Medical IoT Record Security and Blockchain: Systematic Review of Milieu, Milestones, and Momentum
Abstract
:1. Introduction
- We conducted an empirical examination of the transcending evolution of digital certificates for medical record preservation.
- We assessed the adoption of blockchain technology in enhancing data privacy in medical record transmission.
- We closely explored the significant impact of cybersecurity and generational networks in exposing sensitive and vital health records for unauthorized access.
- We highlighted security issues and provided advanced research directions for the improvement of medical record privacy and preservation by incorporating blockchain technology and allied security frameworks.
2. Review Methodology
- Articles published in reputable journals and conference proceedings;
- Articles published in the English language;
- Articles with publication dates within the last 10 years (2013–2023);
- Articles with titles and contents covering the stated review scope and objectives.
3. Digital Certificate and Evolution of Medical Data Preservation
4. Blockchain Adoption for Health Record Security
4.1. Blockchain Network Types
4.1.1. Public Blockchain
4.1.2. Private Blockchain
4.1.3. Consortium Blockchains
4.2. Blockchain Consensus Algorithms
4.2.1. Proof of Work (PoW)
4.2.2. Proof of Stake (PoS)
4.2.3. Delegated Proof of Stake (DPoS)
4.2.4. Proof of Authority (PoA)
4.2.5. Practical Byzantine Fault Tolerance (BFT)
4.3. Blockchain Smart Contracts
4.4. Summary of Blockchain for Medical IoT
5. AI–Blockchain Integration in Medical IoT Record Security
5.1. Traceable Data and Security
5.2. Transparent Clinical Trials and Medical Reportage
5.3. Tractable Supply Chain Management
5.4. Trustworthy Drug Discovery
5.5. Tensile Cross-Platform Interoperability for Data Exchange
5.6. Timely Medical Data Fraud and Forgery Detection
6. 5G-Blockchain for Preservation of Secured Medical Data
6.1. Offline Medical Record Preservation
6.2. Online Medical Record Preservation
6.3. Use Cases of 5G-Blockchain for MIR Security
7. Blockchain Milestones in MIR Security
7.1. Blockchain Benefits and Digitization of Healthcare
7.1.1. Accuracy of Health Information
7.1.2. Accentuated Interoperability of MIR Platforms
7.1.3. Authentic Protection of Health Records
7.1.4. Alleviation of Administrative and Handling Costs
7.1.5. Authorized Global Accessibility of MIRs
7.1.6. Assured Auditing Process for Medical Data
8. Blockchain Milieu for MIR Security and Recommended Possible Solutions
8.1. Difficulty in Information Exchange
8.2. Data and Privacy Leakage
8.3. Debilitating and Large Storage Requirements
8.4. Distinct Technologies and Protocol Conformity Standardization
8.5. Definition and Regulation of Roles in Distributive Data Sharing
8.6. Depletion of Distribution Rights of Patients to Data Exclusivity
8.7. Drug Prescription Platform Difficulty
8.8. Data Ownership Rules and Processes
8.9. Contemporary Research Issues and Future Directions
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kruse, C.S.; Mileski, M.; Vijaykumar, A.G.; Viswanathan, S.V.; Suskandla, U.; Chidambaram, Y. Impact of electronic health records on long-term care facilities: Systematic review. JMIR Med. Inform. 2017, 5, e7958. [Google Scholar] [CrossRef] [PubMed]
- Dizon, M.A.C.; Upson, P.J. Laws of encryption: An emerging legal framework. Comput. Law Secur. Rev. 2021, 43, 105635. [Google Scholar] [CrossRef]
- Shafinah, K.; Ikram, M.M. File Security based on Pretty Good Privacy (PGP) Concept. Comput. Inf. Sci. 2011, 4, 10. [Google Scholar]
- Lampson, B.; Rivest, R. A Simple Distributed Security Infrastructure. MIT—Massachussetts Institute of Technology. 1996; Volume 12; p. 2006. Available online: https://people.csail.mit.edu/rivest/pubs/RL96.ver-1.1.html (accessed on 15 April 2024).
- Sharma, K.; Shrivastava, G. Public key infrastructure and trust of web based knowledge discovery. Int. J. Eng. Sci. Manag. 2014, 4, 56–60. [Google Scholar]
- Kaur, R.; Kaur, A. Digital signature. In Proceedings of the 2012 International Conference on Computing Sciences, Washington, DC, USA, 14–15 September 2012; pp. 295–301. [Google Scholar]
- Lin, C.H.; Yeh, Y.S.; Chien, S.P.; Lee, C.Y.; Chien, H.S. Generalized secure hash algorithm: SHA-X. In Proceedings of the 2011 IEEE EUROCON-International Conference on Computer as a Tool, Lisbon, Portugal, 27–29 April 2011; pp. 1–4. [Google Scholar]
- Myers, M.; Ankney, R.; Malpani, A.; Galperin, S.; Adams, C.X. 509 Internet Public Key Infrastructure Online Certificate Status Protocol-OCSP; Technical Report; The Internet Society: Reston, VA, USA, 1999. [Google Scholar]
- Huang, L.C.; Chu, H.C.; Lien, C.Y.; Hsiao, C.H.; Kao, T. Privacy preservation and information security protection for patients’ portable electronic health records. Comput. Biol. Med. 2009, 39, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Bernier, T.; Sequeira, L.; Strauss, J.; Silver, M.P.; Carter-Langford, A.; Wiljer, D. Understanding the patient privacy perspective on health information exchange: A systematic review. Int. J. Med. Inform. 2019, 125, 1–12. [Google Scholar] [CrossRef]
- Hossein, K.M.; Esmaeili, M.E.; Dargahi, T.; Khonsari, A.; Conti, M. BCHealth: A novel blockchain-based privacy-preserving architecture for IoT healthcare applications. Comput. Commun. 2021, 180, 31–47. [Google Scholar] [CrossRef]
- Jin, H.; Luo, Y.; Li, P.; Mathew, J. A review of secure and privacy-preserving medical data sharing. IEEE Access 2019, 7, 61656–61669. [Google Scholar] [CrossRef]
- Raghav, N.; Bhola, A. Blockchain based privacy preservation in healthcare: A recent trends and challenges. Psychol. Educ. J. 2021, 58, 5315–5324. [Google Scholar]
- Balasubramanium, S.; Sivasankar, K.; Rajasekaran, M.P. A Survey on Data privacy and preservation using Blockchain in Healthcare organization. In Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 4–5 March 2021; pp. 956–962. [Google Scholar]
- Sharma, A.; Kaur, S.; Singh, M. A comprehensive review on blockchain and Internet of Things in healthcare. Trans. Emerg. Telecommun. Technol. 2021, 32, e4333. [Google Scholar] [CrossRef]
- Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Ellahham, S.; Omar, M. The role of blockchain technology in telehealth and telemedicine. Int. J. Med. Inform. 2021, 148, 104399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhong, S.; Wang, T.; Chao, H.C.; Wang, J. Blockchain-based systems and applications: A survey. J. Internet Technol. 2020, 21, 1–14. [Google Scholar]
- Hesse, B.W.; Hansen, D.; Finholt, T.; Munson, S.; Kellogg, W.; Thomas, J.C. Social participation in health 2.0. Computer 2010, 43, 45–52. [Google Scholar] [CrossRef]
- Stark, B.; Gewald, H.; Lautenbacher, H.; Haase, U.; Ruff, S. Misuse of ‘Break-the-Glass’ Policies in Hospitals: Detecting Unauthorized Access to Sensitive Patient Health Data. In Research Anthology on Privatizing and Securing Data; IGI Global: Hershey, PA, USA, 2021; pp. 1231–1256. [Google Scholar]
- Osundina, K.S. Unauthorized Disclosure of Medical Information, Patient Rights and Legal Consequences as It Affect Patients and Healthcare Providers. Available online: https://iiardjournals.org/404.php/ (accessed on 9 March 2024).
- Maksymiv, T.; Chaplinskyi, R. Ways of unauthorized access to medical data and approach to organize secure access using blockchain technology. In Proceedings of the 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), Deggendorf, Germany, 16–18 September 2020; pp. 791–795. [Google Scholar]
- Keshta, I.; Odeh, A. Security and privacy of electronic health records: Concerns and challenges. Egypt. Inform. J. 2021, 22, 177–183. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 6, 264–269. [Google Scholar] [CrossRef]
- Foley Library. SPIDER: Mixed Methods Qualitative Research Questions; Foley Library: Spokane, WA, USA, 2022. [Google Scholar]
- Liu, Q.; Liu, Y.; Luo, M.; He, D.; Wang, H.; Choo, K.K.R. The Security of Blockchain-Based Medical Systems: Research Challenges and Opportunities. IEEE Syst. J. 2022, 16, 5741–5752. [Google Scholar] [CrossRef]
- Fatima, N.; Agarwal, P.; Sohail, S.S. Security and Privacy Issues of Blockchain Technology in Health Care—A Review. In ICT Analysis and Applications; Fong, S., Dey, N., Joshi, A., Eds.; Springer: Singapore, 2022; pp. 193–201. [Google Scholar]
- Wenhua, Z.; Qamar, F.; Abdali, T.A.N.; Hassan, R.; Jafri, S.T.A.; Nguyen, Q.N. Blockchain technology: Security issues, healthcare applications, challenges and future trends. Electronics 2023, 12, 546. [Google Scholar] [CrossRef]
- Harn, L.; Ren, J. Generalized digital certificate for user authentication and key establishment for secure communications. IEEE Trans. Wirel. Commun. 2011, 10, 2372–2379. [Google Scholar] [CrossRef]
- O’Brien, M.; Weir, G.R. Understanding digital certificates. In Proceedings of the 2nd International Conference on Cybercrime Forensics Education & Training, Kent, Canterbury, UK, 1–2 September 2008. [Google Scholar]
- Akinsanya, O.O.; Papadaki, M.; Sun, L. Current cybersecurity maturity models: How effective in healthcare cloud? In Proceedings of the CERC, Darmstadt, Germany, 29–30 March 2019; pp. 211–222. [Google Scholar]
- Dang, Q.H. Secure Hash Standard; National Institute of Standards & Technology: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Mathew, A. The Limits to Peer Production in Security Infrastructures: Technological and Regulatory Challenges to the PGP Web of Trust. In Proceedings of the Sixth European Multidisciplinary Conference on Global Internet Governance Actors, Regulations, Transactions and Strategies, Nicosia, Cyprus, 13–14 April 2022. [Google Scholar]
- Halpin, H. All that is Solid Melts into Air: Towards Decentralized Cryptographic Access Control. In Proceedings of the 17th International Conference on Availability, Reliability and Security, Vienna, Austria, 23–26 August 2022; pp. 1–6. [Google Scholar]
- Ferguson, N.; Schneier, B.; Kohno, T. Cryptography Engineering: Design Principles and Practical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chen, L.; Moody, D.; Regenscheid, A.; Robinson, A. Digital Signature Standard (DSS); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. [Google Scholar] [CrossRef]
- Kerry, C.F.; Gallagher, P.D. Digital Signature Standard (DSS); FIPS PUB. 2013; pp. 186–192. Available online: https://en.wikipedia.org/wiki/Digital_Signature_Standard (accessed on 9 March 2024).
- Wang, X.; Yin, Y.L.; Yu, H. Finding collisions in the full SHA-1. In Proceedings of the Advances in Cryptology–CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2005; Proceedings 25. Springer: Berlin/Heidelberg, Germany, 2005; pp. 17–36. [Google Scholar]
- Cortez, D.M.A.; Sison, A.M.; Medina, R.P. Cryptographic randomness test of the modified hashing function of SHA256 to address length extension attack. In Proceedings of the 2020 8th International Conference on Communications and Broadband Networking, Auckland, New Zealand, 15–18 April 2020; pp. 24–28. [Google Scholar]
- Bernstein, D.J.; Lange, T. Post-quantum cryptography. Nature 2017, 549, 188–194. [Google Scholar] [CrossRef]
- Singh, S.; Rathore, S.; Alfarraj, O.; Tolba, A.; Yoon, B. A framework for privacy-preservation of IoT healthcare data using Federated Learning and blockchain technology. Future Gener. Comput. Syst. 2022, 129, 380–388. [Google Scholar] [CrossRef]
- Omidian, H.; Omidi, Y. Blockchain in pharmaceutical life cycle management. Drug Discov. Today 2022, 27, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A.K.; Ahmad, I.; Kumar Singh, P.; Verma, P.K.; Alissa, K.A.; Bajaj, M.; Ur Rehman, A.; Tag-Eldin, E. A novel decentralized blockchain architecture for the preservation of privacy and data security against cyberattacks in healthcare. Sensors 2022, 22, 5921. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, W.; Wang, B.; Yu, H. A blockchain-based preserving and sharing system for medical data privacy. Future Gener. Comput. Syst. 2021, 124, 338–350. [Google Scholar] [CrossRef]
- Razzaq, A.; Mohsan, S.A.H.; Ghayyur, S.A.K.; Al-Kahtani, N.; Alkahtani, H.K.; Mostafa, S.M. Blockchain in Healthcare: A Decentralized Platform for Digital Health Passport of COVID-19 Based on Vaccination and Immunity Certificates. Healthcare 2022, 10, 2453. [Google Scholar] [CrossRef]
- Hasselgren, A.; Kralevska, K.; Gligoroski, D.; Pedersen, S.A.; Faxvaag, A. Blockchain in healthcare and health sciences—A scoping review. Int. J. Med. Inform. 2020, 134, 104040. [Google Scholar] [CrossRef]
- Alnafrani, M.; Acharya, S. SecureRx: A blockchain-based framework for an electronic prescription system with opioids tracking. Health Policy Technol. 2021, 10, 100510. [Google Scholar] [CrossRef]
- Pericàs-Gornals, R.; Mut-Puigserver, M.; Payeras-Capellà, M.M. Highly private blockchain-based management system for digital COVID-19 certificates. Int. J. Inf. Secur. 2022, 21, 1069–1090. [Google Scholar] [CrossRef] [PubMed]
- EHDHE: Enhancing security of healthcare documents in IoT-enabled digital healthcare ecosystems using blockchain. Inf. Sci. 2023, 629, 703–718. [CrossRef]
- Jeong, S.; Shen, J.H.; Ahn, B. A Study on Smart Healthcare Monitoring Using IoT Based on Blockchain. Wirel. Commun. Mob. Comput. 2021, 2021, 9932091. [Google Scholar] [CrossRef]
- Saranya, R.; Murugan, A. A systematic review of enabling blockchain in healthcare system: Analysis, current status, challenges and future direction. Mater. Today Proc. 2023, 80, 3010–3015. [Google Scholar] [CrossRef]
- Sara Ait, B.; Aaroud, A.; Sabiri, K.; Rguibi, M.A.; Cherradi, B. Design and implementation of a New Blockchain-based digital health passport: A Moroccan case study. Inform. Med. Unlocked 2022, 35, 101125. [Google Scholar] [CrossRef]
- Bataineh, M.R.; Mardini, W.; Khamayseh, Y.M.; Yassein, M.M.B. Novel and Secure Blockchain Framework for Health Applications in IoT. IEEE Access 2022, 10, 14914–14926. [Google Scholar] [CrossRef]
- Wazid, M.; Bera, B.; Mitra, A.; Das, A.K.; Ali, R. Private blockchain-envisioned security framework for AI-enabled IoT-based drone-aided healthcare services. In Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, New York, NY, USA, 25 September 2020; DroneCom ’20. pp. 37–42. [Google Scholar] [CrossRef]
- Schmeelk, S.; Kanabar, M.; Peterson, K.; Pathak, J. Electronic health records and blockchain interoperability requirements: A scoping review. JAMIA Open 2022, 5, ooac068. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Chakraborty, A.; Hasan, M.; Rashid, K.; Siddique, A.H. Blockchain Application in Healthcare Systems: A Review. Systems 2023, 11, 38. [Google Scholar] [CrossRef]
- Purohit, S.; Calyam, P.; Alarcon, M.L.; Bhamidipati, N.R.; Mosa, A.; Salah, K. HonestChain: Consortium blockchain for protected data sharing in health information systems. Peer-to-Peer Netw. Appl. 2021, 14, 3012–3028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, S.; Zhang, Y.; Zhang, Q.; Zhang, Y. A Secure and Privacy-Preserving Medical Data Sharing via Consortium Blockchain. Secur. Commun. Netw. 2022, 2022, 2759787. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Y.; Vermund, S.H. Blockchain Technology for Electronic Health Records. Int. J. Environ. Res. Public Health 2022, 19, 15577. [Google Scholar] [CrossRef]
- Mingxiao, D.; Xiaofeng, M.; Zhe, Z.; Xiangwei, W.; Qijun, C. A review on consensus algorithm of blockchain. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 2567–2572. [Google Scholar] [CrossRef]
- Ajakwe, S.O.; Saviour, I.I.; Kim, J.H.; Kim, D.S.; Lee, J.M. BANDA: A Novel Blockchain-Assisted Network for Drone Authentication. In Proceedings of the 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), Virtual, 4–7 July 2023; pp. 120–125. [Google Scholar]
- Xiong, H.; Chen, M.; Wu, C.; Zhao, Y.; Yi, W. Research on Progress of Blockchain Consensus Algorithm: A Review on Recent Progress of Blockchain Consensus Algorithms. Future Internet 2022, 14, 47. [Google Scholar] [CrossRef]
- Nakamoto, S.; Bitcoin, A. A Peer-to-Peer Electronic Cash System. Bitcoin. 2008; Volume 4, p. 15. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 12 March 2024).
- Ajakwe, S.O.; Kim, D.S.; Lee, J.M. Drone transportation system: Systematic review of security dynamics for smart mobility. IEEE Internet Things J. 2023, 10, 14462–14482. [Google Scholar] [CrossRef]
- Manolache, M.A.; Manolache, S.; Tapus, N. Decision Making using the Blockchain Proof of Authority Consensus. Procedia Comput. Sci. 2022, 199, 580–588. [Google Scholar] [CrossRef]
- Bamakan, S.M.H.; Motavali, A.; Babaei Bondarti, A. A survey of blockchain consensus algorithms performance evaluation criteria. Expert Syst. Appl. 2020, 154, 113385. [Google Scholar] [CrossRef]
- Mendoza Arvizo, A.I.; Avelar Sosa, L.; García Alcaraz, J.L.; Cruz-Mejía, O. Beneficiary Contracts on a Lightweight Blockchain Architecture Using Smart Contracts: A Smart Healthcare System for Medical Records. Appl. Sci. 2023, 13, 6694. [Google Scholar] [CrossRef]
- Chinnasamy, P.; Albakri, A.; Khan, M.; Raja, A.A.; Kiran, A.; Babu, J.C. Smart Contract-Enabled Secure Sharing of Health Data for a Mobile Cloud-Based E-Health System. Appl. Sci. 2023, 13, 3970. [Google Scholar] [CrossRef]
- Igboanusi, I.S.; Nnadiekwe, C.A.; Ogbede, J.U.; Kim, D.S.; Lensky, A. BOMS: Blockchain-enabled organ matching system. Sci. Rep. 2024, 14, 16069. [Google Scholar] [CrossRef]
- Chinnasamy, P.; Vinodhini, B.; Praveena, V.; Vinothini, C.; Sujitha, B.B. Blockchain based Access Control and Data Sharing Systems for Smart Devices. J. Physics Conf. Ser. 2021, 1767, 012056. [Google Scholar] [CrossRef]
- Igboanusi, I.S.; Dirgantoro, K.P.; Lee, J.M.; Kim, D.S. Blockchain side implementation of Pure Wallet (PW): An offline transaction architecture. ICT Express 2021, 7, 327–334. [Google Scholar] [CrossRef]
- Ajakwe, S.O.; Ajakwe, I.U.; Taesoo, J.S.; Kim, D.S.; Lee, J.M. CIS-WQMS: Connected intelligence smart water quality monitoring scheme. Internet of Things 2023, 23, 100800–100819. [Google Scholar] [CrossRef]
- Alabdulatif, A.; Khalil, I.; Saidur Rahman, M. Security of Blockchain and AI-Empowered Smart Healthcare: Application-Based Analysis. Appl. Sci. 2022, 12, 11039. [Google Scholar] [CrossRef]
- Sinha, A.; Patel, A.; Jagdish, M. Application of Blockchain in Healthcare; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Mancer, M.; Akram, K.M.; Barka, E.; Okba, K.; Sihem, S.; Harous, S.; Athamena, B.; Houhamdi, Z. Blockchain Technology for Secure Shared Medical Data. In Proceedings of the 2022 International Arab Conference on Information Technology (ACIT), Abu Dhabi, United Arab Emirates, 22–24 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Dini, M.A.; Ajakwe, S.O.; Saviour, I.I.; Ihekoronye, V.U.; Nwankwo, O.U.; Uchechi, I.U.; Haryadi, G.A.; Putra, M.A.P.; Kim, D.S.; Jun, T.; et al. Patient-centric blockchain framework for secured medical record fidelity and authorization. In Proceedings of the Korean Institute of Communication and Sciences Summer Conference, Jeju Island, Republic of Korea, 21–24 June 2023; pp. 300–301. [Google Scholar]
- Awasthi, C.; Nawal, M.; Mishra, P.K. Security Concerns of Fog Computing in Field of Healthcare using Blockchain: A Review. In Proceedings of the 2021 International Conference on Communication information and Computing Technology (ICCICT), Mumbai, India, 25–27 June 2021. [Google Scholar] [CrossRef]
- Ajakwe, S.O.; Nwakanma, C.I.; Kim, D.S.; Lee, J.M. Key Wearable Device Technologies Parameters for Innovative Healthcare Delivery in B5G Network: A Review. IEEE Access 2022, 10, 49956–49974. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, P.; Qi, Y.; Zhu, Q.; Li, X. A patent registration and trading system based on blockchain. Expert Syst. Appl. 2022, 201, 117094. [Google Scholar] [CrossRef]
- Anwar, A.; Goyal, S.B.; Ghosh, A. Tracking Clinical Trials and Enhancement of Security Control with Blockchain for Medical Record. In Proceedings of the 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), Arad, Romania, 17–19 December 2021; pp. 632–636. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.S.; Islam, M.S.; Alrajeh, N.A.; Muhammad, G. Secure and Provenance Enhanced Internet of Health Things Framework: A Blockchain Managed Federated Learning Approach. IEEE Access 2020, 8, 205071–205087. [Google Scholar] [CrossRef] [PubMed]
- Curbera, F.; Dias, D.M.; Simonyan, V.; Yoon, W.A.; Casella, A. Blockchain: An enabler for healthcare and life sciences transformation. IBM J. Res. Dev. 2019, 63, 8:1–8:9. [Google Scholar] [CrossRef]
- Hang, L.; Chen, C.; Zhang, L.; Yang, J. Blockchain for applications of clinical trials: Taxonomy, challenges, and future directions. IET Commun. 2022, 16, 2371–2393. [Google Scholar] [CrossRef]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef]
- Xia, Q.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-Less Medical Data Sharing Among Cloud Service Providers via Blockchain. IEEE Access 2017, 5, 14757–14767. [Google Scholar] [CrossRef]
- Linn, L.A.; Martha B. Koo, M. Blockchain For Health Data and Its Potential Use in Health IT and Health Care Related Research. In Proceedings of the ONC/NIST Use of Blockchain for Healthcare and Research Workshop, Gaithersburg, MD, USA, 7 September 2016; Volume 17, pp. 1–10. [Google Scholar]
- Bocek, T.; Rodrigues, B.B.; Strasser, T.; Stiller, B. Blockchains everywhere—A use-case of blockchains in the pharma supply-chain. In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017; pp. 772–777. [Google Scholar] [CrossRef]
- Nawale, S.D.; Konapure, R.R. Blockchain & IoT based Drugs Traceability for Pharma Industry. In Proceedings of the 2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 21–23 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Niu, B.; Dong, J.; Liu, Y. Incentive alignment for blockchain adoption in medicine supply chains. Transp. Res. Part E Logist. Transp. Rev. 2021, 152, 102276. [Google Scholar] [CrossRef]
- Ajakwe, S.O.; Arkter, R.; Ahakonye, L.A.C.; Kim, D.S.; Lee, J.M. Real-Time Monitoring of COVID-19 Vaccination Compliance: A Ubiquitous IT Convergence Approach. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; pp. 440–445. [Google Scholar] [CrossRef]
- Khatter, K.D. Non-functional requirements for blockchain enabled medical supply chain. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 1219–1231. [Google Scholar] [CrossRef]
- Kumar, B.; Mohanraj, T.; ShahulHammed, S.; Santhosh, R. A Study of BlockChain Technologies and health Care Systems. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 7–9 October 2020; pp. 265–267. [Google Scholar] [CrossRef]
- Omar, I.A.; Jayaraman, R.; Debe, M.S.; Salah, K.; Yaqoob, I.; Omar, M. Automating procurement contracts in the healthcare supply chain using blockchain smart contracts. IEEE Access 2021, 9, 37397–37409. [Google Scholar] [CrossRef]
- Premkumar, A.; Srimathi, C. Application of Blockchain and IoT towards Pharmaceutical Industry. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; pp. 729–733. [Google Scholar] [CrossRef]
- Abbas, K.; Afaq, M.; Ahmed Khan, T.; Song, W.C. A Blockchain and Machine Learning-Based Drug Supply Chain Management and Recommendation System for Smart Pharmaceutical Industry. Electronics 2020, 9, 852. [Google Scholar] [CrossRef]
- Ramdasani, U.; Vinzuda, G.; Tanwar, S.; Gupta, R.; Guizani, M. DuBloQ: Blockchain and Q-Learning Based Drug Discovery in Healthcare 4.0. In Proceedings of the 2022 International Wireless Communications and Mobile Computing (IWCMC), Dubrovnik, Croatia, 30 May–3 June 2022; pp. 284–289. [Google Scholar] [CrossRef]
- Yuksel, M.; Dogac, A. Interoperability of Medical Device Information and the Clinical Applications: An HL7 RMIM based on the ISO/IEEE 11073 DIM. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 557–566. [Google Scholar] [CrossRef]
- Shukla, M.; Lin, J.; Seneviratne, O. BlockIoT: Blockchain-based health data integration using IoT devices. In Proceedings of the AMIA Annual Symposium Proceedings. American Medical Informatics Association, San Diego, CA, USA, 30 October–3 November 2021; Volume 2021, p. 1119. [Google Scholar]
- Jain, S.; Anand, A.; Gupta, A.; Awasthi, K.; Gujrati, S.; Channegowda, J. Blockchain and Machine Learning in Health Care and Management. In Proceedings of the 2020 International Conference on Mainstreaming Block Chain Implementation (ICOMBI), Bengaluru, India, 21–22 February 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Yaeger, K.; Martini, M.; Rasouli, J.; Costa, A. Emerging blockchain technology solutions for modern healthcare infrastructure. J. Sci. Innov. Med. 2019, 2. [Google Scholar] [CrossRef]
- Nichol, P.B.; Brandt, J. Co-creation of trust for healthcare: The cryptocitizen framework for interoperability with blockchain. Res. Propos. 2016, 1–9. [Google Scholar] [CrossRef]
- Saldamli, G.; Reddy, V.; Bojja, K.S.; Gururaja, M.K.; Doddaveerappa, Y.; Tawalbeh, L. Health care insurance fraud detection using blockchain. In Proceedings of the 2020 Seventh international conference on software defined systems (SDS), Paris, France, 20–23 April 2020; pp. 145–152. [Google Scholar]
- Ihekoronye, V.U.; Ajakwe, S.O.; Kim, D.S.; Lee, J.M. Cyber Edge Intelligent Intrusion Detection Framework For UAV Network Based on Random Forest Algorithm. In Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2022; pp. 1242–1247. [Google Scholar] [CrossRef]
- McGhin, T.; Choo, K.K.R.; Liu, C.Z.; He, D. Blockchain in healthcare applications: Research challenges and opportunities. J. Netw. Comput. Appl. 2019, 135, 62–75. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Q.; Li, Z.; Li, Z.; Su, Y.; Zhou, J. A blockchain-based system for anti-fraud of healthcare insurance. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9 December 2019; pp. 1264–1268. [Google Scholar]
- Ajakwe, S.O.; Ihekoronye, V.U.; Ajakwe, I.U.; Jun, T.; Kim, D.S.; Lee, J.M. Connected Intelligence for Smart Water Quality Monitoring System in IIoT. In Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2022; pp. 2386–2391. [Google Scholar] [CrossRef]
- Sharma, M.; Goel, A.K.; Singhal, P. Explainable AI Driven Applications for Patient Care and Treatment. In Explainable AI: Foundations, Methodologies and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 135–156. [Google Scholar]
- Farrugia, D.; Zerafa, C.; Cini, T.; Kuasney, B.; Livori, K. A real-time prescriptive solution for explainable cyber-fraud detection within the iGaming industry. Sn Comput. Sci. 2021, 2, 215. [Google Scholar] [CrossRef]
- Jain, G.; Jain, A. 22—Blockchain for 5G-enabled networks in healthcare service based on several aspects. In Blockchain Applications for Healthcare Informatics; Tanwar, S., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 471–493. [Google Scholar] [CrossRef]
- Hewa, T.; Braeken, A.; Ylianttila, M.; Liyanage, M. Multi-Access Edge Computing and Blockchain-based Secure Telehealth System Connected with 5G and IoT. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020. [Google Scholar] [CrossRef]
- Cameron, L. Keeping Your Medical Records Safe in the Cloud: Researchers Analyze Blockchain as a Solution. IEEE Comput. Soc. 2020, 18. Available online: https://www.computer.org/publications/tech-news/research/blockchain-health-medical-records-cloud-security (accessed on 20 May 2024).
- Patel, V. A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health Inform. J. 2018, 25, 146045821876969. [Google Scholar] [CrossRef]
- Executive, N. Information for Health: An Information Strategy for the Modern NHS 1998–2005: A National Strategy for Local Implementation; NHS/Department of Health: Leeds, UK, 1998. [Google Scholar]
- Madine, M.M.; Battah, A.A.; Yaqoob, I.; Salah, K.; Jayaraman, R.; Al-Hammadi, Y.; Pesic, S.; Ellahham, S. Blockchain for Giving Patients Control Over Their Medical Records. IEEE Access 2020, 8, 193102–193115. [Google Scholar] [CrossRef]
- Hombal, U.; Dayananda, R.B. A Review on Security and Privacy Preserving Mechanisms of Electronic Health Records in Cloud. In Proceedings of the 2021 Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 27–29 August 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Bibal Benifa, J.; Venifa Mini, G.; Krishnan, S. Chapter 14—Blockchain-based health care monitoring for privacy preservation of COVID-19 medical records. In Blockchain for Smart Cities; Krishnan, S., Balas, V.E., Julie, E.G., Robinson, Y.H., Kumar, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 259–294. [Google Scholar] [CrossRef]
- Zou, R.; Lv, X.; Zhao, J. SPChain: Blockchain-based medical data sharing and privacy-preserving eHealth system. Inf. Process. Manag. 2021, 58, 102604. [Google Scholar] [CrossRef]
- Mondal, S.; Shafi, M.; Gupta, S.; Gupta, S.K. Blockchain based secure architecture for electronic healthcare record management. GMSARN Int. J. 2022, 16, 413–426. [Google Scholar]
- Johari, R.; Kumar, V.; Gupta, K.; Vidyarthi, D.P. BLOSOM: BLOckchain technology for Security of Medical records. ICT Express 2022, 8, 56–60. [Google Scholar] [CrossRef]
- Mhamdi, H.; Ayadi, M.; Ksibi, A.; Al-Rasheed, A.; Soufiene, B.O.; Hedi, S. SEMRAchain: A secure electronic medical record based on blockchain technology. Electronics 2022, 11, 3617. [Google Scholar] [CrossRef]
- Oladele, J.K.; Ojugo, A.A.; Odiakaose, C.C.; Emordi, F.U.; Abere, R.A.; Nwozor, B.; Ejeh, P.O.; Geteloma, V.O. BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange. J. Comput. Theor. Appl. 2024, 1, 231–242. [Google Scholar] [CrossRef]
- Usman, M.; Qamar, U. Secure Electronic Medical Records Storage and Sharing Using Blockchain Technology. Procedia Comput. Sci. 2020, 174, 321–327. [Google Scholar] [CrossRef]
- Factom Announces Partnership with Healthnautica. 2015. Available online: https://www.prweb.com/releases/2015/04/prweb12673607.htm (accessed on 12 April 2024).
- Zhang, P.; White, J.; Schmidt, D.C.; Lenz, G.; Rosenbloom, S.T. FHIRChain: Applying Blockchain to Securely and Scalably Share Clinical Data. Comput. Struct. Biotechnol. J. 2018, 16, 267–278. [Google Scholar] [CrossRef]
- Du, M.; Chen, Q.; Chen, J.; Ma, X. An Optimized Consortium Blockchain for Medical Information Sharing. IEEE Trans. Eng. Manag. 2021, 68, 1677–1689. [Google Scholar] [CrossRef]
- Khatoon, A. A Blockchain-Based Smart Contract System for Healthcare Management. Electronics 2020, 9, 94. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Jin, C.; Li, F.; Li, G. A Blockchain-Based Medical Data Sharing and Protection Scheme. IEEE Access 2019, 7, 118943–118953. [Google Scholar] [CrossRef]
- Yaqoob, I.; Salah, K.; Jayaraman, R.; Al-Hammadi, Y. Blockchain for Healthcare Data Management: Opportunities, Challenges, and Future Recommendations. Neural Comput. Appl. 2022, 34, 11475–11490. [Google Scholar] [CrossRef]
- Cornelius, C.A.; Qusay, H.M.; J. Mikael, E. Blockchain Technology in Healthcare: A Systematic Review. Healthcare 2019, 7, 56. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, X.; Qiu, T.; Yuan, Y.; Ouyang, L.; Guo, Y.; Wang, F.Y. Blockchain-Powered Parallel Healthcare Systems Based on the ACP Approach. IEEE Trans. Comput. Soc. Syst. 2018, 5, 942–950. [Google Scholar] [CrossRef]
- Khan, W.A.; Khattak, A.M.; Hussain, M.; Amin, M.B.; Afzal, M.; Nugent, C.; Lee, S. An adaptive semantic based mediation system for data interoperability among Health Information Systems. J. Med. Syst. 2014, 38, 28. [Google Scholar] [CrossRef] [PubMed]
- Reisman, M. EHRs: The Challenge of Making Electronic Data Usable and Interoperable. Pharm. Ther. 2017, 42, 572–575. [Google Scholar]
- Dagher, G.G.; Mohler, J.; Milojkovic, M.; Marella, P.B. Ancile: Privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology. Sustain. Cities Soc. 2018, 39, 283–297. [Google Scholar] [CrossRef]
- Alam Khan, F.; Asif, M.; Ahmad, A.; Alharbi, M.; Aljuaid, H. Blockchain technology, improvement suggestions, security challenges on smart grid and its application in healthcare for sustainable development. Sustain. Cities Soc. 2020, 55, 102018. [Google Scholar] [CrossRef]
- Vazirani, A.; o’Donoghue, O.; Brindley, D.; Meinert, E. Blockchain vehicles for efficient Medical Record management. NPJ Digit. Med. 2020, 3, 1. [Google Scholar] [CrossRef]
- Kassab, M.; DeFranco, J.; Destefanis, G.; Graciano Neto, V. Exploring Research in Blockchain for Healthcare and a Roadmap for the Future. IEEE Trans. Emerg. Top. Comput. 2019, 9, 1835–1852. [Google Scholar] [CrossRef]
- Kumar, T.; Ramani, V.; Ahmad, I.; Braeken, A.; Harjula, E.; Ylianttila, M. Blockchain Utilization in Healthcare: Key Requirements and Challenges. In Proceedings of the 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), Ostrava, Czech Republic, 17–20 September 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Vonitsanos, G.; Panagiotakopoulos, T.; Kanavos, A. Issues and Challenges of using Blockchain for IoT Data Management in Smart Healthcare. Biomed. J. Sci. Tech. Res. 2021, 40, 32052–32057. [Google Scholar]
- Boulos, M.N.K.; Wilson, J.T.; Clauson, K.A. Geospatial blockchain: Promises, challenges, and scenarios in health and healthcare. Int. J. Health Geogr. 2018, 17, 25. [Google Scholar] [CrossRef]
- Igboanusi, I.S.; Allwinnaldo, A.; Alief, R.N.; Ansori, M.R.R.; Lee, J.M.; Kim, D.S. Smart auto mining (SAM) for industrial IoT blockchain network. IET Commun. 2022, 16, 2123–2132. [Google Scholar] [CrossRef]
- Stagnaro, C. White Paper: Innovative Blockchain Uses in Health Care; Freed Associate. 2017. Available online: https://s3.amazonaws.com/arena-attachments/1649918/a272c30523a39678dadcddc272d53a24.pdf?1516914525 (accessed on 5 May 2024).
- Ratta, P.; Kaur, A.; Sharma, S.; Shabaz, M.; Dhiman, G. Application of Blockchain and Internet of Things in Healthcare and Medical Sector: Applications, Challenges, and Future Perspectives. J. Food Qual. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
- Deepa, M.; Roshni Naveena, S.; Harini, N.D.; Sravika, V.; Soundarya, S.; Reshma, S. A Novel Electronic Medical Record Design Using Cryptography and Steganography Techniques. In Proceedings of the 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2–4 December 2021; pp. 377–382. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Q.; Zhang, Q.; Hu, W.; Liu, S. Blockchain-Based Multi-Role Healthcare Data Sharing System. In Proceedings of the 2020 IEEE International Conference on E-Health Networking, Application & Services (HEALTHCOM), Virtual Conference, 1–2 March 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Salim, M.M.; Park, J.H. Federated learning-based secure electronic health record sharing scheme in medical informatics. IEEE J. Biomed. Health Inform. 2022, 27, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Armand, T.P.T.; Athar, A.; Hussain, A.; Ali, M.; Yaseen, M.; Joo, M.I.; Kim, H.C. Metaverse in Healthcare Integrated with Explainable AI and Blockchain: Enabling Immersiveness, Ensuring Trust, and Providing Patient Data Security. Sensors 2023, 23, 565. [Google Scholar] [CrossRef] [PubMed]
- Shurrab, S.; Duwairi, R. Self-supervised learning methods and applications in medical imaging analysis: A survey. PeerJ Comput. Sci. 2022, 8, e1045. [Google Scholar] [CrossRef] [PubMed]
Year | Ref. | Database | Target Area/Focus | Major Findings | Survey | Case Studies |
---|---|---|---|---|---|---|
2009 | [9] | × | Preservation of patient medical records | Basic electronic record techniques | × | ✓ |
2011 | [3] | × | Digital certificate using PGP | Digital certificate techniques | ✓ | ✓ |
2019 | [10] | × | Patient privacy perspective toward HIE | Privacy policies | ✓ | ✓ |
2019 | [12] | × | Medical data-sharing schemes | Data-sharing approaches | ✓ | ✓ |
2021 | [11] | × | Real-world development challenges of BC | Broad spectrum of blockchain technologies | × | ✓ |
2021 | [13] | ✓ | Privacy preservation and security of health care | Privacy issues in health care | ✓ | ✓ |
2021 | [14] | × | Blockchain network solutions | Blockchain solutions in health care | ✓ | ✓ |
2021 | [15] | × | IoT and blockchain technology-based SWOT | Blockchain in medical IoT devices | ✓ | ✓ |
2021 | [16] | × | BC applications | Adaptive and simultaneous response | ✓ | ✓ |
2022 | [25] | × | BC in medical systems | Audit control and lightweight issues | ✓ | ✓ |
2022 | [26] | × | Healthcare privacy issues in BC | Adaptability and flexible application concerns | ✓ | ✓ |
2023 | [27] | × | BC in health care | Security and application issues | ✓ | ✓ |
2024 | Ours | ✓ | Blockchain for medical IoT record security | Reliable digitization is BC+AI+Metaverse | ✓ | ✓ |
Sno. | Ref. | Technology | Description |
---|---|---|---|
1. | [3] | Pretty Good Privacy (PGP) | Combines data compression, symmetric-key cryptography, and public-key cryptography. |
2. | [4] | Simple Distributed Security Infrastructure (SDSI) | A self-signed, decentralized DC that does not require a CA for authenticity but is very fragile to forgery. |
3. | [5] | Public-Key Cryptography (PKC) | A mathematical DC approach that uses a pair of private and public keys to ensure encryption and privacy. |
4. | [6] | Digital Signature Algorithm (DSA) | An algorithm that increases authentication security by increasing the difficulty of solving discrete logarithm problems. |
5. | [31] | Secure Hash Algorithm (SHA) | Widely used in combination with PKI and DSA to increase data encryption. |
Sno. | Ref. | Model | Potential |
---|---|---|---|
1. | [116] | SPChain | A reputation-based consensus algorithm that incentivizes healthcare institutions to participate in the mining process, utilizing proof of reputation to request patients’ electronic medical records. |
2. | [117] | SEMRES | An efficient triple encryption mechanism for electronic medical records to address data privacy, data correctness, and data security. |
3. | [118] | BLOSSOM | A blockchain algorithm consisting of a cryptographic hash of the records, proof of work, and a Merkle tree formulation for EMRs. |
4. | [119] | SEMRAchain | A system based on access control (Role-Based Access Control (RBAC), Attribute-Based Access Control (ABAC)) and a smart contract approach to guarantee not just visibility but also trustworthiness, credibility, and immutability. |
5. | [120] | BeHeDaS | A permission-mode blockchain system with a hyper-fabric ledger that uses a world state on a peer-to-peer chain, i.e., its smart contracts do not require a complex algorithm to yield controlled transparency for users. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajakwe, S.O.; Saviour, I.I.; Ihekoronye, V.U.; Nwankwo, O.U.; Dini, M.A.; Uchechi, I.U.; Kim, D.-S.; Lee, J.M. Medical IoT Record Security and Blockchain: Systematic Review of Milieu, Milestones, and Momentum. Big Data Cogn. Comput. 2024, 8, 121. https://doi.org/10.3390/bdcc8090121
Ajakwe SO, Saviour II, Ihekoronye VU, Nwankwo OU, Dini MA, Uchechi IU, Kim D-S, Lee JM. Medical IoT Record Security and Blockchain: Systematic Review of Milieu, Milestones, and Momentum. Big Data and Cognitive Computing. 2024; 8(9):121. https://doi.org/10.3390/bdcc8090121
Chicago/Turabian StyleAjakwe, Simeon Okechukwu, Igboanusi Ikechi Saviour, Vivian Ukamaka Ihekoronye, Odinachi U. Nwankwo, Mohamed Abubakar Dini, Izuazu Urslla Uchechi, Dong-Seong Kim, and Jae Min Lee. 2024. "Medical IoT Record Security and Blockchain: Systematic Review of Milieu, Milestones, and Momentum" Big Data and Cognitive Computing 8, no. 9: 121. https://doi.org/10.3390/bdcc8090121
APA StyleAjakwe, S. O., Saviour, I. I., Ihekoronye, V. U., Nwankwo, O. U., Dini, M. A., Uchechi, I. U., Kim, D. -S., & Lee, J. M. (2024). Medical IoT Record Security and Blockchain: Systematic Review of Milieu, Milestones, and Momentum. Big Data and Cognitive Computing, 8(9), 121. https://doi.org/10.3390/bdcc8090121