trajectory analytics for pattern recognition and classification: the main goal of the process is the ability to discover features and recognise patterns in trajectories to categorise them and extract meaningful information about visitor movement
- Future location prediction: effective trajectory analysis and classification can lead to future location prediction, which is a useful input for the RSs
- Dynamic user profiling: updating user profile based on explicit and implicit feedback of user behaviour
- Integration of User Knowledge Graph (UKG): describes user profiles semantically and represents them as nodes in a KG
- Integration of Cultural Space (CS) and POI Knowledge Graph (KG): represents semantically annotated and enriched POIs and CS as a KG
- Integration of KG-Based recommender system (RS) for path-based and KG-based recommendations: performs path finding and connectivity methods for discovering possible recommendation lists in the optimal ranking order
- Integration of context-aware RS: provides suggestions considering contextual information to enhance final recommendations
- Integration of hybrid RS: merges multiple recommendations to achieve maximum efficiency and accuracy
- Integration of collaborative filtering RS: leverages user similarity to produce meaningful suggestions
- Inference and proposal of a possible synthesis of visitor trajectories: evaluation and combination of RS suggestions with respect to user preferences for generating and proposing optimised trajectories
6. Proposed System Architecture Design
6.1. Use Case Scenario
6.2. System Architecture Modules and Tasks
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruotsalo, T.; Haav, K.; Stoyanov, A.; Roche, S.; Fani, E.; Deliai, R.; Mäkelä, E.; Kauppinen, T.; Hyvönen, E. SMARTMUSEUM: A mobile recommender system for the Web of Data. J. Web Semant. 2013, 20, 50–67. [Google Scholar] [CrossRef]
- Sansonetti, G.; Gasparetti, F.; Micarelli, A.; Cena, F.; Gena, C. Enhancing cultural recommendations through social and linked open data. User Model. User-Adapt. Interact. 2019, 29, 121–159. [Google Scholar] [CrossRef]
- Van Hage, W.R.; Stash, N.; Wang, Y.; Aroyo, L. Finding your way through the Rijksmuseum with an adaptive mobile museum guide. In Proceedings of the 7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Greece, 30 May–3 June 2010; Volume 9088, pp. 46–59. [Google Scholar] [CrossRef] [Green Version]
- Andrienko, G.; Andrienko, N.; Fuchs, G.; Raimond, A.M.O.; Symanzik, J.; Ziemlicki, C. Extracting semantics of individual places from movement data by analyzing temporal patterns of visits. In Proceedings of the First ACM SIGSPATIAL International Workshop on Computational Models of Place, Orlando, FL, USA, 5–8 November 2013; pp. 9–15. [Google Scholar] [CrossRef]
- Zhang, D.; Lee, K.; Lee, I. Hierarchical trajectory clustering for spatio-temporal periodic pattern mining. Expert Syst. Appl. 2018, 92, 1–11. [Google Scholar] [CrossRef]
- Ying, J.J.C.; Lu, E.H.C.; Lee, W.C.; Weng, T.C.; Tseng, V.S. Mining user similarity from semantic trajectories. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks (LBSN-10), San Jose, CA, USA, 2 November 2010; pp. 19–26. [Google Scholar] [CrossRef]
- Giannotti, F.; Nanni, M.; Pedreschi, D.; Pinelli, F.; Renso, C.; Rinzivillo, S.; Trasarti, R. Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. 2011, 20, 695–719. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S. Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling. IEEE Trans. Knowl. Data Eng. 2017, 29, 898–911. [Google Scholar] [CrossRef]
- Parent, C.; Spaccapietra, S.; Renso, C.; Andrienko, G.; Andrienko, N.; Bogorny, V.; Damiani, M.L.; Gkoulalas-Divanis, A.; Macedo, J.; Pelekis, N.; et al. Semantic trajectories modeling and analysis. ACM Comput. Surv. 2013, 45, 1–32. [Google Scholar] [CrossRef]
- Spaccapietra, S.; Parent, C.; Damiani, M.L.; de Macedo, J.A.; Porto, F.; Vangenot, C. A conceptual view on trajectories. Data Knowl. Eng. 2008, 65, 126–146. [Google Scholar] [CrossRef] [Green Version]
- Nanni, M.; Trasarti, R.; Renso, C.; Giannotti, F.; Pedreschi, D. Advanced knowledge discovery on movement data with the GeoPKDD system. In Proceedings of the 13th International Conference on Extending Database Technology, Lausanne, Switzerland, 22–26 March 2010; pp. 693–696. [Google Scholar] [CrossRef]
- Bao, J.; Zheng, Y.; Wilkie, D.; Mokbel, M. Recommendations in location-based social networks: A survey. Geoinformatica 2015, 19, 525–565. [Google Scholar] [CrossRef]
- Nogueira, T.P.; Braga, R.B.; de Oliveira, C.T.; Martin, H. FrameSTEP: A framework for annotating semantic trajectories based on episodes. Expert Syst. Appl. 2018, 92, 533–545. [Google Scholar] [CrossRef]
- Maarala, A.I.; Su, X.; Riekki, J. Semantic Reasoning for Context-Aware Internet of Things Applications. IEEE Internet Things J. 2017, 4, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Dodge, S.; Weibel, R.; Lautenschütz, A.K. Towards a taxonomy of movement patterns. Inf. Vis. 2008, 7, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Kembellec, G.; Chartron, G.; Saleh, I. Recommender Systems; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 9781119054252. [Google Scholar]
- Pavlidis, G. Recommender systems, cultural heritage applications, and the way forward. J. Cult. Herit. 2019, 35, 183–196. [Google Scholar] [CrossRef]
- Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl.-Based Syst. 2013, 46, 109–132. [Google Scholar] [CrossRef]
- Ricci, F.; Rokach, L.; Shapira, B. Recommender Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 9780387858203. [Google Scholar]
- Barranco, M.J.; Noguera, J.M.; Castro, J.; Martínez, L. A context-aware mobile recommender system based on location and trajectory. Adv. Intell. Syst. Comput. 2012, 171 AISC, 153–162. [Google Scholar] [CrossRef]
- Chicaiza, J.; Valdiviezo-Diaz, P. A comprehensive survey of knowledge graph-based recommender systems: Technologies, development, and contributions. Information 2021, 12, 232. [Google Scholar] [CrossRef]
- Hogan, A.; Blomqvist, E.; Cochez, M.; D’Amato, C.; De Melo, G.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.; et al. Knowledge graphs. ACM Comput. Surv. 2021, 54, 1–257. [Google Scholar] [CrossRef]
- Bonatti, P.; Decker, S.; Polleres, A.; Presutti, V. Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371). Dagstuhl Rep. 2019, 8, 29–111. [Google Scholar]
- Kejriwal, M. What Is a Knowledge Graph. In Domain-Specific Knowledge Graph Construction; SpringerBriefs in Computer Science; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Lassila, O.; Swick, R.R. Resource Description Framework (RDF) Model and Syntax Specification. World Wide Web Consortium Recommendation. 1999. Available online: https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ (accessed on 16 November 2021).
- De Graaff, V.; De By, R.A.; De Keulen, M. Automated semantic trajectory annotation with indoor point-of-interest visits in urban areas. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 4–8 April 2016; pp. 552–559. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, X.; Li, H.; Wang, H. On Semantic Organization and Fusion of Trajectory Data. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 1078–1081. [Google Scholar] [CrossRef]
- Al-Dohuki, S.; Wu, Y.; Kamw, F.; Yang, J.; Li, X.; Zhao, Y.; Ye, X.; Chen, W.; Ma, C.; Wang, F. SemanticTraj: A New Approach to Interacting with Massive Taxi Trajectories. IEEE Trans. Vis. Comput. Graph. 2017, 23, 11–20. [Google Scholar] [CrossRef]
- Santipantakis, G.M.; Glenis, A.; Patroumpas, K.; Vlachou, A.; Doulkeridis, C.; Vouros, G.A.; Pelekis, N.; Theodoridis, Y. SPARTAN: Semantic integration of big spatio-temporal data from streaming and archival sources. Futur. Gener. Comput. Syst. 2020, 110, 540–555. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.; Times, V.; Renso, C.; Matwin, S.; Cabral, L.A.F. A semi-supervised approach for the semantic segmentation of trajectories. In Proceedings of the 2018 19th IEEE International Conference on Mobile Data Management (MDM), Aalborg, Denmark, 25–28 June 2018; pp. 145–154. [Google Scholar] [CrossRef] [Green Version]
- Vassilakis, C.; Kotis, K.; Spiliotopoulos, D.; Margaris, D.; Kasapakis, V.; Anagnostopoulos, C.N.; Santipantakis, G.; Vouros, G.A.; Kotsilieris, T.; Petukhova, V.; et al. A semantic mixed reality framework for shared cultural experiences ecosystems. Big Data Cogn. Comput. 2020, 4, 6. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, S.K. Modeling of human movement behavioral knowledge from GPS traces for categorizing mobile users. In Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Australia, 3–7 April 2017; pp. 51–58. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Zhang, Z.; Huang, C.; Yin, H.; Yang, Q.; Shao, J. Semantic trajectory representation and retrieval via hierarchical embedding. Inf. Sci. (NY) 2020, 538, 176–192. [Google Scholar] [CrossRef]
- Kontarinis, A.; Zeitouni, K.; Marinica, C.; Vodislav, D.; Kotzinos, D. Towards a semantic indoor trajectory model: Application to museum visits. GeoInformatica 2021, 25, 311–352. [Google Scholar] [CrossRef] [PubMed]
- Karatzoglou, A.; Schnell, N.; Beigl, M. A convolutional neural network approach for modeling semantic trajectories and predicting future locations. In Proceedings of the 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Volume 11139, pp. 61–72. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Huang, Z. A system of mining semantic trajectory patterns from GPS data of real users. Symmetry 2019, 11, 889. [Google Scholar] [CrossRef] [Green Version]
- Khoroshevsky, F.; Lerner, B. Human mobility-pattern discovery and next-place prediction from GPS data. In Proceedings of the 4th IAPR TC 9 Workshop, MPRSS 2016, Cancun, Mexico, 4 December 2016; Volume 10183, pp. 24–35. [Google Scholar] [CrossRef]
- Amato, F.; Moscato, F.; Moscato, V.; Pascale, F.; Picariello, A. An agent-based approach for recommending cultural tours. Pattern Recognit. Lett. 2020, 131, 341–347. [Google Scholar] [CrossRef]
- Su, X.; Sperl, G.; Moscato, V.; Picariello, A. An Edge Intelligence Empowered Recommender System Enabling Cultural Heritage Applications. IEEE Trans. Ind. Inform. 2019, 15, 4266–4275. [Google Scholar] [CrossRef]
- Cardoso, P.J.S.; Rodrigues, J.M.F.; Pereira, J.; Nogin, S.; Lessa, J.; Ramos, C.M.Q.; Bajireanu, R.; Gomes, M.; Bica, P. Cultural heritage visits supported on visitors’ preferences and mobile devices. Univers. Access Inf. Soc. 2020, 19, 499–513. [Google Scholar] [CrossRef]
- Smirnov, A.V.; Kashevnik, A.M.; Ponomarev, A. Context-based infomobility system for cultural heritage recommendation: Tourist Assistant—TAIS. Pers. Ubiquitous Comput. 2017, 21, 297–311. [Google Scholar] [CrossRef]
- Hong, M.; An, S.; Akerkar, R.; Camacho, D.; Jung, J.J. Cross-cultural contextualisation for recommender systems. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Loboda, O.; Nyhan, J.; Mahony, S.; Romano, D.M.; Terras, M. Content-based Recommender Systems for Heritage: Developing a Personalised Museum Tour. In Proceedings of the DSRS-Turing 2019: 1st International ‘Alan Turing’ Conference on Decision Support and Recommender Systems, London, UK, 21–22 November 2019. [Google Scholar]
- Hong, M.; Jung, J.J.; Piccialli, F.; Chianese, A. Social recommendation service for cultural heritage. Pers. Ubiquitous Comput. 2017, 21, 191–201. [Google Scholar] [CrossRef]
- Qassimi, S.; Abdelwahed, E.H. Towards a semantic graph-based recommender system. A case study of cultural heritage. J. Univers. Comput. Sci. 2021, 27, 714–733. [Google Scholar] [CrossRef]
- Zhou, S.; Dai, X.; Chen, H.; Zhang, W.; Ren, K.; Tang, R.; He, X.; Yu, Y. Interactive Recommender System via Knowledge Graph-enhanced Reinforcement Learning. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, China, 25–30 July 2020; pp. 179–188. [Google Scholar] [CrossRef]
- Minkov, E.; Kahanov, K.; Kuflik, T. Graph-based recommendation integrating rating history and domain knowledge: Application to on-site guidance of museum visitors. J. Assoc. Inf. Sci. Technol. 2017, 68, 1911–1924. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.D.C.; Ilarri, S.; Hermoso, R.; Trillo-Lado, R. Towards Trajectory-Based Recommendations in Museums: Evaluation of Strategies Using Mixed Synthetic and Real Data. Procedia Comput. Sci. 2017, 113, 234–239. [Google Scholar] [CrossRef]
- Gao, Q.; Zhou, F.; Zhang, K.; Zhang, F.; Trajcevski, G. Adversarial Human Trajectory Learning for Trip Recommendation. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1–13. [Google Scholar] [CrossRef]
- Cai, G.; Lee, K.; Lee, I. Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos. Expert Syst. Appl. 2018, 94, 32–40. [Google Scholar] [CrossRef]
- Xu, M.; Han, J. Next Location Recommendation Based on Semantic-Behavior Prediction. In Proceedings of the 2020 5th International Conference on Big Data and Computing, Chengdu, China, 28–30 May 2020; pp. 65–73. [Google Scholar] [CrossRef]
- Semantic Trajectory Episodes—Report Generated by Parrot. Available online: http://talespaiva.github.io/step/ (accessed on 16 November 2021).
- OpenStreetMap. Available online: https://www.openstreetmap.org/#map=16/37.9704/23.7300&layers=H (accessed on 16 November 2021).
- Santipantakis, G.M.; Vouros, G.A.; Doulkeridis, C.; Vlachou, A.; Andrienko, G.; Andrienko, N.; Fuchs, G.; Garcia, J.M.C.; Martinez, M.G. Specification of semantic trajectories supporting data transformations for analytics: The datacron ontology. In Proceedings of the 13th International Conference on Semantic Systems, Amsterdam, The Netherlands, 11–14 September 2017; pp. 17–24. [Google Scholar] [CrossRef]
- IndoorGML OGC. Available online: http://indoorgml.net/ (accessed on 16 November 2021).
- Krisnadhi, A.; Hitzler, P.; Janowicz, K. A spatiotemporal extent pattern based on semantic trajectories. Adv. Ontol. Des. Patterns 2017, 32, 47–53. [Google Scholar]
- Pei, J.; Han, J.; Mortazavi-Asl, B.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, M.C. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2–6 April 2001; pp. 215–224. [Google Scholar] [CrossRef]
- Graph Data Platform|Graph Database Management System|Neo4j. Available online: https://neo4j.com/ (accessed on 16 November 2021).
- Home—DBpedia Association. Available online: https://www.dbpedia.org/ (accessed on 16 November 2021).
- Discover Inspiring European Cultural Heritage|Europeana. Available online: https://www.europeana.eu/en (accessed on 16 November 2021).
- Home—LinkedGeoData. Available online: http://linkedgeodata.org/ (accessed on 16 November 2021).
- SPARQL 1.1 Query Language. Available online: https://www.w3.org/TR/sparql11-query/ (accessed on 16 November 2021).
- Haveliwala, T.H. Topic-sensitive PageRank. In Proceedings of the Eleventh International Conference on World Wide Web—WWW ’02, Honolulu, HI, USA, 7–11 May 2002; ACM Press: New York, NY, USA, 2002; p. 517. [Google Scholar]
- WebPlotDigitizer—Extract Data from Plots, Images, and Maps. Available online: https://automeris.io/WebPlotDigitizer/ (accessed on 16 November 2021).
- DataGenCARS. Available online: http://webdiis.unizar.es/~silarri/DataGenCARS/ (accessed on 16 November 2021).
- Find Your Inspiration.|Flickr. Available online: https://flickr.com/ (accessed on 16 November 2021).
- Europeana Data Model|Europeana Pro. Available online: https://pro.europeana.eu/page/edm-documentation (accessed on 16 November 2021).
- Home|CIDOC CRM. Available online: http://www.cidoc-crm.org/ (accessed on 16 November 2021).
- FOAF Vocabulary Specification. Available online: http://xmlns.com/foaf/spec/ (accessed on 16 November 2021).
- User Profile Ontology. Available online: http://iot.ee.surrey.ac.uk/citypulse/ontologies/up/up.html (accessed on 16 November 2021).
- Karma: A Data Integration Tool. Available online: https://usc-isi-i2.github.io/karma/ (accessed on 16 November 2021).
* | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[26] | x | x | |||||||||||||
[13] | x | x | x | x | |||||||||||
[30] | x | x | |||||||||||||
[31] | x | x | |||||||||||||
[32] | x | x | x | x | |||||||||||
[33] | x | x | |||||||||||||
[34] | x | x | x | x | x | x | x | ||||||||
[35] | x | x | x | ||||||||||||
[36] | x | x | |||||||||||||
[37] | x | x | x | x | x | ||||||||||
[56] | x | x | |||||||||||||
[27] | x | x | |||||||||||||
[28] | x | x | x | ||||||||||||
[29] | x | x | x | x | x | ||||||||||
[8] | x | x | x | ||||||||||||
[44] | x | x | x | ||||||||||||
[45] | i | x | x | x | x | x | x | x | |||||||
[46] | ii | x | x | x | x | x | |||||||||
[47] | x | x | x | x | |||||||||||
[48] | x | x | |||||||||||||
[49] | x | x | |||||||||||||
[50] | x | x | x | x | x | ||||||||||
[51] | x | x | x | x | |||||||||||
[38] | x | x | x | ||||||||||||
[2] | iii | x | x | x | x | x | x | x | x | ||||||
[39] | x | x | x | x | x | ||||||||||
[40] | x | x | x | x | x | x | |||||||||
[41] | x | x | x | x | x | x | |||||||||
[42] | x | x | x | x | x | ||||||||||
[43] | x | x | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelis, S.; Kotis, K.; Spiliotopoulos, D. Semantic Trajectory Analytics and Recommender Systems in Cultural Spaces. Big Data Cogn. Comput. 2021, 5, 80. https://doi.org/10.3390/bdcc5040080
Angelis S, Kotis K, Spiliotopoulos D. Semantic Trajectory Analytics and Recommender Systems in Cultural Spaces. Big Data and Cognitive Computing. 2021; 5(4):80. https://doi.org/10.3390/bdcc5040080
Chicago/Turabian StyleAngelis, Sotiris, Konstantinos Kotis, and Dimitris Spiliotopoulos. 2021. "Semantic Trajectory Analytics and Recommender Systems in Cultural Spaces" Big Data and Cognitive Computing 5, no. 4: 80. https://doi.org/10.3390/bdcc5040080
APA StyleAngelis, S., Kotis, K., & Spiliotopoulos, D. (2021). Semantic Trajectory Analytics and Recommender Systems in Cultural Spaces. Big Data and Cognitive Computing, 5(4), 80. https://doi.org/10.3390/bdcc5040080