DeepWings©: Automatic Wing Geometric Morphometrics Classification of Honey Bee (Apis mellifera) Subspecies Using Deep Learning for Detecting Landmarks
Abstract
:1. Introduction
Background
2. Materials and Methods
2.1. Modelling of the Solution
2.2. Image Datasets
2.2.1. Masks
2.2.2. Data Augmentation
2.3. Processing and Analyzing Wing Images
2.3.1. Preprocessing
2.3.2. Landmark Detection
2.3.3. Classification
3. Results and Discussion
3.1. Wing Detector
3.2. Size of Synthetic Landmarks for Training
3.3. U-Net Optimization
3.4. Evaluation of Landmarks Segmentation
3.5. Classification
3.6. Computational Cost Analysis
3.7. DeepWings© as a Web Service
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruttner, F. Biogeography and Taxonomy of Honeybees; Springer: Berlin/Heidelberg, Germany, 1988; p. 284. [Google Scholar]
- Sheppard, W.S.; Meixner, M.D. Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie 2003, 34, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Meixner, M.D.; Leta, M.A.; Koeniger, N.; Fuchs, S. The honey bees of Ethiopia represent a new subspecies of Apis mellifera-Apis mellifera simensis n. ssp. Apidologie 2011, 42, 425–437. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.G.; Pan, Q.; Chen, X.; Wang, H.H.; Guo, H.K.; Liu, S.D.; Lu, H.F.; Tian, S.L.; Li, R.Q.; et al. Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp. Mol. Biol. Evol. 2016, 33, 1337–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meixner, M.D.; Pinto, M.A.; Bouga, M.; Kryger, P.; Ivanova, E.; Fuchs, S. Standard methods for characterising subspecies and ecotypes of Apis mellifera. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef]
- Tofilski, A. DrawWing, a program for numerical description of insect wings. J. Insect Sci. 2004, 4, 17. [Google Scholar] [CrossRef]
- Da Silva, F.L.; Sella, M.L.G.; Francoy, T.M.; Costa, A.H.R. Evaluating classification and feature selection techniques for honeybee subspecies identification using wing images. Comput. Electron. Agric. 2015, 114, 68–77. [Google Scholar] [CrossRef]
- Nawrocka, A.; Kandemir, I.; Fuchs, S.; Tofilski, A. Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie 2018, 49, 172–184. [Google Scholar] [CrossRef] [Green Version]
- De Nart, D.; Costa, C.; di Prisco, G.; Carpana, E. Image recognition using convolutional neural networks for classification of honey bee subspecies. Apidologie 2022, 53, 5. [Google Scholar] [CrossRef]
- Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Francoy, T.M.; Wittmann, D.; Drauschke, M.; Muller, S.; Steinhage, V.; Bezerra-Laure, M.A.F.; De Jong, D.; Goncalves, L.S. Identification of Africanized honey bees through wing morphometrics: Two fast and efficient procedures. Apidologie 2008, 39, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Kandemir, I.; Ozkan, A.; Fuchs, S. Reevaluation of honeybee (Apis mellifera) microtaxonomy: A geometric morphometric approach. Apidologie 2011, 42, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Prabucki, J.S.; Samborski, J.; Chuda-Mickiewicz, B. The use of three taxonomic characters for race identification of Middle European bee. J. Apic. Sci. 2002, 46, 41–47. [Google Scholar]
- Bouga, M.; Alaux, C.; Bienkowska, M.; Buchler, R.; Carreck, N.L.; Cauia, E.; Chlebo, R.; Dahle, B.; Dall’Olio, R.; De la Rua, P.; et al. A review of methods for discrimination of honey bee populations as applied to European beekeeping. J. Apic. Res. 2011, 50, 51–84. [Google Scholar] [CrossRef] [Green Version]
- Bonatti, V.; Simoes, Z.L.P.; Franco, F.F.; Francoy, T.M. Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings. Naturwissenschaften 2014, 101, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Francoy, T.M.; Franco, F.D.; Roubik, D.W. Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie 2012, 43, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Francoy, T.M.; Bonatti, V.; Viraktamath, S.; Rajankar, B.R. Wing morphometrics indicates the existence of two distinct phenotypic clusters within population of Tetragonula iridipennis (Apidae: Meliponini) from India. Insectes Sociaux 2016, 63, 109–115. [Google Scholar] [CrossRef]
- Costa, C.P.; Machado, C.A.S.; Santiago, W.M.S.; Dallacqua, R.P.; Garófalo, C.A.; Francoy, T.M. Biome variation, not distance between populations, explains morphological variability in the orchid bee Eulaema nigrita (Hymenoptera, Apidae, Euglossini). Apidologie 2020, 51, 984–996. [Google Scholar] [CrossRef]
- Rebelo, A.R.; Fagundes, J.M.G.; Digiampietri, L.A.; Francoy, T.M.; Biscaro, H.H. A fully automatic classification of bee species from wing images. Apidologie 2021, 52, 1060–1074. [Google Scholar] [CrossRef]
- Francoy, T.M.; Prado, P.R.R.; Gonçalves, L.S.; Costa, L.d.F.; Jong, D.D. Morphometric differences in a single wing cell can discriminate Apis mellifera racial types. Apidologie 2006, 37, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Evin, A.; Baylac, M.; Ruedi, M.; Mucedda, M.; Pons, J.-M. Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): A geometric morphometric appraisal. Biol. J. Linn. Soc. 2008, 95, 529–538. [Google Scholar] [CrossRef]
- Tofilski, A. Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie 2008, 39, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Miguel, I.; Baylac, M.; Iriondo, M.; Manzano, C.; Garnery, L.; Estonba, A. Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch. Apidologie 2011, 42, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Oleksa, A.; Tofilski, A. Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie 2015, 46, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, H.; Henriques, D.; Neves, C.J.; Machado, C.A.S.; Azevedo, J.C.; Francoy, T.M.; Pinto, M.A. Historical and contemporaneous human-mediated processes left a strong genetic signature on honey bee populations from the Macaronesian archipelago of the Azores. Apidologie 2020, 51, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Tofilski, A. IdentiFly Software, Version 0.31. Available online: http://drawwing.org/identifly (accessed on 4 April 2022).
- Henriques, D.; Browne, K.A.; Barnett, M.W.; Parejo, M.; Kryger, P.; Freeman, T.C.; Muñoz, I.; Garnery, L.; Highet, F.; Jonhston, J.S.; et al. High sample throughput genotyping for estimating C-lineage introgression in the dark honeybee: An accurate and cost-effective SNP-based tool. Sci. Rep. 2018, 8, 8552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momeni, J.; Parejo, M.; Nielsen, R.O.; Langa, J.; Montes, I.; Papoutsis, L.; Farajzadeh, L.; Bendixen, C.; Căuia, E.; Charrière, J.-D.; et al. Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPs. BMC Genom. 2021, 22, 101. [Google Scholar] [CrossRef]
- Chavez-Galarza, J.; Henriques, D.; Johnston, J.S.; Carneiro, M.; Rufino, J.; Patton, J.C.; Pinto, M.A. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: Maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia. Mol. Ecol. 2015, 24, 2973–2992. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 1, Lake Tahoe, Nevada, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Bradski, G.R.; Pisarevsky, V. Intel’s computer vision library: Applications in calibration, stereo, segmentation, tracking, gesture, face and object recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000), Hilton Head, SC, USA, 15 June 2000; pp. 796–797. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the impact of residual connections on learning. In Proceedings of the Thirty-First Aaai Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Kaehler, A.; Bradski, G.R. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2017; 990 p. [Google Scholar]
- Chollet, F. Keras: The Python Deep Learning Library; Astrophysics Source Code Library: Houghton, MI, USA, 2018; p. ascl:1806.1022. [Google Scholar]
- Mudrová, M.; Procházka, A. Principal component analysis in image processing. In Proceedings of the MATLAB Technical Computing Conference, Prague, Czech Republic, 4–8 July 2005. [Google Scholar]
- Quinlan, J.R. Simplifying decision trees. Int. J. Man-Mach. Stud. 1987, 27, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Gower, J.C. Generalized procrustes analysis. Psychometrika 1975, 40, 33–51. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Pan, S.J.; Yang, Q.A. A Survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1998, 11, 761–767. [Google Scholar] [CrossRef] [Green Version]
- De la Rua, P.; Jaffe, R.; Dall’Olio, R.; Munoz, I.; Serrano, J. Biodiversity, conservation and current threats to European honeybees. Apidologie 2009, 40, 263–284. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef]
- Büchler, R.; Costa, C.; Hatjina, F.; Andonov, S.; Meixner, M.D.; le Conte, Y.; Uzunov, A.; Berg, S.; Bienkowska, M.; Bouga, M.; et al. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. J. Apic. Res. 2014, 53, 205–214. [Google Scholar] [CrossRef] [Green Version]
Model | Coco [email protected] | Images per Second |
---|---|---|
SSD MobileNet v1 FPN coco | 0.975 | 24 |
Faster R-CNN NAS | 0.950 | 0.6 |
Faster R-CNN Inception Resnet v2 Atrous Coco | 0.950 | 1.8 |
YoloV3 | 0.900 | 18 |
Radius | Altered Images | Dust | Kernel | Weights | Accuracy (%) | |
---|---|---|---|---|---|---|
1 | 2 | No | No | 3 × 3 | No | 68.1 |
2 | 3 | No | No | 3 × 3 | No | 70.4 |
3 | 3 | Yes | No | 3 × 3 | No | 76.3 |
4 | 3 | Yes | No | 5 × 5 | No | 78.7 |
5 | 3 | Yes | Yes | 5 × 5 | No | 81.9 |
6 | 3 | Yes | Yes | 5 × 5 | Yes | 88.2 |
7 | 4 | Yes | Yes | 5 × 5 | Yes | 91.8 |
8 | 4 | Yes | Yes | 7 × 7 | Yes | 83.1 |
Landmark | Precision | Landmark | Precision |
---|---|---|---|
1 | 0.968 | 11 | 0.924 |
2 | 0.970 | 12 | 0.926 |
3 | 0.963 | 13 | 0.937 |
4 | 0.954 | 14 | 0.945 |
5 | 0.911 | 15 | 0.933 |
6 | 0.932 | 16 | 0.931 |
7 | 0.939 | 17 | 0.958 |
8 | 0.950 | 18 | 0.962 |
9 | 0.900 | 19 | 0.975 |
10 | 0.937 | Average ± SD | 0.943 ± 0.020 |
Landmark (x or y) Component | Information Gain Ratio | Landmark (x or y) Component | Information Gain Ratio |
---|---|---|---|
13 (x) | 0.267 | 18 (x) | 0.095 |
17 (y) | 0.248 | 17 (x) | 0.088 |
15 (y) | 0.240 | 6 (x) | 0.087 |
13 (y) | 0.236 | 1 (y) | 0.087 |
8 (y) | 0.203 | 7 (x) | 0.071 |
15 (x) | 0.166 | 3 (y) | 0.068 |
4 (y) | 0.150 | 2 (y) | 0.062 |
10 (x) | 0.147 | 12 (x) | 0.053 |
14 (x) | 0.146 | 6 (y) | 0.053 |
3 (x) | 0.141 | 11 (y) | 0.051 |
9 (y) | 0.137 | 19 (y) | 0.043 |
5 (y) | 0.135 | 11 (x) | 0.042 |
16 (x) | 0.134 | 4 (x) | 0.040 |
12 (y) | 0.131 | 9 (x) | 0.039 |
5 (x) | 0.131 | 7 (y) | 0.025 |
10 (y) | 0.130 | 1 (y) | 0.020 |
18 (y) | 0.127 | 16 (y) | 0.019 |
14 (y) | 0.109 | 2 (x) | 0.017 |
8- (x) | 0.107 | 1 (x) | 0.016 |
Lineage | Average (± SD) Accuracy (%) | A. mellifera Subspecies | Accuracy (%) | A. mellifera Subspecies | Accuracy (%) |
---|---|---|---|---|---|
A | 75.0 ± 7.1 | adansonii | 72.4 | monticola | 80.0 |
capensis | 77.9 | ruttneri | 66.1 | ||
intermissa | 75.2 | sahariensis | 82.7 | ||
lamarckii | 69.3 | scutellata | 71.8 | ||
litorea | 60.9 | unicolor | 87.9 | ||
major | 78.8 | jemenitica | 77.2 | ||
M | 92.2 ± 3.3 | iberiensis | 88.7 | mellifera | 95.3 |
C | 88.1 ± 7.3 | carnica | 89.6 | macedonica | 85.7 |
cecropia | 96.4 | siciliana | 75.3 | ||
ligustica | 93.1 | ||||
O | 91.2 ± 4.1 | adami | 90.3 | cypria | 82.7 |
anatoliaca | 93.9 | meda | 94.5 | ||
armeniaca | 92.1 | syriaca | 95.3 | ||
caucasia | 88.2 |
A. mellifera Subspecies | Accuracy (%) |
---|---|
carnica | 98.9 |
caucasia | 97.7 |
iberiensis | 91.1 |
ligustica | 96.4 |
mellifera | 95.0 |
Average ± SD | 95.8 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, P.J.; Gomes, W.; Pinto, M.A. DeepWings©: Automatic Wing Geometric Morphometrics Classification of Honey Bee (Apis mellifera) Subspecies Using Deep Learning for Detecting Landmarks. Big Data Cogn. Comput. 2022, 6, 70. https://doi.org/10.3390/bdcc6030070
Rodrigues PJ, Gomes W, Pinto MA. DeepWings©: Automatic Wing Geometric Morphometrics Classification of Honey Bee (Apis mellifera) Subspecies Using Deep Learning for Detecting Landmarks. Big Data and Cognitive Computing. 2022; 6(3):70. https://doi.org/10.3390/bdcc6030070
Chicago/Turabian StyleRodrigues, Pedro João, Walter Gomes, and Maria Alice Pinto. 2022. "DeepWings©: Automatic Wing Geometric Morphometrics Classification of Honey Bee (Apis mellifera) Subspecies Using Deep Learning for Detecting Landmarks" Big Data and Cognitive Computing 6, no. 3: 70. https://doi.org/10.3390/bdcc6030070
APA StyleRodrigues, P. J., Gomes, W., & Pinto, M. A. (2022). DeepWings©: Automatic Wing Geometric Morphometrics Classification of Honey Bee (Apis mellifera) Subspecies Using Deep Learning for Detecting Landmarks. Big Data and Cognitive Computing, 6(3), 70. https://doi.org/10.3390/bdcc6030070