Breast Cancer Detection and Localizing the Mass Area Using Deep Learning
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Dataset and Preprocessing
3.2. Model Architecture
3.3. Training
3.4. Evaluation Metrics
4. Result
4.1. Confusion Matrix
4.2. ROC Curve
5. Discussion
5.1. Classification
5.2. Localization
6. Limitations and Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Elter, M.; Horsch, A. CADx of mammographic masses and clustered microcalcifications: A review. Med. Phys. 2009, 36, 2052–2068. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Nishikawa, R.M.; Schmidt, R.A.; Metz, C.E.; Giger, M.L.; Doi, K. Improving breast cancer diagnosis with computer-aided diagnosis. Acad. Radiol. 1999, 6, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, R.; Shaziya, H. GPU-based empirical evaluation of activation functions in convolutional neural networks. In Proceedings of the 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2018; pp. 769–773. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Berking, C.; Haferkamp, S.; Hauschild, A.; Weichenthal, M.; Klode, J.; Schadendorf, D.; Holland-Letz, T.; et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 2019, 119, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Assiri, A.S.; Nazir, S.; Velastin, S.A. Breast tumor classification using an ensemble machine learning method. J. Imaging 2020, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Manickavasagam, R.; Selvan, S.; Selvan, M. CAD system for lung nodule detection using deep learning with CNN. Med. Biol. Eng. Comput. 2022, 60, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Tandon, Y.K.; Bartholmai, B.J.; Koo, C.W. Putting artificial intelligence (AI) on the spot: Machine learning evaluation of pulmonary nodules. J. Thorac. Dis. 2020, 12, 6954. [Google Scholar] [CrossRef] [PubMed]
- Bechelli, S. Computer-Aided Cancer Diagnosis via Machine Learning and Deep Learning: A comparative review. arXiv 2022, arXiv:2210.11943. [Google Scholar]
- Munir, K.; Elahi, H.; Ayub, A.; Frezza, F.; Rizzi, A. Cancer diagnosis using deep learning: A bibliographic review. Cancers 2019, 11, 1235. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Baccouche, A.; Garcia-Zapirain, B.; Castillo Olea, C.; Elmaghraby, A.S. Connected-UNets: A deep learning architecture for breast mass segmentation. NPJ Breast Cancer 2021, 7, 151. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, C.; Liu, B.; Liu, Z.; Wang, M.; Zheng, H.; Feng, D.D.; Wang, S. AUNet: Attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms. Phys. Med. Biol. 2020, 65, 055005. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Sarker, P.; Sarker, S.; Bebis, G.; Tavakkoli, A. Connectedunets++: Mass segmentation from whole mammographic images. In Proceedings of the International Symposium on Visual Computing, San Diego, CA, USA, 3–5 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 419–430. [Google Scholar]
- Jiménez Gaona, Y.; Rodriguez-Alvarez, M.J.; Espino-Morato, H.; Castillo Malla, D.; Lakshminarayanan, V. Densenet for breast tumor classification in mammographic images. In Proceedings of the International Conference on Bioengineering and Biomedical Signal and Image Processing, Gran Canaria, Spain, 19–21 July 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 166–176. [Google Scholar]
- Dumas, E.; Hamy, A.S.; Houzard, S.; Hernandez, E.; Toussaint, A.; Guerin, J.; Chanas, L.; de Castelbajac, V.; Saint-Ghislain, M.; Grandal, B.; et al. EDEN: An Event DEtection Network for the annotation of Breast Cancer recurrences in administrative claims data. arXiv 2022, arXiv:2211.08077. [Google Scholar]
- Sajid, U.; Khan, R.A.; Shah, S.M.; Arif, S. Breast cancer classification using deep learned features boosted with handcrafted features. Biomed. Signal Process. Control. 2023, 86, 105353. [Google Scholar] [CrossRef]
- Campanini, R.; Dongiovanni, D.; Iampieri, E.; Lanconelli, N.; Masotti, M.; Palermo, G.; Riccardi, A.; Roffilli, M. A novel featureless approach to mass detection in digital mammograms based on support vector machines. Phys. Med. Biol. 2004, 49, 961. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Jing, L. Mass detection in digital mammograms using twin support vector machine-based CAD system. In Proceedings of the 2009 WASE International Conference on Information Engineering, Taiyuan, China, 10–11 July 2009; Volume 1, pp. 240–243. [Google Scholar]
- Eddaoudi, F.; Regragui, F.; Mahmoudi, A.; Lamouri, N. Masses detection using SVM classifier based on textures analysis. Appl. Math. Sci. 2011, 5, 367–379. [Google Scholar]
- Jen, C.C.; Yu, S.S. Automatic detection of abnormal mammograms in mammographic images. Expert Syst. Appl. 2015, 42, 3048–3055. [Google Scholar] [CrossRef]
- Ertosun, M.G.; Rubin, D.L. Probabilistic visual search for masses within mammography images using deep learning. In Proceedings of the 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washington, DC, USA, 9–12 November 2015; pp. 1310–1315. [Google Scholar]
- Jadoon, M.M.; Zhang, Q.; Haq, I.U.; Butt, S.; Jadoon, A. Three-class mammogram classification based on descriptive CNN features. BioMed Res. Int. 2017, 2017, 3640901. [Google Scholar] [CrossRef] [PubMed]
- Suckling, J. The mammographic images analysis society digital mammogram database. In Proceedings of the Exerpta Medica, International Congress Series, York, UK, 10–12 July 1994; Volume 1069, pp. 375–378. [Google Scholar]
- Gengtian, S.; Bing, B.; Guoyou, Z. EfficientNet-Based Deep Learning Approach for Breast Cancer Detection With Mammography Images. In Proceedings of the 2023 8th International Conference on Computer and Communication Systems (ICCCS), Guangzhou, China, 21–24 April 2023; pp. 972–977. [Google Scholar]
- Nalifabegam, J.; Ganeshbabu, C.; Askarali, N.; Natarajan, A.; Maheshwari, P. Cancer Classification Revolution: Employing Advanced Deep CNNs for Multi-Class Detection of Breast Irregularities. In Proceedings of the 2023 Third International Conference on Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, 9–10 December 2023; Volume 1, pp. 1–4. [Google Scholar]
- Pourasad, Y.; Zarouri, E.; Salemizadeh Parizi, M.; Salih Mohammed, A. Presentation of novel architecture for diagnosis and identifying breast cancer location based on ultrasound images using machine learning. Diagnostics 2021, 11, 1870. [Google Scholar] [CrossRef] [PubMed]
Class | Number of Images |
---|---|
Benign | 69 |
Malignant | 54 |
Normal | 207 |
Total | 330 |
Metric | Training Data | Test Data |
---|---|---|
Accuracy | 99.7% | 93.0% |
Precision | 99.6% | 93.2% |
Recall | 99.9% | 94.7% |
F1 Score | 99.6% | 93.2% |
AUC | 99.9% | 96.0% |
Evaluation Metrics | Training Data | Test Data |
---|---|---|
R Squared value | 99.1% | 97.6% |
Reference | Classification | Localization | Method |
---|---|---|---|
[21] | - | Sensitivity 80% | Support vector machine (SVM) |
[22] | - | Sensitivity 89% | Support vector machine (SVM) |
[23] | Accuracy 95% | - | Support vector machine (SVM) |
[24] | Sensitivity 88% | Specificity 84% | Abnormality detection |
classifier (ADC) | |||
[25] | Accuracy 85% | Sensitivity 85% | Deep learning classifier |
with regional probabilistic | |||
[26] | Accuracy 85% | - | CNN-DW and CNN-CT |
[28] | Accuracy 75% | - | EfficientNet |
AUC 83% | |||
[29] | Accuracy 88% | - | Deep CNN |
[30] | - | Sensitivity 88% | CNN |
Our approach | Accuracy 93.0% | R-squared value 97.6% | Our proposed model |
AUC 98.6% | Sensitivity 96.81% | ||
Precision 93.2% | |||
Recall 94.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Jahangir, M.Z.B.; Rahman, A.; Akter, M.; Nasim, M.A.A.; Gupta, K.D.; George, R. Breast Cancer Detection and Localizing the Mass Area Using Deep Learning. Big Data Cogn. Comput. 2024, 8, 80. https://doi.org/10.3390/bdcc8070080
Rahman MM, Jahangir MZB, Rahman A, Akter M, Nasim MAA, Gupta KD, George R. Breast Cancer Detection and Localizing the Mass Area Using Deep Learning. Big Data and Cognitive Computing. 2024; 8(7):80. https://doi.org/10.3390/bdcc8070080
Chicago/Turabian StyleRahman, Md. Mijanur, Md. Zihad Bin Jahangir, Anisur Rahman, Moni Akter, MD Abdullah Al Nasim, Kishor Datta Gupta, and Roy George. 2024. "Breast Cancer Detection and Localizing the Mass Area Using Deep Learning" Big Data and Cognitive Computing 8, no. 7: 80. https://doi.org/10.3390/bdcc8070080
APA StyleRahman, M. M., Jahangir, M. Z. B., Rahman, A., Akter, M., Nasim, M. A. A., Gupta, K. D., & George, R. (2024). Breast Cancer Detection and Localizing the Mass Area Using Deep Learning. Big Data and Cognitive Computing, 8(7), 80. https://doi.org/10.3390/bdcc8070080