Disclosing Edge Intelligence: A Systematic Meta-Survey
Abstract
:1. Introduction
- Comprehensiveness: The research methodology we applied to perform our systematic EI literature review followed the PRISMA guidelines [4], a formal protocol consisting of well-defined and reproducible steps centered on clear criteria for the selection of the target articles, aiming at high level of homogeneity and quality [5];
- Effectiveness: Given the infeasibility of an exhaustive study of the whole EI literature, we opted for a systematic review performed in the form of a tertiary study, a well-established approach, also known as meta-analysis [6], which has the purpose of aggregating and generalizing the main results from large collections of thematically related secondary studies (reviews, surveys, roadmaps, white papers, etc.).
2. Background
3. Research Methodology
3.1. Objectives
- (RQ1) What are current definitions or interpretations of EI?
- (RQ2) Are there specific reference architectures that help to enable intelligence at the edge?
- (RQ3) What are the main topics (intended as broad subjects or themes) addressed by EI?
- (RQ4) What are the key techniques (intended as enabling, implementation methods) of EI?
- (RQ5) What are the pursued goals, the on-going efforts, and the future challenges for EI?
3.2. Search Strategy
3.3. Eligibility Criteria
- The work is a literature review, survey, or mapping study that specifically delves into the EI realm;
- A model or at least a formal definition of EI is proposed or adopted;
- The work uses EI as the main element of the proposed solution;
- Either EI-based or EI-enabling architectures or techniques are presented.
- The work is too vertical on use cases (ranging from individual domains such as autonomous vehicles [23] and the smart grid [24] to general IoT-based applications [25]), techniques (e.g., information fusion for EI [26], neural-network-based self-learning architecture [27]), algorithm customization (e.g., combination of blockchain and k-means algorithm [28]), or model/platform optimization [20,29];
3.4. Study Selection
4. Literature Review
- Evolutionary EI definitions, which “simply” mean EI as the next stage of current edge computing [14,48,49,50], where edge nodes self-process their own data, being empowered through lightened AI algorithms (individually measured in terms of <accuracy, latency, energy, memory footprint> [48]) or pre-trained models (intended as “pluggable AI capabilities for edge computers” [51]);
- Revolutionary EI definitions, which propose EI as a new paradigm combining (“the amalgam”, “the marriage”, “the confluence”) both novel and existing approaches, techniques, and tools from different areas (mainly from edge computing and AI, but also approximate computing, cognitive science, etc.) and realizing a fully distributed intelligence among end devices, edge nodes, and cloud servers [12,15,35,47,51,52,53,54].
- Knowledge Discovery and Data mining (KDD), which encompasses all aspects pertaining to the extraction of valuable insights and patterns from the vast data generated by end devices;
- Hardware platforms and software frameworks, namely those commercial devices and software tools that concretely allow enabling intelligence at the network edge;
- Service, which encompasses all non-functional aspects (from service placement, composition, and orchestration to mobility, offloading, caching, etc.) related to the support and maintenance of IoT services at the edge layer;
- Interoperability, which focuses on those methods and mechanisms enabling different devices, systems, and networks to be readily connected and exchange information.
- Edge inference, which covers all techniques for near-real-time inference, i.e., as close as possible to the data sources;
- Edge training, which encompasses all techniques that aid in training complex ML models on constrained and resource-limited devices;
- Modeling, which encompasses all techniques that aid in designing ML models’ architectures suitable for resource-limited devices;
- Management, which encompasses all techniques that aid in managing the vast amount of real-time data at the edge layer;
- Collaboration, which includes techniques that aim to improve the interoperability between nodes across the edge-to-cloud continuum.
- Promoting programming and software platforms for EI [12,48], as well as lightweight OS for the edge devices [48]; with respect to the former, the most well-known are IoT Edge Microsoft Azure https://azure.microsoft.com/it-it/products/iot-edge/, accessed on 30 January 2023, Cisco Edge Intelligence https://www.cisco.com/c/en/us/solutions/internet-of-things/edge-intelligence.html, accessed on 30 January 2023, AWS IoT Greengrass https://aws.amazon.com/greengrass/, accessed on 30 January 2023, IoT Core https://cloud.google.com/iot-core?hl=it, accessed on 30 January 2023, Google Coral https://coral.ai/, accessed on 30 January 2023, NVIDIA Jetson https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/, accessed on 30 January 2023, and Open VINO https://docs.openvino.ai/latest/index.html, accessed on 30 January 2023, while obvious OS candidates for edge devices are open-source and Linux-based such as Wind River, Android Things, or RedHat (whereas there are others as well such as Azure RTOS, VxWorks, FreeRtos, etc.);
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reinsel, D.; Gantz, J.; Rydning, J. The Digitization of the World from Edge to Core. 2018. Available online: https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf?Tag=Sponsorships (accessed on 30 January 2023).
- Biswas, A.R.; Giaffreda, R. IoT and cloud convergence: Opportunities and challenges. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Republic of Korea, 6–8 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 375–376. [Google Scholar]
- Fizza, K.; Banerjee, A.; Mitra, K.; Jayaraman, P.P.; Ranjan, R.; Patel, P.; Georgakopoulos, D. QoE in IoT: A vision, survey and future directions. Discov. Internet Things 2021, 1, 4. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Bramer, W.M.; De Jonge, G.B.; Rethlefsen, M.L.; Mast, F.; Kleijnen, J. A systematic approach to searching: An efficient and complete method to develop literature searches. J. Med Libr. Assoc. JMLA 2018, 106, 531. [Google Scholar] [CrossRef] [PubMed]
- Čehovin, G.; Bosnjak, M.; Lozar Manfreda, K. Meta-analyses in survey methodology: A systematic review. Public Opin. Q. 2018, 82, 641–660. [Google Scholar] [CrossRef]
- Rosendo, D.; Costan, A.; Valduriez, P.; Antoniu, G. Distributed intelligence on the Edge-to-Cloud Continuum: A systematic literature review. J. Parallel Distrib. Comput. 2022, 166, 71–94. [Google Scholar] [CrossRef]
- Littell, J.H.; Corcoran, J.; Pillai, V. Systematic Reviews and Meta-Analysis; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Lewis, F.L. Wireless Sensor Networks. In Smart Environments: Technologies, Protocols, and Applications; John Wiley & Sons: New York, NY, USA, 2004; pp. 11–46. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Fortino, G.; Guerrieri, A.; Russo, W.; Savaglio, C. Integration of agent-based and cloud computing for the smart objects-oriented IoT. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hsinchu, Taiwan, 21–23 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 493–498. [Google Scholar]
- Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proc. IEEE 2019, 107, 1738–1762. [Google Scholar] [CrossRef]
- Nayak, S.; Patgiri, R.; Waikhom, L.; Ahmed, A. A review on edge analytics: Issues, challenges, opportunities, promises, future directions, and applications. Digit. Commun. Netw. 2022. [Google Scholar] [CrossRef]
- Peltonen, E.; Ahmad, I.; Aral, A.; Capobianco, M.; Ding, A.Y.; Gil-Castineira, F.; Gilman, E.; Harjula, E.; Jurmu, M.; Karvonen, T.; et al. The Many Faces of Edge Intelligence. IEEE Access 2022, 10, 104769–104782. [Google Scholar] [CrossRef]
- Edge Intelligence. 2019. Available online: https://www.iec.ch/system/files/2019-09/content/media/files/iec_wp_edge_intelligence_en_lr.pdf (accessed on 30 January 2023).
- Guo, B.; Zhang, D.; Wang, Z. Living with internet of things: The emergence of embedded intelligence. In Proceedings of the 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Dalian, China, 19–22 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 297–304. [Google Scholar]
- Bittencourt, L.; Immich, R.; Sakellariou, R.; Fonseca, N.; Madeira, E.; Curado, M.; Villas, L.; DaSilva, L.; Lee, C.; Rana, O. The internet of things, fog and cloud continuum: Integration and challenges. Internet Things 2018, 3, 134–155. [Google Scholar] [CrossRef]
- Feng, R.; Feng, X. Robot, Edge Intelligence and Data Survey. In Proceedings of the 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), AB, Canada, 25–28 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 843–848. [Google Scholar]
- Xu, S.; Qian, Y.; Hu, R.Q. Edge intelligence assisted gateway defense in cyber security. IEEE Netw. 2020, 34, 14–19. [Google Scholar] [CrossRef]
- Seng, K.P.; Lee, P.J.; Ang, L.M. Embedded intelligence on FPGA: Survey, applications and challenges. Electronics 2021, 10, 895. [Google Scholar] [CrossRef]
- Lalapura, V.S.; Amudha, J.; Satheesh, H.S. Recurrent neural networks for edge intelligence: A survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Liu, X. Model Optimization Techniques for Embedded Artificial Intelligence. In Proceedings of the 2021 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 28–29 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Cunneen, M.; Mullins, M.; Murphy, F. Autonomous vehicles and embedded artificial intelligence: The challenges of framing machine driving decisions. Appl. Artif. Intell. 2019, 33, 706–731. [Google Scholar] [CrossRef]
- Molokomme, D.N.; Onumanyi, A.J.; Abu-Mahfouz, A.M. Edge intelligence in Smart Grids: A survey on architectures, offloading models, cyber security measures, and challenges. J. Sens. Actuator Netw. 2022, 11, 47. [Google Scholar] [CrossRef]
- Bourechak, A.; Zedadra, O.; Kouahla, M.N.; Guerrieri, A.; Seridi, H.; Fortino, G. At the Confluence of Artificial Intelligence and Edge Computing in IoT-Based Applications: A Review and New Perspectives. Sensors 2023, 23, 1639. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, C.; Yue, B.; Wan, J.; Guizani, M. Information fusion for edge intelligence: A survey. Inf. Fusion 2022, 81, 171–186. [Google Scholar] [CrossRef]
- Xiao, Y.; Shi, G.; Li, Y.; Saad, W.; Poor, H.V. Toward self-learning edge intelligence in 6G. IEEE Commun. Mag. 2020, 58, 34–40. [Google Scholar] [CrossRef]
- Qiu, X.; Yao, D.; Kang, X.; Abulizi, A. Blockchain and K-means algorithm for edge AI computing. Comput. Intell. Neurosci. 2022, 2022, 1153208. [Google Scholar] [CrossRef]
- Raith, P.; Dustdar, S. Edge Intelligence as a Service. In Proceedings of the 2021 IEEE International Conference on Services Computing (SCC), Chicago, IL, USA, 5–10 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 252–262. [Google Scholar]
- Ciampi, L.; Gennaro, C.; Carrara, F.; Falchi, F.; Vairo, C.; Amato, G. Multi-camera vehicle counting using edge-AI. Expert Syst. Appl. 2022, 207, 117929. [Google Scholar] [CrossRef]
- Feng, H.; Mu, G.; Zhong, S.; Zhang, P.; Yuan, T. Benchmark analysis of yolo performance on edge intelligence devices. Cryptography 2022, 6, 16. [Google Scholar] [CrossRef]
- Bellas, F.; Guerreiro-Santalla, S.; Naya, M.; Duro, R.J. AI Curriculum for European High Schools: An Embedded Intelligence Approach. Int. J. Artif. Intell. Educ. 2022, 1–28. [Google Scholar] [CrossRef]
- Grandinetti, J. Examining embedded apparatuses of AI in Facebook and TikTok. AI Soc. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Li, T.; Li, Y.; Su, X.; Tarkoma, S.; Jiang, T.; Crowcroft, J.; Hui, P. Edge intelligence: Architectures, challenges, and applications. arXiv 2020, arXiv:2003.12172. [Google Scholar]
- Xu, D.; Li, T.; Li, Y.; Su, X.; Tarkoma, S.; Jiang, T.; Crowcroft, J.; Hui, P. Edge intelligence: Empowering intelligence to the edge of network. Proc. IEEE 2021, 109, 1778–1837. [Google Scholar] [CrossRef]
- Welagedara, L.; Harischandra, J.; Jayawardene, N. Edge Intelligence Based Collaborative Learning System for IoT Edge. In Proceedings of the 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 27–30 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 0667–0672. [Google Scholar]
- Lee, M.; She, X.; Chakraborty, B.; Dash, S.; Mudassar, B.; Mukhopadhyay, S. Reliable edge intelligence in unreliable environment. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 896–901. [Google Scholar]
- Cui, Q.; Zhu, Z.; Ni, W.; Tao, X.; Zhang, P. Edge-intelligence-empowered, unified authentication and trust evaluation for heterogeneous beyond 5G systems. IEEE Wirel. Commun. 2021, 28, 78–85. [Google Scholar] [CrossRef]
- Hafeez, T.; Xu, L.; Mcardle, G. Edge intelligence for data handling and predictive maintenance in IIOT. IEEE Access 2021, 9, 49355–49371. [Google Scholar] [CrossRef]
- Shaeri, M.; Afzal, A.; Shoaran, M. Challenges and opportunities of edge ai for next-generation implantable BMIs. In Proceedings of the 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Incheon, Republic of Korea, 13–15 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 190–193. [Google Scholar]
- Xiao, P. Artificial Intelligence Programming with Python, 1st ed.; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Ramya, R.; Ramamoorthy, S. Survey on Edge Intelligence in IoT-Based Computing Platform. In Ambient Communications and Computer Systems: Proceedings of RACCCS 2021; Springer: Berlin, Germany, 2022; pp. 549–561. [Google Scholar]
- Leroux, S.; Simoens, P.; Lootus, M.; Thakore, K.; Sharma, A. TinyMLOps: Operational Challenges for Widespread Edge AI Adoption. In Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, 30 May–3 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1003–1010. [Google Scholar]
- Seng, K.P.; Ang, L.M. Embedded intelligence: State-of-the-art and research challenges. IEEE Access 2022, 10, 59236–59258. [Google Scholar] [CrossRef]
- Zhang, J.; Letaief, K.B. Mobile edge intelligence and computing for the internet of vehicles. Proc. IEEE 2019, 108, 246–261. [Google Scholar] [CrossRef]
- Joshi, K.; Anandaram, H.; Khanduja, M.; Kumar, R.; Saini, V.; Mohialden, Y.M. Recent Challenges on Edge AI with Its Application: A Brief Introduction. In Explainable Edge AI: A Futuristic Computing Perspective; Springer: Berlin, Germany, 2022; pp. 73–88. [Google Scholar]
- Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge intelligence: The confluence of edge computing and artificial intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Lu, S.; Liu, L.; Shi, W. OpenEI: An open framework for edge intelligence. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1840–1851. [Google Scholar]
- Hu, H.; Jiang, C. Edge intelligence: Challenges and opportunities. In Proceedings of the 2020 International Conference on Computer, Information and Telecommunication Systems (CITS), Hangzhou, China, 5–7 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Sipola, T.; Alatalo, J.; Kokkonen, T.; Rantonen, M. Artificial Intelligence in the IoT Era: A Review of Edge AI Hardware and Software. In Proceedings of the 2022 31st Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 27–29 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 320–331. [Google Scholar]
- Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Convergence of edge computing and deep learning: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [Google Scholar] [CrossRef]
- Parekh, B.; Amin, K. Edge Intelligence: A Robust Reinforcement of Edge Computing and Artificial Intelligence. In Innovations in Information and Communication Technologies (IICT-2020); Springer: Berlin, Germany, 2021; pp. 461–468. [Google Scholar]
- Ding, A.Y.; Peltonen, E.; Meuser, T.; Aral, A.; Becker, C.; Dustdar, S.; Hiessl, T.; Kranzlmüller, D.; Liyanage, M.; Maghsudi, S.; et al. Roadmap for edge AI: A Dagstuhl perspective. arXiv 2022, arXiv:2112.00616. [Google Scholar] [CrossRef]
- Mendez, J.; Bierzynski, K.; Cuéllar, M.; Morales, D.P. Edge Intelligence: Concepts, architectures, applications and future directions. ACM Trans. Embed. Comput. Syst. (TECS) 2022, 21, 1–14. [Google Scholar] [CrossRef]
- Rausch, T.; Dustdar, S. Edge intelligence: The convergence of humans, things, and Ai. In Proceedings of the 2019 IEEE International Conference on Cloud Engineering (IC2E), Prague, Czech Republic, 24–27 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 86–96. [Google Scholar]
- Iyengar, A.; Ouyang, C. Edge Computing Architecture. Available online: https://www.ibm.com/cloud/architecture/architectures/edge-computing/reference-architecture/ (accessed on 30 January 2023).
- Hallsten, J.; Viorel, P.; Petterson, S. IIC: Industrial IOT Reference Architecture. 2022. Available online: https://www.iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/ (accessed on 30 January 2023).
- Isaja, M. Reference Architecture for Factory Automation using Edge Computing and Blockchain Technologies. In The Digital Shopfloor-Industrial Automation in the Industry 4.0 Era; River Publishers: Aalborg, Denmark, 2022; pp. 71–101. [Google Scholar]
- Edge Computing Reference Architecture 2.0. Available online: http://en.ecconsortium.net/Lists/show/id/82.html (accessed on 30 January 2023).
- Sabella, D.; Vaillant, A.; Kuure, P.; Rauschenbach, U.; Giust, F. Mobile-edge computing architecture: The role of MEC in the Internet of Things. IEEE Consum. Electron. Mag. 2016, 5, 84–91. [Google Scholar] [CrossRef]
- Fortino, G.; Guerrieri, A.; Savaglio, C.; Spezzano, G. A Review of Internet of Things Platforms through the IoT-A Reference Architecture. In Proceedings of the International Symposium on Intelligent and Distributed Computing, Bhubaneswar, India, 19–23 January 2022; Springer: Berlin, Germany, 2022; pp. 25–34. [Google Scholar]
- De Majo, C.; Giuffrida, M. Understanding Cloud-Edge-IoT: Challenges and Opportunities—Webinar Highlights. 2022. Available online: https://zenodo.org/record/7185383#.Y_7TRh9ByUl (accessed on 30 January 2023). [CrossRef]
- Ooko, S.O.; Mukanyiligira, D.; Munyampundu, J.P.; Nsenga, J. Edge AI-based respiratory disease recognition from exhaled breath signatures. In Proceedings of the 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 16–18 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 89–94. [Google Scholar]
- Ooko, S.O.; Mukanyiligira, D.; Munyampundu, J.P.; Nsenga, J. Synthetic Exhaled Breath Data-Based Edge AI Model for the Prediction of Chronic Obstructive Pulmonary Disease. In Proceedings of the 2021 International Conference on Computing and Communications Applications and Technologies (I3CAT), Ipswich, UK, 15 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Liu, S.; Liu, L.; Tang, J.; Yu, B.; Wang, Y.; Shi, W. Edge computing for autonomous driving: Opportunities and challenges. Proc. IEEE 2019, 107, 1697–1716. [Google Scholar] [CrossRef]
- He, Y.; Zhao, N.; Yin, H. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach. IEEE Trans. Veh. Technol. 2017, 67, 44–55. [Google Scholar] [CrossRef]
- Li, L.; Ota, K.; Dong, M. Deep learning for smart industry: Efficient manufacture inspection system with fog computing. IEEE Trans. Ind. Inform. 2018, 14, 4665–4673. [Google Scholar] [CrossRef]
- Bringmann, O.; Ecker, W.; Feldner, I.; Frischknecht, A.; Gerum, C.; Hämäläinen, T.; Hanif, M.A.; Klaiber, M.J.; Mueller-Gritschneder, D.; Bernardo, P.P.; et al. Automated HW/SW co-design for edge ai: State, challenges and steps ahead: Special session paper. In Proceedings of the 2021 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), Austin, TX, USA, 10–15 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 11–20. [Google Scholar]
- Savaglio, C.; Campisano, G.; Di Fatta, G.; Fortino, G. IoT services deployment over edge vs cloud systems: A simulation-based analysis. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 554–559. [Google Scholar]
- Wang, C.; Li, R.; Li, W.; Qiu, C.; Wang, X. SimEdgeIntel: A open-source simulation platform for resource management in edge intelligence. J. Syst. Archit. 2021, 115, 102016. [Google Scholar] [CrossRef]
- Savaglio, C.; Fortino, G. A simulation-driven methodology for IoT data mining based on edge computing. ACM Trans. Internet Technol. (TOIT) 2021, 21, 1–22. [Google Scholar] [CrossRef]
- Abreu, D.P.; Velasquez, K.; Curado, M.; Monteiro, E. A comparative analysis of simulators for the cloud to fog continuum. Simul. Model. Pract. Theory 2020, 101, 102029. [Google Scholar] [CrossRef]
- Casadei, R.; Pianini, D.; Placuzzi, A.; Viroli, M.; Weyns, D. Pulverization in cyber-physical systems: Engineering the self-organizing logic separated from deployment. Future Internet 2020, 12, 203. [Google Scholar] [CrossRef]
- Casadei, R.; Fortino, G.; Pianini, D.; Placuzzi, A.; Savaglio, C.; Viroli, M. A Methodology and Simulation-based Toolchain for Estimating Deployment Performance of Smart Collective Services at the Edge. IEEE Internet Things J. 2022, 9, 20136–20148. [Google Scholar] [CrossRef]
- Corchado, J.M.; Ossowski, S.; Rodríguez-González, S.; De la Prieta, F. Advances in explainable artificial intelligence and edge computing applications. Electronics 2022, 11, 3111. [Google Scholar] [CrossRef]
- Taivalsaari, A.; Mikkonen, T. A taxonomy of IoT client architectures. IEEE Softw. 2018, 35, 83–88. [Google Scholar] [CrossRef]
Title | Year | Cit. # | SLR | EI Definition | Ref. Architecture | Topics Addressed | Key Techniques | Hardware Tools | Software Tools | Use Cases |
---|---|---|---|---|---|---|---|---|---|---|
Distributed intelligence on the Edge-to-Cloud Continuum: A systematic literature review[7] | 2022 | 8 | Yes | No | No | - KDD - Interoperability - Platforms/ Frameworks | - Edge Training - Edge Inference - Modeling - Collaboration - (indirect contributions) | - Edge devices - Processors | - ML on the continuum - Data Analytics on the continuum - Simulation and Emulation systems | - Healthcare - Smart Factory - Smart Agriculture - Smart Cities - Automotive |
Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing[12] | 2019 | 703 | No | Revolutionary: “The marriage of edge computing and AI” | 2-layer | - KDD - Platforms/ Frameworks | - Edge Training - Edge Inference | Edge devices | - Systems and Frameworks on EI Model Training, Inference | - Smart Factory - Smart City - Smart Home - Entertainment |
The Many Faces of Edge Intelligence[14] | 2022 | 0 | No | Evolutionary: “An emerging computing paradigm that enables AI functionalities at the network edge” | 3-layer | Outlook | No | No | No | - Smart City - Automotive |
Edge Intelligence[15] | 2019 | 0 | No | Revolutionary: “Edge computing with machine learning and advanced networking capabilities” | 2-layer | Standardization | No | Edge devices | No | - Smart Factory - Smart City - Public Safety |
Edge Intelligence: Empowering Intelligence to the Edge of Network[35] | 2021 | 19 | No | Revolutionary: “A set of connected systems and devices for data collection, caching, processing and analysis proximity to where data are captured based on AI.” | 2-layer | - KDD - Service | - Edge Training - Edge Inference - Modeling - Management | No | No | - Smart Factory - Smart City - Healthcare |
Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence[47] | 2020 | 239 | No | Revolutionary: “The integration of edge computing and AI” | No | - KDD - Service | - Edge Inference - Management | No | No | - Automotive - Smart Home - Smart City |
OpenEI: An open framework for edge intelligence[48] | 2019 | 47 | No | Evolutionary: “The capability to enable edges to execute AI algorithms” | No | - Platforms/ Frameworks - Interoperability | - Edge Training - Edge Inference - Modeling | Hardware modules | - Running environments - Edge-based deep learning packages | - Automotive - Smart Home - Healthcare - Public Safety |
Edge Intelligence: Challenges and Opportunities[49] | 2020 | 1 | No | Evolutionary: “The next stage of edge computing, which allows to run AI applications at the edge of the network” | 3-layer | - KDD - Platforms/ Frameworks - Service | - Edge Training - Edge Inference - Modeling | - Edge AI chips - Edge Computing Platforms | - Edge AI programming libraries | - Automotive - Smart factory - Smart city - Healthcare |
Artificial Intelligence in the IoT Era: A Review of Edge AI Hardware and Software[50] | 2022 | 2 | No | Evolutionary: “The modern trend of moving artificial intelligence computation near to the origin of data sources” | No | - Platforms/ Frameworks - Outlook | Edge Inference | - Hardware devices - NVIDIA Jetson devices | - ML Frameworks - Mobile SDK - Software for MCU - Model conversion lib. for MCU | No |
Convergence of Edge Computing and Deep Learning: A Comprehensive Survey[51] | 2020 | 486 | No | Revolutionary: “The combination of edge computing and AI” | 2-layer | - KDD - Platforms/ Frameworks - Service - Outlook | - Edge Training - Edge Inference - Management - Collaboration | AI hardware for Edge Computing | Edge frameworks for DL | - Smart city - Automotive - Smart home - Smart factory |
Edge Intelligence: A Robust Reinforcement of Edge Computing and Artificial Intelligence[52] | 2021 | 0 | No | Revolutionary: “The combination of edge computing and AI” | No | - KDD - Service | No | No | No | - Automotive - Military |
Roadmap for edge AI: A Dagstuhl Perspective[53] | 2022 | 8 | No | Revolutionary: “A fast evolving domain that merges edge computing and AI“ | No | Outlook | No | No | No | - Automotive - Entertainment - Smart Factory - Healthcare |
Edge Intelligence: Concepts, Architectures, Applications, and Future Directions[54] | 2022 | 4 | No | Revolutionary: “The confluence of edge computing with machine learning, or artificial intelligence in the broad sense” | 2-layer | - KDD - Platforms/ Frameworks - Outlook | Edge training | Edge devices | Edge intelligence frameworks | - Automotive - Entertainment - Smart home - Smart city - Smart factory |
Edge Intelligence: The Convergence of Humans, Things, and AI[55] | 2019 | 25 | No | Revolutionary: “A new paradigm in which intelligence is gradually be pushed from the cloud closer to the edge” | No | - Outlook - Platforms/ Frameworks | No | Edge AI chips and modules | - Sw for AI lifecycle managing - Edge Computing platforms | - Smart City - Automotive - Healthcare - Corporate |
Source | Criteria |
---|---|
Database | ScienceDirect, Scopus, IEEEXplore, ACM Digital Library, Web of Science |
Date of publication | 2011–2023 |
Keywords | - Edge intelligence/AI - Embedded intelligence/AI - On-device intelligence/AI |
Language | English |
Type of Publication | Article, conference paper, book chapter, review, survey |
Inclusion Criteria | - Secondary studies on EI - Formal definitions, models, and perspectives of EI - Relevant EI architectures and techniques - EI as the main element of the proposed solution |
Exclusion Criteria | - Too vertical contributions on use-cases or single techniques - The EI term used as a buzzword or improperly - The EI-related contribution is very limited |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbuto, V.; Savaglio, C.; Chen, M.; Fortino, G. Disclosing Edge Intelligence: A Systematic Meta-Survey. Big Data Cogn. Comput. 2023, 7, 44. https://doi.org/10.3390/bdcc7010044
Barbuto V, Savaglio C, Chen M, Fortino G. Disclosing Edge Intelligence: A Systematic Meta-Survey. Big Data and Cognitive Computing. 2023; 7(1):44. https://doi.org/10.3390/bdcc7010044
Chicago/Turabian StyleBarbuto, Vincenzo, Claudio Savaglio, Min Chen, and Giancarlo Fortino. 2023. "Disclosing Edge Intelligence: A Systematic Meta-Survey" Big Data and Cognitive Computing 7, no. 1: 44. https://doi.org/10.3390/bdcc7010044
APA StyleBarbuto, V., Savaglio, C., Chen, M., & Fortino, G. (2023). Disclosing Edge Intelligence: A Systematic Meta-Survey. Big Data and Cognitive Computing, 7(1), 44. https://doi.org/10.3390/bdcc7010044