Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis
Abstract
:1. Introduction
- A comprehensive review highlighting the shortcomings of current federated literature applied to machine learning-based medical image analysis.
- A taxonomy of federated learning papers on machine learning-based medical image analysis, including the medical applications, referenced datasets, and methods utilised.
- A summary of open-source frameworks for developing federated learning.
2. Methodology
3. Strategies in Federated Learning for Machine Learning-Based Image Analysis
3.1. Non-Independent and Identically Distributed Data Methods
3.1.1. Data Augmentation
3.1.2. Dataset Distribution and Client Selection
3.1.3. Parameter Adaptation
3.1.4. Semi-Supervised Learning
3.2. Privacy-Enhancing Methods
3.2.1. Differential Privacy
3.2.2. Model Aggregation
3.2.3. Homomorphic Encryption
4. Open-Source Framework Implementations
5. Discussion
- Heterogeneous datasets: Medical image datasets come from different settings (medical equipment and data management software) where the prevalence of medical conditions and acquisition protocols may vary. Neglecting these variations when designing machine learning models can lead to performance issues and reduced generalisability of the models.
- Imbalanced datasets: Medical image datasets can often be imbalanced, with a small number of pathological cases and mostly healthy cases; this can lead to model generalisation and performance issues, particularly in scenarios where some rare diseases or conditions require accurate detection.
- Data privacy and security: Maintaining dataset privacy is paramount, requiring strict privacy and security measures. Federated implementations must protect patient data during the model training process.
- Communication: Client communication may be limited due to the high computational cost of transmitting large models. The client may have limited computational power, making it challenging to scale and requiring the development of scalable and efficient machine-learning models that can address large amounts of data. Strategies include adopting lightweight protocol, semi-synchronisation, and model distribution. It should be noted that this review omitted this topic because it falls outside the scope of medical image analysis. However, further details appear in [150].
6. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Name | Built-In Support | Aggregator | Security |
---|---|---|---|
FATE (1.8.0) [142] | PyTorch TensorFLow | FedAvg SecAgg SecMPC SecBoost | Public-key Cryptosystems |
FedML (0.6.0) [143] | PyTorch | FedAvg FedOpt FedProx FedNova SplitNN Hierarchical FL | Differential Privacy Multi-party Computation |
Flower (1.0.0) [144] | PyTorch TensorFlow JAX Hugging Face Scikit-learn MXNet PyTorch-Lightning TFLite | FedAvg FedAvgM QFedAvg FaultTolerantAvg FedOpt FedAdagrad FedAdam FedYogi | Differential Privacy |
NVFlare (2.1.3) [145] | PyTorch TensorFLow | FedAvg FedOpt FedProx | Homomorphic Encryption Differential Privacy |
OpenFL (1.3.0) [146] | PyTorch TensorFLow | FedAvg FedProx FedOpt FedCurv FedYogi FedAdam FedAdagrad | Mutual Transport Layer Security Secret-sharing Differential Privacy |
PaddleFL + PaddlePaddle (1.2.0) [147] | PyTorch | FedAvg SecAgg | Public-key Cryptosystems Differentially Private Stochastic |
PySyft + PyGrid (0.6.0) [148] | PyTorch TensorFLow | FedSGD | Differential Privacy Multi-Party Computation Homomorphic Encryption Public-key Cryptosystems |
TensorFlow Federated (0.31.0) [149] | TensorFlow | FedAvg FedSGD FedProx FedOpt | Differential Privacy |
PriMIA [46] | PyTorch | FedAvg SecAgg | Secure Aggregation Differential Privacy Multi-party Computation |
Paper | Medical Data Speciality | Referenced Dataset | Referenced Algorithm | Research Strategy |
---|---|---|---|---|
[3] | Cardiology | M&M [93] Emidec [94] | 3D U-Net [92] | Non-IID |
[4] | Dermatology | HAM10000 [114] | PrivGAN [156] | Non-IID |
[5] | Dermatology | ISIC [84] | DualGAN [65] KnEA [66] | Non-IID |
[6] | Dermatology | ISIC [84] | EfficientNet [157] | Use Case |
[7] | Dermatology | AtlasDerm [158] Dermnet [159] | VGG AlexNet FedAvg [160] FedML | Use Case |
[8] | Dermatology | FMNIST [131] | Efficient-Net FedPerl | Non-IID |
[9] | Dermatology | RSNA ICH [124] ISIC [84] | DenseNet [161] Client Matching | Non-IID |
[10] | Dermatology | Proprietary Data | CNN | Privacy |
[11] | Dermatology | TCGA [130] | DP-SGD [46] | Privacy |
[14] | Dermatology | HAM10000 [114] | MobileNet [113] | Non-IID |
[15] | Dermatology | TCGA [130] | DenseNet [161] MIL [162] | Privacy |
[13] | Dermatology Neurology | RSNA ICH [124] HAM10000 [114] | FedAvg [160] | Non-IID |
[12] | Dermatology Oncology Respiratory Medicine | MedMNIST [70] Camelyon17 [71] | ResNet | Non-IID |
[16] | Dermatology Respiratory Medicine | Pcam [141] COVIDx [132] | MAE [163] | Privacy |
[107] | Dermatology | TCGA [130] CRC-VAL-HE-7K [164] NCT-CRC-HE-100K [164] | CycleGAN | Non-IID |
[165] | Dermatology | SkinLessions [166] Monkeypox [167] | MobileNet ResNet CycleGAN ViT [168] | Use Case |
[169] | Dermatology | Proprietary data | ResNet | Use Case |
[170] | Dermatology | ISIC [84] | ResNet | Use Case |
[171] | Dermatology | ISIC [84] | CNN | Use Case |
[172] | Dermatology | HAM10000 [114] | CNN | Use Case |
[106] | Dermatology Miscellaneous (Anatomy Detection) | MNIST [173] HAM10000 [114] MedMNIST [70] | CNN | Non-IID |
[103] | Dermatology Oncology Respiratory Medicine | MedMNIST [70] MNIST [173] | ResNet | Non-IID |
[122] | Dermatology Oncology | CoNSeP [174] TCGA [130] GlaS [175] CryoNuSeg [176] Kumar [177] TNBC [178] | U-Net | Non-IID |
Paper | Medical Data Speciality | Referenced Dataset | Referenced Algorithm | Research Strategy |
---|---|---|---|---|
[17] | Gastroenterology | GLRC [97] | SCM [95] FCOS [96] | Non-IID |
[41] | Miscellaneous (Anatomy Detection) | TCGA [130] | MobileNet [113] | Use Case |
[123] | Miscellaneous (Disease Classification) | MedMNIST [70] | CNN FedAvg [160] | Non-IID |
[43] | Miscellaneous (MRI Reconstruction) | fastMRI [115] HPKS [116] IXI [79] BraTS [80] | U-Net FedAvg [160] | Non-IID |
[23] | Miscellaneous (Thyroid Cancer) | Proprietary Data | VGG ResNet | Use Case |
[135] | Miscellaneous (Anatomy Detection) | ACDC [179] | U-Net | Privacy |
[155] | Miscellaneous (Anatomy Detection) | Proprietary data | VGG | Use Case |
[137] | Miscellaneous (Anatomy Detection) | MedMNIST [70] COVID-CT-dataset [180] PneumoniaMNIST [181] | ResNet | Privacy |
[182] | Miscellaneous (Anatomy Detection) | Montgomery [183] India [184] Shenzhen [183] TBX11k [185] TB-Att [186] | ConvNeXt [187] | Use Case |
[188] | Miscellaneous (Anatomy Detection) | X-RayKnee [189] | DenseNet | Use Case |
[45] | Miscellaneous (Watermark Extraction) | Proprietary Data | Encoder–Decoders | Privacy |
[18] | Neurology | ADNI [111] PPMI [190] MIRIAD [191] UK BioBank [192] | ENIGMA [193] | Non-IID |
[19] | Neurology | ADNI [111] OASIS [82] | FedCM VGG 3D-CNN [110] | Non-IID |
[20] | Neurology | BraTS [80] | FedAvg [160] Encoder–Decoders | Privacy |
[21] | Neurology | BraTS [80] | U-Net | Use Case |
[22] | Neurology | IXI [79] BraTS [80] MIDAS [81] OASIS [82] | PatchGAN [74] | Non-IID |
[194] | Neurology | OASIS [82] | CNN | Use Case |
[117] | Neurology | ADNI [111] AIBL [195] AI4AD [196] | ViT [197] | Non-IID |
[85] | Neurology | ABIDE [198] ADNI [199] | Graph CNN [200] | Non-IID |
[201] | Neurology | LUNA [202] Proprietary data | VGG | Use Case |
[203] | Neurology | SARTAJ [204] Br35H [205] | VGG | Use Case |
[206] | Neurology | Proprietary data | AlexNet | Use Case |
[207] | Neurology | SARTAJ [204] Br35H [205] | DenseNet | Use Case |
[121] | Neurology Miscellaneous (Anatomy Detection) | TCIA [208] Proprietary Data | Mean Teachers [209] | Non-IID |
[210] | Neurology Respiratory Medicine | COVIDCT [211] COVID-CT-dataset [180] SARS-CoV-2 [212] | CapsuleNetwork [213] | Use Case |
Paper | Medical Data Speciality | Referenced Dataset | Referenced Algorithm | Research Strategy |
---|---|---|---|---|
[214] | Neurology Oncology | SRI24 [215] BraTS [80] | U-Net | Use Case |
[216] | Neurology Oncology | QUASAR [217] YCR BCI [218] BraTS [80] | U-Net | Use Case |
[219] | Oncology | INbreast [220] VinDr-Mammo [221] CMMD [222] | CNN | Use Case |
[223] | Oncology | DDSM [224] | MobileNet DenseNet | Use Case |
[134] | Oncology | BreakHis [225] | E-EIE [226] | Privacy |
[118] | Oncology | RETOUCH [227] | U-Net | Non-IID |
[102] | Oncology | DDSM [224] | ACO [228] | Non-IID |
[229] | Oncology | BreakHis [225] | ResNet | Use Case |
[67] | Oncology | LC25000 [230] | Fuzzy Rough Sets [231] | Non-IID |
[90] | Oncology | MultiChole2022 [232] | ResNet | Non-IID |
[104] | Oncology | Kvasir [233] | VGG | Non-IID |
[100] | Oncology | ChestX-ray8 [234] IQ-OTH/NCCD [235] | ResNet | Non-IID |
[91] | Oncology | LC25000 [230] | Encoder–Decoders | Non-IID |
[236] | Oncology | BHI [237] | ResNet GaborNet [238] | Use Case |
[239] | Oncology | Microcal [240] | EfficientNet [241] | Use Case |
[242] | Oncology | Proprietary data | CNN | Use Case |
[243] | Oncology | Baheya [244] BUS-Set [245] | U-Net | Use Case |
[246] | Oncology | LC25000 [230] | Inception | Use Case |
[247] | Oncology | DDSM [224] VinDr-Mammo [221] | ResNet | Use Case |
[248] | Oncology | MSD [249] | U-Net | Use Case |
[250] | Oncology | Thyroid [251] Thyroid2 [252] | Swin Transformer [253] | Use Case |
[89] | Oncology Miscellaneous (Anatomy Detection) | PBC [254] HyperKvasir [255] LiTS [256] | ResNet | Non-IID |
[24] | Oncology | MSD [249] KITS19 [257] | FedAvg [160] | Non-IID |
[64] | Respiratory Medicine | QaTa-COV19-v2 [258] | Encoder–Decoders | Non-IID |
[105] | Respiratory Medicine | PneumoniaMNIST [181] RSNA ICH [124] | ViT [197] | Non-IID |
[259] | Respiratory Medicine | SARS-CoV-2 [212] | MobileNet | Use Case |
[260] | Respiratory Medicine Oncology | VinDr-CXR [261] UKA-CXR [262] | ResNet | Use Case |
[101] | Respiratory Medicine Oncology | RSNA ICH [124] CheXpert [109] ChestX-ray8 [234] | ResNet | Non-IID |
[263] | Respiratory Medicine | COVID X-Ray [264] POCUS [265] | VGG | Use Case |
[266] | Respiratory Medicine | CXR [267] | Xception | Use Case |
[268] | Respiratory Medicine | SIRM [269] TCIA [208] Radiopaedia [270] PneumoniaMNIST [181] GitHub [271] | DenseNet | Use Case |
[136] | Respiratory Medicine | X-RayTransition [272] | VGG | Privacy |
Paper | Medical Data Speciality | Referenced Dataset | Referenced Algorithm | Research Strategy |
---|---|---|---|---|
[27] | Respiratory Medicine | X-Ray [127] | CNN ResNet VGG AlexNet | Use Case |
[28] | Respiratory Medicine | X-Ray [127] COVID X-Ray [264] COVID-19 Radio [273] | CNN | Use Case |
[42] | Respiratory Medicine | CheXpert [109] | Graph NN | Non-IID |
[29] | Respiratory Medicine | X-Ray [127] COVID X-Ray [264] COVID-19 Radio [273] | FedAvg [160] | Non-IID |
[30] | Respiratory Medicine | Not Disclosed | SqueezeNet Glowworm Swarm CovidNet | Use Case |
[31] | Respiratory Medicine | LIDC [125] | 3D U-Net [92] FedAvg [160] | Non-IID |
[32] | Respiratory Medicine | COVID X-ray [264] | ResNet Inception | Use Case |
[33] | Respiratory Medicine | Not Disclosed | MobileNet [113] ResNet COVID-Net | Use Case |
[34] | Respiratory Medicine | Proprietary Data | RetinaNet | Use Case |
[35] | Respiratory Medicine | Not Disclosed | CNN | Use Case |
[36] | Respiratory Medicine | Proprietary Data | ResNeXt SVM CNN RNN | Use Case |
[26] | Respiratory Medicine | FMNIST [131] COVIDx [132] Kvasir [133] | FedAvg [274] | Privacy |
[37] | Respiratory Medicine | Montgomery [275] Shenzhen [276] | StyleGAN [277] | Non-IID |
[38] | Respiratory Medicine | X-Ray [127] | INN [126] | Privacy |
[39] | Respiratory Medicine | PPPD [278] | ResNet | Privacy |
[40] | Urology | PROSTATEx [279] | WGAN-GP CycleGAN FedAvg [160] | Non-IID |
[120] | Urology Miscellaneous (Anatomy Detection) | CVC-ClinicDB [280] CVC-ColonDB [281] ETIS [282] Kvasir [233] NCI-ISBI 2013 [208] I2CVB [283] PROMISE12 [284] | U-Net | Non-IID |
[119] | Urology Miscellaneous (Anatomy Detection) | RIM-ONE-r3 [285] Drishti-GS [286] REFUGE-challenge [287] NCI-ISBI-2013 [208] I2CVB [283] PROMISE12 [284] | FegAvg MobileNet DeepLabv3+ | Non-IID |
[288] | Urology | FUrology [289] | ResNet | Use Case |
References
- Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A Survey on Distributed Machine Learning. ACM Comput. Surv. 2020, 53, 1–33. [Google Scholar] [CrossRef]
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawit, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and Open Problems in Federated Learning. arXiv 2021, arXiv:1912.04977v3. [Google Scholar]
- Qi, X.; Yang, G.; He, Y.; Liu, W.; Islam, A.; Li, S. Contrastive Re-localization and History Distillation in Federated CMR Segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2022, Singapore, 18–22 September 2022; Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S., Eds.; Springer: Cham, Switzerland; pp. 256–265. [Google Scholar]
- Rajotte, J.F.; Mukherjee, S.; Robinson, C.; Ortiz, A.; West, C.; Ferres, J.M.L.; Ng, R.T. Reducing bias and increasing utility by federated generative modeling of medical images using a centralized adversary. In Proceedings of the Conference on Information Technology for Social Good, New York, NY, USA, 9–11 September 2021; pp. 79–84. [Google Scholar]
- Cai, X.; Lan, Y.; Zhang, Z.; Wen, J.; Cui, Z.; Zhang, W.S. A Many-objective Optimization based Federal Deep Generation Model for Enhancing Data Processing Capability in IOT. IEEE Trans. Ind. Inform. 2021, 19, 561–569. [Google Scholar] [CrossRef]
- Agbley, B.L.Y.; Li, J.; Haq, A.U.; Bankas, E.K.; Ahmad, S.; Agyemang, I.O.; Kulevome, D.; Ndiaye, W.D.; Cobbinah, B.; Latipova, S. Multimodal Melanoma Detection with Federated Learning. In Proceedings of the 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2021, Chengdu, China, 17–19 December 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 238–244. [Google Scholar]
- Hossen, M.N.; Panneerselvam, V.; Koundal, D.; Ahmed, K.; Bui, F.M.; Ibrahim, S.M. Federated Machine Learning for Detection of Skin Diseases and Enhancement of Internet of Medical Things (IoMT) Security. IEEE J. Biomed. Health Inform. 2022, 27, 835–841. [Google Scholar] [CrossRef]
- Bdair, T.; Navab, N.; Albarqouni, S. FedPerl: Semi-supervised Peer Learning for Skin Lesion Classification. In Proceedings of the Lecture Notes in Computer Science; Lecture Notes in Computer Science; de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C., Eds.; Springer: Cham, Switzerland, 2021; Volume 12903. [Google Scholar]
- Liu, Q.; Yang, H.; Dou, Q.; Heng, P.A. Federated Semi-supervised Medical Image Classification via Inter-client Relation Matching. In Proceedings of the Lecture Notes in Computer Science, 6, Presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2021), Strasbourg, France, 27 September–1 October 2021. [Google Scholar]
- Guo, K.; Li, N.; Kang, J.; Zhang, J. Towards efficient federated learning-based scheme in medical cyber-physical systems for distributed data. In Proceedings of the Software—Practice and Experience; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2021; Volume 51, pp. 2274–2289. [Google Scholar]
- Adnan, M.; Kalra, S.; Cresswell, J.C.; Taylor, G.W.; Tizhoosh, H.R. Federated learning and differential privacy for medical image analysis. Sci. Rep. 2022, 12, 1953. [Google Scholar] [CrossRef]
- Zhu, W.; Luo, J. Federated Medical Image Analysis with Virtual Sample Synthesis. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2022, Singapore, 18–22 September 2022; Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 728–738. [Google Scholar]
- Jiang, M.; Yang, H.; Li, X.; Liu, Q.; Heng, P.A.; Dou, Q. Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with Class Imbalance. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2022, Singapore, 18–22 September 2022; Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 196–206. [Google Scholar]
- Yeganeh, Y.; Farshad, A.; Boschmann, J.; Gaus, R.; Frantzen, M.; Navab, N. FedAP: Adaptive Personalization in Federated Learning for Non-IID Data. In Proceedings of the International Workshop on Distributed, Collaborative, and Federated Learning, Workshop on Affordable Healthcare and AI for Resource Diverse Global Health; Springer: Berlin/Heidelberg, Germany, 2022; pp. 17–27. [Google Scholar]
- Hosseini, S.M.; Sikaroudi, M.; Babaei, M.; Tizhoosh, H.R. Cluster Based Secure Multi-party Computation in Federated Learning for Histopathology Images. In Proceedings of the International Workshop on Distributed, Collaborative, and Federated Learning, Workshop on Affordable Healthcare and AI for Resource Diverse Global Health; Springer: Berlin/Heidelberg, Germany, 2022; pp. 110–118. [Google Scholar]
- Aggarwal, G.; Huang, C.Y.; Fan, D.; Li, X.; Wang, Z. DeMed: A Novel and Efficient Decentralized Learning Framework for Medical Images Classification on Blockchain. In Proceedings of the Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health; Albarqouni, S., Bakas, S., Bano, S., Cardoso, M.J., Khanal, B., Landman, B., Li, X., Qin, C., Rekik, I., Rieke, N., et al., Eds.; Springer: Cham, Switzerland, 2022; pp. 100–109. [Google Scholar]
- Liu, X.; Li, W.; Yuan, Y. Intervention & Interaction Federated Abnormality Detection with Noisy Clients. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2022; Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 309–319. [Google Scholar]
- Silva, S.; Gutman, B.A.; Romero, E.; Thompson, P.M.; Altmann, A.; Lorenzi, M. Federated Learning in Distributed Medical Databases: Meta-Analysis of Large-Scale Subcortical Brain Data. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 270–274. [Google Scholar]
- Huang, Y.L.; Yang, H.C.; Lee, C.C. Federated Learning via Conditional Mutual Learning for Alzheimer’s Disease Classification on T1w MRI. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 2427–2432. [Google Scholar]
- Li, W.; Milletarì, F.; Xu, D.; Rieke, N.; Hancox, J.; Zhu, W.; Baust, M.; Cheng, Y.; Ourselin, S.; Cardoso, M.J.; et al. Privacy-preserving Federated Brain Tumour Segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2019, Shenzhen, China, 13–17 October 2019; Lecture Notes in Computer Science. pp. 133–141. [Google Scholar]
- Sheller, M.J.; Reina, G.A.; Edwards, B.; Martin, J.; Bakas, S. Multi-institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation. In Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T., Eds.; Springer: Cham, Switzerland, 2019; pp. 92–104. [Google Scholar]
- Dalmaz, O.; Mirza, U.; Elmas, G.; Özbey, M.; Dar, S.U.; Çukur, T. A Specificity-Preserving Generative Model for Federated MRI Translation. In Proceedings of the International Workshop on Distributed, Collaborative, and Federated Learning, Workshop on Affordable Healthcare and AI for Resource Diverse Global Health; Springer: Berlin/Heidelberg, Germany, 2022; pp. 79–88. [Google Scholar]
- Lee, H.; Chai, Y.J.; Joo, H.; Lee, K.; Hwang, J.Y.; Kim, S.M.; Kim, K.; Nam, I.C.; Choi, J.Y.; Yu, H.W.; et al. Federated learning for thyroid ultrasound image analysis to protect personal information: Validation study in a real health care environment. JMIR Med. Inform. 2021, 9, e25869. [Google Scholar] [CrossRef]
- Shen, C.; Wang, P.; Yang, D.; Xu, D.; Oda, M.; Chen, P.T.; Liu, K.L.; Liao, W.C.; Fuh, C.S.; Mori, K.; et al. Joint Multi Organ and Tumor Segmentation from Partial Labels Using Federated Learning. In Proceedings of the Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health; Albarqouni, S., Bakas, S., Bano, S., Cardoso, M.J., Khanal, B., Landman, B., Li, X., Qin, C., Rekik, I., Rieke, N., et al., Eds.; Springer: Cham, Switzerland, 2022; pp. 58–67. [Google Scholar]
- Wagner, F.; Li, Z.; Saha, P.; Kamnitsas, K. Post-Deployment Adaptation with Access to Source Data via Federated Learning and Source-Target Remote Gradient Alignment. In Proceedings of the International Workshop on Machine Learning in Medical Imaging; Springer: Berlin/Heidelberg, Germany, 2023; pp. 253–263. [Google Scholar]
- Yang, Q.; Zhang, J.; Hao, W.; Spell, G.P.; Carin, L. FLOP: Federated Learning on Medical Datasets using Partial Networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for Computing Machinery: New York, NY, USA, 2021; pp. 3845–3853. [Google Scholar]
- Khan, S.H.; Alam, M.G.R. A Federated Learning Approach to Pneumonia Detection. In Proceedings of the 7th International Conference on Engineering and Emerging Technologies, ICEET 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021. [Google Scholar]
- Cetinkaya, A.E.; Akin, M.; Sagiroglu, S. A Communication Efficient Federated Learning Approach to Multi Chest Diseases Classification. In Proceedings of the 6th International Conference on Computer Science and Engineering, UBMK 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 429–434. [Google Scholar]
- Cetinkaya, A.E.; Akin, M.; Sagiroglu, S. Improving Performance of Federated Learning based Medical Image Analysis in Non-IID Settings using Image Augmentation. In Proceedings of the 14th International Conference on Information Security and Cryptology, ISCTURKEY 2021—Proceedings; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 69–74. [Google Scholar]
- Laxmi Lydia, E.; Anupama, C.S.; Beno, A.; Elhoseny, M.; Alshehri, M.D.; Selim, M.M. Cognitive computing-based COVID-19 detection on Internet of things-enabled edge computing environment. Soft Comput. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Yang, D.; Xu, Z.; Li, W.; Myronenko, A.; Roth, H.R.; Harmon, S.; Xu, S.; Turkbey, B.; Turkbey, E.; Wang, X.; et al. Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan. Med. Image Anal. 2021, 70, 101992. [Google Scholar] [CrossRef]
- Muhammad, G.; Alqahtani, S.; Alelaiwi, A. Pandemic Management for Diseases Similar to COVID-19 Using Deep Learning and 5G Communications. IEEE Netw. 2021, 35, 21–26. [Google Scholar] [CrossRef]
- Salam, M.A.; Taha, S.; Ramadan, M. COVID-19 detection using federated machine learning. PLoS ONE 2021, 16, e0252573. [Google Scholar]
- Dou, Q.; So, T.Y.; Jiang, M.; Liu, Q.; Vardhanabhuti, V.; Kaissis, G.; Li, Z.; Si, W.; Lee, H.H.; Yu, K.; et al. Federated deep learning for detecting COVID-19 lung abnormalities in CT: A privacy-preserving multinational validation study. Npj Digit. Med. 2021, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y. Near Real-Time Federated Machine Learning Approach Over Chest Computed Tomography for COVID-19 Diagnosis. Commun. Comput. Inf. Sci. 2022, 1554, 21–36. [Google Scholar]
- Liang, H.; Guo, Y.; Chen, X.; Ang, K.L.; He, Y.; Jiang, N.; Du, Q.; Zeng, Q.; Lu, L.; Gao, Z.; et al. Artificial intelligence for stepwise diagnosis and monitoring of COVID-19. Eur. Radiol. 2022, 32, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, M.; Proietto Salanitri, F.; Palazzo, S.; Pino, C.; Rundo, F.; Giordano, D.; Spampinato, C. GAN Latent Space Manipulation and Aggregation for Federated Learning in Medical Imaging. In Proceedings of the International Workshop on Distributed, Collaborative, and Federated Learning, Workshop on Affordable Healthcare and AI for Resource Diverse Global Health; Springer: Berlin/Heidelberg, Germany, 2022; pp. 68–78. [Google Scholar]
- Tölle, M.; Köthe, U.; André, F.; Meder, B.; Engelhardt, S. Content-Aware Differential Privacy with Conditional Invertible Neural Networks. In Proceedings of the Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health; Albarqouni, S., Bakas, S., Bano, S., Cardoso, M.J., Khanal, B., Landman, B., Li, X., Qin, C., Rekik, I., Rieke, N., et al., Eds.; Springer: Cham, Switzerland, 2022; pp. 89–99. [Google Scholar]
- Usynin, D.; Klause, H.; Paetzold, J.C.; Rueckert, D.; Kaissis, G. Can Collaborative Learning Be Private, Robust and Scalable? In Proceedings of the Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health; Albarqouni, S., Bakas, S., Bano, S., Cardoso, M.J., Khanal, B., Landman, B., Li, X., Qin, C., Rekik, I., Rieke, N., et al., Eds.; Springer: Cham, Switzerland, 2022; pp. 37–46. [Google Scholar]
- Yan, Z.; Wicaksana, J.; Wang, Z.; Yang, X.; Cheng, K.T. Variation-Aware Federated Learning with Multi-Source Decentralized Medical Image Data. IEEE J. Biomed. Health Inform. 2021, 25, 2615–2628. [Google Scholar] [CrossRef] [PubMed]
- Filice, R.W.; Stein, A.; Pan, I.; Shih, G. Federated Deep Learning to More Reliably Detect Body Part for Hanging Protocols, Relevant Priors, and Workflow Optimization. J. Digit. Imaging 2022, 35, 335–339. [Google Scholar] [CrossRef]
- Chakravarty, A.; Kar, A.; Sethuraman, R.; Sheet, D. Federated learning for site aware chest radiograph screening. In Proceedings of the Proceedings—International Symposium on Biomedical Imaging; IEEE Computer Society: New York, NY, USA, 2021; Volume 2021-April, pp. 1077–1081. [Google Scholar]
- Guo, P.; Wang, P.; Zhou, J.; Jiang, S.; Patel, V.M. Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; IEEE Computer Society: New York, NY, USA, 2021; pp. 2423–2432. [Google Scholar]
- Bansal, M.A.; Sharma, D.R.; Kathuria, D.M. A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications. ACM Comput. Surv. 2022, 54, 1–29. [Google Scholar] [CrossRef]
- Han, B.; Jhaveri, R.; Wang, H.; Qiao, D.; Du, J. Application of Robust Zero-Watermarking Scheme Based on Federated Learning for Securing the Healthcare Data. IEEE J. Biomed. Health Inform. 2021, 27, 804–813. [Google Scholar] [CrossRef]
- Kaissis, G.; Ziller, A.; Passerat-Palmbach, J.; Ryffel, T.; Usynin, D.; Trask, A.; Lima, I.; Mancuso, J.; Jungmann, F.; Steinborn, M.M.; et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 2021, 3, 473–484. [Google Scholar] [CrossRef]
- Phong, L.T.; Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1333–1345. [Google Scholar] [CrossRef]
- Li, Z.; Sharma, V.; Mohanty, S.P. Preserving Data Privacy via Federated Learning: Challenges and Solutions. IEEE Consum. Electron. Mag. 2020, 9, 8–16. [Google Scholar] [CrossRef]
- Yang, Q. Toward Responsible AI: An Overview of Federated Learning for User-centered Privacy-preserving Computing. ACM Trans. Interact. Intell. Syst. 2021, 11, 1–22. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning. ACM Trans. Intell. Syst. Technol. (TIST) 2019, 10, 12. [Google Scholar] [CrossRef]
- Yin, X.; Zhu, Y.; Hu, J. A Comprehensive Survey of Privacy-preserving Federated Learning: A Taxonomy, Review, and Future Directions. Acm Comput. Surv. 2021, 54, 131. [Google Scholar] [CrossRef]
- Antunes, R.S.; André da Costa, C.; Küderle, A.; Yari, I.A.; Eskofier, B. Federated Learning for Healthcare: Systematic Review and Architecture Proposal. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–23. [Google Scholar] [CrossRef]
- Shahzad, H.; Veliky, C.; Le, H.; Qureshi, S.; Phillips, F.M.; Javidan, Y.; Khan, S.N. Preserving privacy in big data research: The role of federated learning in spine surgery. Eur. Spine J. 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Caroprese, L.; Ruga, T.; Vocaturo, E.; Zumpano, E. Lung Cancer Detection via Federated Learning. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 5–8 December 2023; pp. 3862–3867. [Google Scholar]
- Caroprese, L.; Ruga, T.; Vocaturo, E.; Zumpano, E. Revealing Brain Tumor with Federated Learning. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 5–8 December 2023; pp. 3868–3873. [Google Scholar]
- Raza, A.; Guzzo, A.; Fortino, G. Federated Learning for Medical Images Analysis: A Meta Survey. In Proceedings of the 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Abu Dhabi, United Arab, 14–17 November 2023; pp. 0531–0536. [Google Scholar]
- Zhang, T.; Mao, S. An Introduction to the Federated Learning Standard. GetMobile Mob. Comput. Commun. 2022, 25, 18–22. [Google Scholar] [CrossRef]
- Long, G.; Shen, T.; Tan, Y.; Gerrard, L.; Clarke, A.; Jiang, J. Federated Learning for Privacy-Preserving Open Innovation Future on Digital Health. In Humanity Driven AI; Springer: Berlin/Heidelberg, Germany, 2022; pp. 113–133. [Google Scholar]
- Sohan, M.F.; Basalamah, A. A Systematic Review on Federated Learning in Medical Image Analysis. IEEE Access 2023, 11, 28628–28644. [Google Scholar] [CrossRef]
- Velagapudi, A.; Jhansi, B.; Hemalikha, M.; Vijayalakshmi, P. FedDHr: Improved Adaptive Learning Strategy Using Federated Learning for Image Processing. In Proceedings of the 2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS), Erode, India, 18–20 October 2023; pp. 295–299. [Google Scholar]
- Okoli, C.; Schabram, K. A Guide to Conducting a Systematic Literature Review of Information Systems Research. SSRN Electron. J. 2010, 10, 1–51. [Google Scholar] [CrossRef]
- Skelly, A.C.; Dettori, J.R.; Brodt, E.D. Assessing bias: The importance of considering confounding. Evid.-Based Spine-Care J. 2012, 3, 9. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pham, Q.V.; Pathirana, P.N.; Ding, M.; Seneviratne, A.; Lin, Z.; Dobre, O.; Hwang, W.J. Federated Learning for Smart Healthcare: A Survey. ACM Comput. Surv. 2023, 55, 1–37. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, B.; Chen, C.; Qin, J. Federated Semi-Supervised Medical Image Segmentation via Prototype-Based Pseudo-Labeling and Contrastive Learning. IEEE Trans. Med. Imaging 2024, 43, 649–661. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, H.; Tan, P.; Gong, M. DualGAN: Unsupervised Dual Learning for Image-to-Image Translation. arXiv 2018, arXiv:1704.02510v4. [Google Scholar]
- Zhang, X.; Tian, Y.; Jin, Y. A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans. Evol. Comput. 2015, 19, 761–776. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, J.; Li, J.; Cao, B.; Lv, Z. Federated Neural Architecture Search for Medical Data Security. IEEE Trans. Ind. Inform. 2022, 18, 5628–5636. [Google Scholar] [CrossRef]
- Miyato, T.; Maeda, S.I.; Koyama, M.; Ishii, S. Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning. arXiv 2018, arXiv:1704.03976v2. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Yang, J.; Shi, R.; Wei, D.; Liu, Z.; Zhao, L.; Ke, B.; Pfister, H.; Ni, B. MedMNIST v2—A large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data 2023, 10, 41. [Google Scholar] [CrossRef]
- Litjens, G.; Bandi, P.; Ehteshami Bejnordi, B.; Geessink, O.; Balkenhol, M.; Bult, P.; Halilovic, A.; Hermsen, M.; van de Loo, R.; Vogels, R.; et al. 1399 Stained sentinel lymph node sections of breast cancer patients: The CAMELYON dataset. GigaScience 2018, 7, giy065. [Google Scholar] [CrossRef]
- Beers, A.; Brown, J.; Chang, K.; Campbell, J.P.; Ostmo, S.; Chiang, M.F.; Kalpathy-Cramer, J. High-resolution medical image synthesis using progressively grown generative adversarial networks. arXiv 2018, arXiv:1805.03144v2. [Google Scholar]
- Lee, D.; Kim, J.; Moon, W.J.; Ye, J.C. CollaGAN: Collaborative GAN for Missing Image Data Imputation. arXiv 2019, arXiv:1901.09764v3. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. arXiv 2018, arXiv:1611.07004v3. [Google Scholar]
- Huang, X.; Belongie, S. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. arXiv 2017, arXiv:1703.06868. [Google Scholar]
- Rasouli, M.; Sun, T.; Rajagopal, R. FedGAN: Federated Generative Adversarial Networks for Distributed Data. 2020. Available online: http://arxiv.org/abs/2006.07228 (accessed on 8 August 2024).
- Feng, C.M.; Yan, Y.; Wang, S.; Xu, Y.; Shao, L.; Fu, H. Specificity-Preserving Federated Learning for MR Image Reconstruction. 2022. Available online: http://arxiv.org/abs/2112.05752 (accessed on 8 August 2024).
- Wang, J.; Xie, G.; Huang, Y.; Lyu, J.; Zheng, F.; Zheng, Y.; Jin, Y. FedMed-GAN: Federated domain translation on unsupervised cross-modality brain image synthesis. Neurocomputing 2023, 546, 126282. [Google Scholar] [CrossRef]
- IXI Dataset—Brain Development. Available online: https://brain-development.org/ixi-dataset/ (accessed on 8 August 2024).
- Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv 2018, arXiv:1811.02629. [Google Scholar]
- Bullitt, E.; Zeng, D.; Gerig, G.; Aylward, S.; Joshi, S.; Smith, J.K.; Lin, W.; Ewend, M.G. Vessel tortuosity and brain tumor malignancy: A blinded study. Acad. Radiol. 2005, 12, 1232–1240. [Google Scholar] [CrossRef]
- LaMontagne, P.J.; Benzinger, T.L.; Morris, J.C.; Keefe, S.; Hornbeck, R.; Xiong, C.; Grant, E.; Hassenstab, J.; Moulder, K.; Vlassenko, A.G.; et al. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. medRxiv 2019, 1–13. [Google Scholar]
- Sloss, A.N.; Gustafson, S. 2019 Evolutionary Algorithms Review. arXiv 2019, arXiv:1906.08870. [Google Scholar]
- Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 168–172. [Google Scholar]
- Peng, L.; Wang, N.; Dvornek, N.; Zhu, X.; Li, X. FedNI: Federated Graph Learning With Network Inpainting for Population-Based Disease Prediction. IEEE Trans. Med. Imaging 2023, 42, 2032–2043. [Google Scholar] [CrossRef]
- Borji, A. Pros and Cons of GAN Evaluation Measures. arXiv 2018, arXiv:1802.03446. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, X. Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning. arXiv 2020, arXiv:2004.12571. [Google Scholar]
- Hernandez, N.; Lundström, J.; Favela, J.; McChesney, I.; Arnrich, B. Literature Review on Transfer Learning for Human Activity Recognition Using Mobile and Wearable Devices with Environmental Technology. SN Comput. Sci. 2020, 1, 1–16. [Google Scholar] [CrossRef]
- Zhu, M.; Liao, J.; Liu, J.; Yuan, Y. FedOSS: Federated Open Set Recognition via Inter-Client Discrepancy and Collaboration. IEEE Trans. Med. Imaging 2024, 43, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Kassem, H.; Alapatt, D.; Mascagni, P.; Karargyris, A.; Padoy, N. Federated Cycling (FedCy): Semi-Supervised Federated Learning of Surgical Phases. IEEE Trans. Med. Imaging 2023, 42, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- Ayekai, B.J.; Wenyu, C.; Sarpong Addai, G.E.; Xornam, A.W.; Mawuena, K.S.; Mawuli, C.B.; Kulevome, D.; Agbley, B.L.; Turkson, R.E.; Kuupole, E.E. Personalized Federated Learning for Histopathological Prediction of Lung Cancer. In Proceedings of the 2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 15–17 December 2023; pp. 1–7. [Google Scholar]
- Özgün, Ç.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. arXiv 2016, arXiv:1606.06650. [Google Scholar]
- Campello, V.M.; Gkontra, P.; Izquierdo, C.; Martín-Isla, C.; Sojoudi, A.; Full, P.M.; Maier-Hein, K.; Zhang, Y.; He, Z.; Ma, J.; et al. Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge. IEEE Trans. Med. Imaging 2021, 40, 3543–3554. [Google Scholar] [PubMed]
- Lalande, A.; Chen, Z.; Decourselle, T.; Qayyum, A.; Pommier, T.; Lorgis, L.; de la Rosa, E.; Cochet, A.; Cottin, Y.; Ginhac, D.; et al. Emidec: A Database Usable for the Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI. Data 2020, 5, 89. [Google Scholar] [CrossRef]
- Pearl, J. Causal inference in statistics: An overview. Stat. Surv. 2009, 3, 96–146. [Google Scholar] [CrossRef]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 27 October–2 November 2019; pp. 9626–9635. [Google Scholar]
- Li, K.; Fathan, M.I.; Patel, K.; Zhang, T.; Zhong, C.; Bansal, A.; Rastogi, A.; Wang, J.S.; Wang, G. Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations. PLoS ONE 2021, 16, 1–26. [Google Scholar] [CrossRef]
- Barbakh, W.A.; Wu, Y.; Fyfe, C. Non-Standard Parameter Adaptation for Exploratory Data Analysis. In Proceedings of the Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2009; Volume 249. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? arXiv 2019, arXiv:1810.00826v3. [Google Scholar]
- Babar, F.F.; Jamil, F.; Alsboui, T.; Babar, F.F.; Ahmad, S.; Alkanhel, R.I. Federated Active Learning with Transfer Learning: Empowering Edge Intelligence for Enhanced Lung Cancer Diagnosis. In Proceedings of the 2024 International Wireless Communications and Mobile Computing (IWCMC), Ayia Napa, Cyprus, 27–31 May 2024; pp. 1333–1338. [Google Scholar]
- Gong, X.; Song, L.; Vedula, R.; Sharma, A.; Zheng, M.; Planche, B.; Innanje, A.; Chen, T.; Yuan, J.; Doermann, D.; et al. Federated Learning With Privacy-Preserving Ensemble Attention Distillation. IEEE Trans. Med. Imaging 2023, 42, 2057–2067. [Google Scholar] [CrossRef]
- Khan, S.; Nosheen, F.; Naqvi, S.S.A.; Jamil, H.; Faseeh, M.; Ali Khan, M.; Kim, D.H. Bilevel Hyperparameter Optimization and Neural Architecture Search for Enhanced Breast Cancer Detection in Smart Hospitals Interconnected With Decentralized Federated Learning Environment. IEEE Access 2024, 12, 63618–63628. [Google Scholar] [CrossRef]
- Siniosoglou, I.; Argyriou, V.; Sarigiannidis, P.; Lagkas, T.; Sarigiannidis, A.; Goudos, S.K.; Wan, S. Post-Processing Fairness Evaluation of Federated Models: An Unsupervised Approach in Healthcare. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 2518–2529. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, W.; Xing, X.; Yuan, Y. Medical federated learning with joint graph purification for noisy label learning. Med. Image Anal. 2023, 90, 102976. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, T.; Mir, F.B.A.; Gillani, I.A. TransFed: A way to epitomize Focal Modulation using Transformer-based Federated Learning. In Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 4–8 January 2024; pp. 543–552. [Google Scholar]
- Lin, B.; Wang, J.; Dou, Y.; Zhang, Y.; Yue, W.; Yu, G.; Yin, J. FedCCE: A class-level contribution explainable federated learning based on comparable prototypes collaboration for multi-site medical image classification. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 5–8 December 2023; pp. 2085–2090. [Google Scholar]
- Shen, Y.; Sowmya, A.; Luo, Y.; Liang, X.; Shen, D.; Ke, J. A Federated Learning System for Histopathology Image Analysis With an Orchestral Stain-Normalization GAN. IEEE Trans. Med. Imaging 2023, 42, 1969–1981. [Google Scholar] [CrossRef]
- Chakravarty, A.; Sarkar, T.; Ghosh, N.; Sethuraman, R.; Sheet, D. Learning Decision Ensemble using a Graph Neural Network for Comorbidity Aware Chest Radiograph Screening. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada,, 20–24 July 2020; pp. 1234–1237. [Google Scholar]
- Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence; AAAI Press: Washington, DC, USA, 2019. [Google Scholar]
- Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. arXiv 2019, arXiv:1810.05270v2. [Google Scholar]
- “ANDI”. ADNI Data Inventory. Available online: https://adni.loni.usc.edu/ (accessed on 8 August 2024).
- Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-Learning in Neural Networks: A Survey. arXiv 2020, arXiv:2004.05439. [Google Scholar] [CrossRef] [PubMed]
- Sae-Lim, W.; Wettayaprasit, W.; Aiyarak, P. Convolutional Neural Networks Using MobileNet for Skin Lesion Classification. In Proceedings of the 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), Chonburi, Thailand, 10–12 July 2019; pp. 242–247. [Google Scholar]
- Tschandl, P. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef] [PubMed]
- Knoll, F.; Zbontar, J.; Sriram, A.; Muckley, M.J.; Bruno, M.; Defazio, A.; Parente, M.; Geras, K.J.; Katsnelsn, J.; Chandarana, H.; et al. fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning. Radiol. Artif. Intell. 2020, 2, e190007. [Google Scholar] [CrossRef]
- Jiang, S.; Eberhart, C.G.; Lim, M.; Heo, H.Y.; Zhang, Y.; Blair, L.; Wen, Z.; Holdhoff, M.; Lin, D.; Huang, P.; et al. Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 552. [Google Scholar] [CrossRef]
- Lei, B.; Zhu, Y.; Liang, E.; Yang, P.; Chen, S.; Hu, H.; Xie, H.; Wei, Z.; Hao, F.; Song, X.; et al. Federated Domain Adaptation via Transformer for Multi-Site Alzheimer’s Disease Diagnosis. IEEE Trans. Med. Imaging 2023, 42, 3651–3664. [Google Scholar] [CrossRef]
- Wicaksana, J.; Yan, Z.; Zhang, D.; Huang, X.; Wu, H.; Yang, X.; Cheng, K.T. FedMix: Mixed Supervised Federated Learning for Medical Image Segmentation. IEEE Trans. Med. Imaging 2023, 42, 1955–1968. [Google Scholar] [CrossRef]
- Qiu, L.; Cheng, J.; Gao, H.; Xiong, W.; Ren, H. Federated Semi-Supervised Learning for Medical Image Segmentation via Pseudo-Label Denoising. IEEE J. Biomed. Health Inform. 2023, 27, 4672–4683. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chen, Z.; Yuan, Y. FedDM: Federated Weakly Supervised Segmentation via Annotation Calibration and Gradient De-Conflicting. IEEE Trans. Med. Imaging 2023, 42, 1632–1643. [Google Scholar] [CrossRef]
- Wang, D.; Han, C.; Zhang, Z.; Zhai, T.; Lin, H.; Yang, B.; Cui, Y.; Lin, Y.; Zhao, Z.; Zhao, L.; et al. FedDUS: Lung tumor segmentation on CT images through federated semi-supervised with dynamic update strategy. Comput. Methods Programs Biomed. 2024, 249, 108141. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, Y.; Qi, X.; Senhadji, L.; Wei, Y.; Chen, F.; Yang, G. Fedsoda: Federated Cross-Assessment and Dynamic Aggregation for Histopathology Segmentation. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 1656–1660. [Google Scholar]
- Saha, P.; Mishra, D.; Noble, J.A. Rethinking Semi-Supervised Federated Learning: How to Co-train Fully-Labeled and Fully-Unlabeled Client Imaging Data. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2023: 26th International Conference, Vancouver, BC, Canada, 8–12 October 2023; Proceedings, Part II. Springer: Berlin/Heidelberg, Germany, 2023; pp. 414–424. [Google Scholar]
- Flanders, A.E.; Prevedello, L.M.; Shih, G.; Halabi, S.S.; Kalpathy-Cramer, J.; Ball, R.L.; Mongan, J.T.; Stein, A.; Kitamura, F.C.; Lungren, M.P.; et al. Construction of a Machine Learning Dataset through Collaboration: The RSNA 2019 Brain CT Hemorrhage Challenge. Radiol. Artif. Intell. 2020, 23, e190211. [Google Scholar] [CrossRef]
- Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [PubMed]
- Ardizzone, L.; Kruse, J.; Rother, C.; Köthe, U. Analyzing Inverse Problems with Invertible Neural Networks. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Kermany, D.; Zhang, K.; Goldbaum, M. Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images. Cell 2018, 175, 1122–1131. [Google Scholar] [CrossRef]
- Shokri, R.; Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–2 October 2015; pp. 909–910. [Google Scholar]
- Lyu, M.; Su, D.; Li, N. Understanding the Sparse Vector Technique for Differential Privacy. Proc. VLDB Endow. 2017, 10, 637–648. [Google Scholar] [CrossRef]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Sander, C.; Stuart, J.M.; Chang, K.; Creighton, C.J.; et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Pogorelov, K.; Randel, K.R.; Griwodz, C.; Eskeland, S.L.; de Lange, T.; Johansen, D.; Spampinato, C.; Dang-Nguyen, D.T.; Lux, M.; Schmidt, P.T.; et al. KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection. In MMSys’17, Proceedings of the 8th ACM on Multimedia Systems Conference; ACM: New York, NY, USA, 2017; pp. 164–169. [Google Scholar]
- Peta, J.; Koppu, S. Enhancing Breast Cancer Classification in Histopathological Images through Federated Learning Framework. IEEE Access 2023, 11, 61866–61880. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.; Huangfu, H.; Ran, M.; Wang, H.; Li, X.; Zhang, Y. Dynamic Corrected Split Federated Learning With Homomorphic Encryption for U-Shaped Medical Image Networks. IEEE J. Biomed. Health Inform. 2023, 27, 5946–5957. [Google Scholar] [CrossRef] [PubMed]
- Anusuya, R.; Oviya, S.; Sangavi, R. Secured Data Sharing of Medical Images for Disease diagnosis using Deep Learning Models and Federated Learning Framework. In Proceedings of the 2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS), Coimbatore, India, 9–11 February 2023; pp. 499–504. [Google Scholar]
- Cao, D.; Wang, C.; Sun, H.; Cao, C.; Kang, M.; Zheng, H.; Zhou, S.; Guan, X.; Cao, Y.; Tong, Q. Multiinstitutional Lung Image Classification Using Privacy-Preserving Horizontal Federated Learning with Homomorphic Encryption. In Proceedings of the 2023 IEEE International Conference on E-health Networking, Application & Services (Healthcom), Chongqing, China, 15–17 December 2023; pp. 131–136. [Google Scholar]
- Fu, Y.; Wang, H.; Xu, K.; Mi, H.; Wang, Y. Mixup Based Privacy Preserving Mixed Collaboration Learning. In Proceedings of the 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 4–9 April 2019; pp. 275–2755. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, 12–14 December 2011; NIPS’11. pp. 2546–2554. [Google Scholar]
- Karumba, S.; Sethuvenkatraman, S.; Dedeoglu, V.; Jurdak, R.; Kanhere, S.S. Barriers to blockchain-based decentralised energy trading: A systematic review. Int. J. Sustain. Energy 2023, 42, 41–71. [Google Scholar] [CrossRef]
- Veeling, B.S.; Linmans, J.; Winkens, J.; Cohen, T.; Welling, M. Rotation Equivariant CNNs for Digital Pathology. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018; Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G., Eds.; Springer: Cham, Switzerland, 2018; pp. 210–218. [Google Scholar]
- Liu, Y.; Fan, T.; Chen, T.; Xu, Q.; Yang, Q. FATE: An Industrial Grade Platform for Collaborative Learning With Data Protection. J. Mach. Learn. Res. 2021, 22, 1–6. [Google Scholar]
- He, C.; Li, S.; So, J.; Zeng, X.; Zhang, M.; Wang, H.; Wang, X.; Vepakomma, P.; Singh, A.; Uw-Madison, H.Q.; et al. FedML: A Research Library and Benchmark for Federated Machine Learning. arXiv 2020, arXiv:2007.13518. [Google Scholar]
- Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Fernandez-Marques, J.; Gao, Y.; Sani, L.; Li, K.H.; Parcollet, T.; Porto, P.; et al. Flower: A Friendly Federated Learning Research Framework. arXiv 2020, arXiv:2007.14390. [Google Scholar]
- “NVIDIA”. NVIDIA FLARE NVIDIA Developer. Available online: https://developer.nvidia.com/nvidia-flare (accessed on 8 August 2024).
- Reina, G.A.; Gruzdev, A.; Foley, P.; Perepelkina, O.; Sharma, M.; Davidyuk, I.; Trushkin, I.; Radionov, M.; Mokrov, A.; Agapov, D.; et al. OpenFL: An open-source framework for Federated Learning. arXiv 2021, arXiv:2105.06413. [Google Scholar]
- “PaddlePaddle”. PaddlePaddle-Parallel Distributed Deep Learning, Efficient and Extensible Deep Learning Framework. Available online: https://www.paddlepaddle.org.cn/ (accessed on 8 August 2024).
- Ziller, A.; Trask, A.; Lopardo, A.; Szymkow, B.; Wagner, B.; Bluemke, E.; Nounahon, J.M.; Passerat-Palmbach, J.; Prakash, K.; Rose, N.; et al. PySyft: A Library for Easy Federated Learning. Stud. Comput. Intell. 2021, 965, 111–139. [Google Scholar]
- Google. TensorFlow Federated. Available online: https://www.tensorflow.org/federated (accessed on 8 August 2024).
- Shahid, O.; Pouriyeh, S.; Parizi, R.M.; Sheng, Q.Z.; Srivastava, G.; Zhao, L. Communication Efficiency in Federated Learning: Achievements and Challenges. arXiv 2021, arXiv:2107.10996. [Google Scholar]
- Peng, X.; Huang, Z.; Zhu, Y.; Saenko, K. Federated Adversarial Domain Adaptation. arXiv 2019, arXiv:1911.02054. [Google Scholar]
- Yao, C.H.; Gong, B.; Qi, H.; Cui, Y.; Zhu, Y.; Yang, M.H. Federated multi-target domain adaptation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 1424–1433. [Google Scholar]
- Wagner, F.; Xu, W.; Saha, P.; Liang, Z.; Whitehouse, D.; Menon, D.; Newcombe, V.; Voets, N.; Noble, J.A.; Kamnitsas, K. Feasibility of Federated Learning from Client Databases with Different Brain Diseases and MRI Modalities. arXiv 2024, arXiv:2406.11636. [Google Scholar]
- Ding, W.; Abdel-Basset, M.; Hawash, H.; Pratama, M.; Pedrycz, W. Generalizable segmentation of COVID-19 infection from multi-site tomography scans: A federated learning framework. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 8, 126–139. [Google Scholar] [CrossRef]
- Qi, Y.; Vianna, P.; Cadrin-Chênevert, A.; Blanchet, K.; Montagnon, E.; Belilovsky, E.; Wolf, G.; Mullie, L.A.; Cloutier, G.; Chassé, M.; et al. Simulating federated learning for steatosis detection using ultrasound images. Sci. Rep. 2024, 14, 13253. [Google Scholar] [CrossRef]
- Mukherjee, S.; Xu, Y.; Trivedi, A.; Ferres, J.L. privGAN: Protecting GANs from membership inference attacks at low cost. arXiv 2020, arXiv:2001.00071. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. arXiv 2021, arXiv:2104.00298. [Google Scholar]
- “AtlasDerm”. Interactive Dermatology Atlas. Available online: https://www.atlasdermatologico.com.br/ (accessed on 8 August 2024).
- “Dermnet”. Dermnet.com. Available online: https://dermnetnz.org/dermatology-image-dataset (accessed on 8 August 2024).
- McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv 2023, arXiv:1602.05629v4. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018, arXiv:1608.06993v5. [Google Scholar]
- Ilse, M.; Tomczak, J.; Welling, M. Attention-based Deep Multiple Instance Learning. In Proceedings of the 35th International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; Proceedings of Machine Learning Research. Volume 80, pp. 2127–2136. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. arXiv 2021, arXiv:2111.06377. [Google Scholar]
- Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med. 2019, 16, e1002730. [Google Scholar] [CrossRef]
- Kundu, D.; Rahman, M.M.; Rahman, A.; Das, D.; Siddiqi, U.R.; Alam, M.G.R.; Dey, S.K.; Muhammad, G.; Ali, Z. Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset. IEEE Access 2024, 12, 32819–32829. [Google Scholar] [CrossRef]
- Pramanik, R.; Banerjee, B.; Efimenko, G.; Kaplun, D.; Sarkar, R. Monkeypox detection from skin lesion images using an amalgamation of CNN models aided with Beta function-based normalization scheme. PLoS ONE 2023, 18, e0281815. [Google Scholar] [CrossRef] [PubMed]
- Bala, D.; Hossain, M.S. Monkeypox Skin Images Dataset (MSID). Available online: https://data.mendeley.com/datasets/r9bfpnvyxr/6 (accessed on 8 August 2024).
- Zheng, H.; Wang, G.; Li, X. Identifying strawberry appearance quality by vision transformers and support vector machine. J. Food Process Eng. 2022, 45, e14132. [Google Scholar] [CrossRef]
- Haggenmüller, S.; Schmitt, M.; Krieghoff-Henning, E.; Hekler, A.; Maron, R.C.; Wies, C.; Utikal, J.S.; Meier, F.; Hobelsberger, S.; Gellrich, F.F.; et al. Federated learning for decentralized artificial intelligence in melanoma diagnostics. JAMA Dermatol. 2024, 160, 303–311. [Google Scholar] [CrossRef]
- Yaqoob, M.M.; Alsulami, M.; Khan, M.A.; Alsadie, D.; Saudagar, A.K.J.; AlKhathami, M. Federated machine learning for skin lesion diagnosis: An asynchronous and weighted approach. Diagnostics 2023, 13, 1964. [Google Scholar] [CrossRef]
- Tiwari, R.G.; Maheshwari, H.; Gautam, V.; Agarwal, A.K.; Trivedi, N.K. Enhancing Skin Disease Classification and Privacy Preservation through Federated Learning-Based Deep Learning. In Proceedings of the 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI), Raipur, India, 29–30 December 2023; Volume 1, pp. 1–7. [Google Scholar]
- Li, Y.; He, Y.; Fu, Y.; Shan, S. Privacy Preserved Federated Learning for Skin Cancer Diagnosis. In Proceedings of the 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 29–31 January 2023; pp. 27–33. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Graham, S.; Vu, Q.D.; Raza, S.E.A.; Azam, A.; Tsang, Y.W.; Kwak, J.T.; Rajpoot, N. Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 2019, 58, 101563. [Google Scholar] [CrossRef] [PubMed]
- Sirinukunwattana, K.; Pluim, J.P.; Chen, H.; Qi, X.; Heng, P.A.; Guo, Y.B.; Wang, L.Y.; Matuszewski, B.J.; Bruni, E.; Sanchez, U.; et al. Gland segmentation in colon histology images: The glas challenge contest. Med. Image Anal. 2017, 35, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Mahbod, A.; Schaefer, G.; Bancher, B.; Löw, C.; Dorffner, G.; Ecker, R.; Ellinger, I. CryoNuSeg: A dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images. Comput. Biol. Med. 2021, 132, 104349. [Google Scholar]
- Kumar, N.; Verma, R.; Sharma, S.; Bhargava, S.; Vahadane, A.; Sethi, A. A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology. IEEE Trans. Med. Imaging 2017, 36, 1550–1560. [Google Scholar] [CrossRef]
- Gelasca, E.D.; Obara, B.; Fedorov, D.; Kvilekval, K.; Manjunath, B. A biosegmentation benchmark for evaluation of bioimage analysis methods. BMC Bioinform. 2009, 10, 368. [Google Scholar]
- Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.A.; Cetin, I.; Lekadir, K.; Camara, O.; Gonzalez Ballester, M.A.; et al. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? IEEE Trans. Med. Imaging 2018, 37, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Y.; He, X.; Xie, P. COVID-CT-dataset: A CT scan dataset about COVID-19 (2020). arXiv 2003, arXiv:2003.13865. [Google Scholar]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Luo, Y.; Xu, Y.; Du, B. FedARC: Federated Learning for Multi-Center Tuberculosis Chest X-ray Diagnosis with Adaptive Regularizing Contrastive Representation. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 5–8 December 2023; pp. 2125–2128. [Google Scholar]
- Jaeger, S.; Candemir, S.; Antani, S.; Wáng, Y.X.J.; Lu, P.X.; Thoma, G. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 2014, 4, 475. [Google Scholar]
- Chauhan, A.; Chauhan, D.; Rout, C. Role of gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PLoS ONE 2014, 9, e112980. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Y.H.; Ban, Y.; Wang, H.; Cheng, M.M. Rethinking computer-aided tuberculosis diagnosis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2646–2655. [Google Scholar]
- Pan, C.; Zhao, G.; Fang, J.; Qi, B.; Liu, J.; Fang, C.; Zhang, D.; Li, J.; Yu, Y. Computer-aided tuberculosis diagnosis with attribute reasoning assistance. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2022; pp. 623–633. [Google Scholar]
- Woo, S.; Debnath, S.; Hu, R.; Chen, X.; Liu, Z.; Kweon, I.S.; Xie, S. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 16133–16142. [Google Scholar]
- Rifat, R.H.; Chakraborty Shruti, A.; Kamal, M.; Rabiul Alam, M.G. Privacy-Preserving Knee Osteoarthritis Classification: A Federated Learning Approach with GradCAM Visualization. In Proceedings of the 2023 26th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 13–15 December 2023; pp. 1–6. [Google Scholar]
- Chen, P. Knee Osteoarthritis Severity Grading Dataset. Available online: https://data.mendeley.com/datasets/56rmx5bjcr/1 (accessed on 8 August 2024).
- Marek, K.; Jennings, D.; Lasch, S.; Siderowf, A.; Tanner, C.; Simuni, T.; Coffey, C.; Kieburtz, K.; Flagg, E.; Chowdhury, S.; et al. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 2011, 95, 629–635. [Google Scholar] [CrossRef]
- Malone, I.B.; Cash, D.; Ridgway, G.R.; MacManus, D.G.; Ourselin, S.; Fox, N.C.; Schott, J.M. MIRIAD—Public release of a multiple time point Alzheimer’s MR imaging dataset. NeuroImage 2013, 70, 33–36. [Google Scholar] [CrossRef]
- Miller, K.L.; Alfaro-Almagro, F.; Bangerter, N.K.; Thomas, D.L.; Yacoub, E.; Xu, J.; Bartsch, A.J.; Jbabdi, S.; Sotiropoulos, S.N.; Andersson, J.L.; et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 2016, 19, 1523–1536. [Google Scholar] [CrossRef]
- Enhancing Neuro Imagining Genetics through Meta Analysis. The ENIGMA Consortium: A Meta-Analysis of Brain Imaging Studies. Available online: https://enigma.ini.usc.edu/ (accessed on 8 August 2024).
- Eom, B.; Zubair, M.; Park, D.H.; Kim, H.; Suh, Y.H.; Lim, S.; Park, C. Federated Learning in Prediction of Dementia Stage: An Experimental Study. In Proceedings of the 2023 14th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 11–13 October 2023; pp. 1785–1788. [Google Scholar]
- Ellis, K.A.; Bush, A.I.; Darby, D.; Fazio, D.D.; Foster, J.; Hudson, P.; Lautenschlager, N.T.; Lenzo, N.; Martins, R.N.; Maruff, P.; et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: Methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 2009, 21, 672–687. [Google Scholar] [CrossRef]
- Zhao, K.; Ding, Y.; Han, Y.; Fan, Y.; Alexander-Bloch, A.F.; Han, T.; Jin, D.; Liu, B.; Lu, J.; Song, C.; et al. Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease: Diagnosis, longitudinal progress and biological basis. Sci. Bull. 2020, 65, 1103–1113. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Di Martino, A.; Yan, C.G.; Li, Q.; Denio, E.; Castellanos, F.X.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Bookheimer, S.Y.; Dapretto, M.; et al. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 2014, 19, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Aisen, P.S.; Beckett, L.A.; Donohue, M.C.; Gamst, A.C.; Harvey, D.J.; Jack, C.R.J.; Jagust, W.J.; Shaw, L.M.; Toga, A.W.; et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology 2010, 74, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Rieyan, S.A.; News, M.R.K.; Rahman, A.M.; Khan, S.A.; Zaarif, S.T.J.; Alam, M.G.R.; Hassan, M.M.; Ianni, M.; Fortino, G. An advanced data fabric architecture leveraging homomorphic encryption and federated learning. Inf. Fusion 2024, 102, 102004. [Google Scholar] [CrossRef]
- Armato, S.G.; McLennan, G.; Bidaut, L.; Horng, S.H.; Xu, Y.; Tward, D.; Melson, J.; Dey, A.; Etesami, M.; Huo, H.; et al. LIDC-IDRI: The Lung Image Database Consortium image collection. Radiology 2015, 277, L1–L7. [Google Scholar]
- Albalawi, E.; TR, M.; Thakur, A.; Kumar, V.V.; Gupta, M.; Khan, S.B.; Almusharraf, A. Integrated approach of federated learning with transfer learning for classification and diagnosis of brain tumor. BMC Med. Imaging 2024, 24, 110. [Google Scholar] [CrossRef]
- Bhuvaji, S.; Kadam, A.; Bhumkar, P.; Dedge, S.; Kanchan, S. Brain Tumor Classification (MRI). Available online: https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri (accessed on 8 August 2024).
- Hamada, A. Br35h: Brain Tumor Detection 2020, Version 5. 2020. Available online: https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection (accessed on 8 August 2024).
- Trivedi, N.K.; Jain, S.; Agarwal, S. Identifying and Categorizing Alzheimer’s Disease with Lightweight Federated Learning Using Identically Distributed Images. In Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 14–15 March 2024; pp. 1–5. [Google Scholar]
- Sachdeva, A.; Dhar, A.; Agarwal, A. A Novel Framework for Classification of MRI Images to Diagnose Brain Tumors using DenseNet 201. In Proceedings of the 2023 IEEE 11th Region 10 Humanitarian Technology Conference (R10-HTC), Rajkot, India, 16–18 October 2023; pp. 428–432. [Google Scholar]
- Bloch, N.; Madabhushi, A.; Huisman, H.; Freymann, J.; Kirby, J.; Grauer, M.; Clarke, L.; Farahani, K. NCI-ISBI 2013 Challenge: Automated Segmentation of Prostate Structures. In Proceedings of the The Cancer Imaging Archive (TCIA) Public Access Series; National Cancer Institute: Bethesda, MD, USA, 2015; pp. 1–10. [Google Scholar]
- Tarvainen, A.; Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Durga, R.; Poovammal, E. Fled-block: Federated learning ensembled deep learning blockchain model for COVID-19 prediction. Front. Public Health 2022, 10, 892499. [Google Scholar] [CrossRef]
- Rahimzadeh, M.; Attar, A.; Sakhaei, S.M. A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset. Biomed. Signal Process. Control 2021, 68, 102588. [Google Scholar] [CrossRef]
- Bellemare, F.; Jeanneret, A.; Couture, J. Sex differences in thoracic dimensions and configuration. Am. J. Respir. Crit. Care Med. 2003, 168, 305–312. [Google Scholar] [CrossRef]
- Mazzia, V.; Salvetti, F.; Chiaberge, M. Efficient-CapsNet: Capsule network with self-attention routing. Sci. Rep. 2021, 11, 14634. [Google Scholar] [CrossRef]
- Pati, S.; Baid, U.; Edwards, B.; Sheller, M.; Wang, S.H.; Reina, G.A.; Foley, P.; Gruzdev, A.; Karkada, D.; Davatzikos, C.; et al. Federated learning enables big data for rare cancer boundary detection. Nat. Commun. 2022, 13, 7346. [Google Scholar] [CrossRef] [PubMed]
- Rohlfing, T.; Zahr, N.M.; Sullivan, E.V.; Pfefferbaum, A. The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 2010, 31, 798–819. [Google Scholar] [CrossRef]
- Truhn, D.; Arasteh, S.T.; Saldanha, O.L.; Müller-Franzes, G.; Khader, F.; Quirke, P.; West, N.P.; Gray, R.; Hutchins, G.G.; James, J.A.; et al. Encrypted federated learning for secure decentralized collaboration in cancer image analysis. Med. Image Anal. 2024, 92, 103059. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.; Barnwell, J.; McConkey, C.; Hills, R.K.; Williams, N.S.; Kerr, D.J.; the Quasar Collaborative Group. Adjuvant chemotherapy versus observation in patients with colorectal cancer: A randomised study. Lancet 2007, 370, 2020–2029. [Google Scholar] [PubMed]
- Taylor, J.; Wright, P.; Rossington, H.; Mara, J.; Glover, A.; West, N.; Morris, E.; Quirke, P. Regional multidisciplinary team intervention programme to improve colorectal cancer outcomes: Study protocol for the Yorkshire Cancer Research Bowel Cancer Improvement Programme (YCR BCIP). BMJ Open 2019, 9, e030618. [Google Scholar] [CrossRef] [PubMed]
- AlSalman, H.; Al-Rakhami, M.S.; Alfakih, T.; Hassan, M.M. Federated Learning Approach for Breast Cancer Detection Based on DCNN. IEEE Access 2024, 12, 40114–40138. [Google Scholar] [CrossRef]
- Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. INbreast: Toward a Full-field Digital Mammographic Database. Acad. Radiol. 2012, 19, 236–248. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, H.Q.; Pham, H.H.; Lam, K.; Le, L.T.; Dao, M.; Vu, V. VinDr-Mammo: A large-scale benchmark dataset for computer-aided diagnosis in full-field digital mammography. Sci. Data 2023, 10, 277. [Google Scholar] [CrossRef]
- Cai, H.; Wang, J.; Dan, T.; Li, J.; Fan, Z.; Yi, W.; Cui, C.; Jiang, X.; Li, L. An Online Mammography Database with Biopsy Confirmed Types. Sci. Data 2023, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.N.; Tinh, V.P.; Lam, P.D.; Nam, N.H.; Khoa, T.A. A Transfer Learning Approach to Breast Cancer Classification in a Federated Learning Framework. IEEE Access 2023, 11, 27462–27476. [Google Scholar] [CrossRef]
- Lee, R.S.; Gimenez, F.; Hoogi, A.; Miyake, K.K.; Gorovoy, M.; Rubin, D.L. A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 2017, 4, 170177. [Google Scholar] [CrossRef] [PubMed]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE Trans. Biomed. Eng. 2016, 63, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Laiphrakpam, D.S.; Khumanthem, M.S. Medical image encryption based on improved ElGamal encryption technique. Optik 2017, 147, 88–102. [Google Scholar] [CrossRef]
- Bogunović, H.; Venhuizen, F.; Klimscha, S.; Apostolopoulos, S.; Bab-Hadiashar, A.; Bagci, U.; Beg, M.F.; Bekalo, L.; Chen, Q.; Ciller, C.; et al. RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. IEEE Trans. Med. Imaging 2019, 38, 1858–1874. [Google Scholar] [CrossRef]
- Liu, H.; Lee, A.; Lee, W.; Guo, P. DAACO: Adaptive dynamic quantity of ant ACO algorithm to solve the traveling salesman problem. Complex Intell. Syst. 2023, 9, 4317–4330. [Google Scholar] [CrossRef]
- Agbley, B.L.Y.; Li, J.P.; Haq, A.U.; Bankas, E.K.; Mawuli, C.B.; Ahmad, S.; Khan, S.; Khan, A.R. Federated Fusion of Magnified Histopathological Images for Breast Tumor Classification in the Internet of Medical Things. IEEE J. Biomed. Health Inform. 2024, 28, 3389–3400. [Google Scholar] [CrossRef]
- Borkowski, A.A.; Bui, M.M.; Thomas, L.B.; Wilson, C.P.; DeLand, L.A.; Mastorides, S.M. Lung and Colon Cancer Histopathological Image Dataset (LC25000). arXiv 2019, arXiv:1912.12142. [Google Scholar]
- Cao, B.; Zhao, J.; Lv, Z.; Gu, Y.; Yang, P.; Halgamuge, S.K. Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction. IEEE Trans. Fuzzy Syst. 2020, 28, 939–952. [Google Scholar] [CrossRef]
- Twinanda, A.P.; Shehata, S.; Mutter, D.; Marescaux, J.; De Mathelin, M.; Padoy, N. Endonet: A deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 2016, 36, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Halvorsen, P.; de Lange, T.; Johansen, D.; Johansen, H.D. Kvasir-SEG: A Segmented Polyp Dataset. In Proceedings of the MultiMedia Modeling; Ro, Y.M., Cheng, W.H., Kim, J., Chu, W.T., Cui , P., Choi, J.W., Hu, M.C., De Neve, W., Eds.; Springer: Cham, Switzerland, 2020; pp. 451–462. [Google Scholar]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3462–3471. [Google Scholar]
- Al-Yasriy, H.F.; Al-Husieny, M.S.; Mohsen, F.Y.; Khalil, E.A.; Hassan, Z.S. Diagnosis of Lung Cancer Based on CT Scans Using CNN. In Proceedings of the IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2020; Volume 928. [Google Scholar]
- Agbley, B.L.Y.; Li, J.; Hossin, M.A.; Nneji, G.U.; Jackson, J.; Monday, H.N.; James, E.C. Federated learning-based detection of invasive carcinoma of no special type with histopathological images. Diagnostics 2022, 12, 1669. [Google Scholar] [CrossRef]
- Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J. Pathol. Inf. 2016, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Rimiru, R.M.; Gateri, J.; Kimwele, M.W. GaborNet: Investigating the importance of color space, scale and orientation for image classification. PeerJ Comput. Sci. 2022, 8, e890. [Google Scholar] [CrossRef] [PubMed]
- Costa, H.A.D.; Gurjão, E.C.; Ribeiro, V.T.R. Evaluating the Inclusion of Images with Artifacts in Medical Image Databases of Mammography for Machine Learning. In Proceedings of the 2023 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Recife-Pe, Brazil, 29 October–1 November 2023; pp. 1–5. [Google Scholar]
- Loizidou, K.; Skouroumouni, G.; Pitris, C.; Nikolaou, C. Digital subtraction of temporally sequential mammograms for improved detection and classification of microcalcifications. Eur. Radiol. Exp. 2021, 5, 40. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946. [Google Scholar]
- Ma, L.; Hu, Z.; Yue, D.; Wu, G.; Shi, X.; Sirejiding, S.; Liu, K. Multimodal federated learning framework evaluation for lymph node metastasis in gynecologic malignanciese. In Proceedings of the 2023 IEEE 4th International Conference on Pattern Recognition and Machine Learning (PRML), Urumqi, China, 4–6 August 2023; pp. 269–273. [Google Scholar]
- Waly, S.M.; Taha, R.; ElGhany, M.A.A.; Salem, M.A.M. Deep/Federated Learning Algorithms for Ultrasound Breast Cancer Image Enhancement. In Proceedings of the 2023 International Conference on Microelectronics (ICM), Abu Dhabi, United Arab Emirates, 17–20 December 2023; pp. 52–57. [Google Scholar]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [CrossRef]
- Thomas, C.; Byra, M.; Marti, R.; Yap, M.H.; Zwiggelaar, R. BUS-Set: A benchmark for quantitative evaluation of breast ultrasound segmentation networks with public datasets. Med. Phys. 2023, 50, 3223–3243. [Google Scholar] [CrossRef]
- Hossain, M.M.; Faysal Ahamed, M.; Islam, M.R.; Rafi Imam, M. Privacy Preserving Federated Learning for Lung Cancer Classification. In Proceedings of the 2023 26th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 13–15 December 2023; pp. 1–6. [Google Scholar]
- Zielinski, K.; Kowalczyk, N.; Kocejko, T.; Mazur-Milecka, M.; Neumann, T.; Ruminski, J. Federated Learning in Healthcare Industry: Mammography Case Study. In Proceedings of the 2023 IEEE International Conference on Industrial Technology (ICIT), Cox’s Bazar, Bangladesh, 13–15 December 2023; pp. 1–6. [Google Scholar]
- Peketi, D.; Chalavadi, V.; Mohan, C.K.; Chen, Y.W. FLWGAN: Federated Learning with Wasserstein Generative Adversarial Network for Brain Tumor Segmentation. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; pp. 1–8. [Google Scholar]
- Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv 2019, arXiv:1902.09063. [Google Scholar]
- Sharma, R.; Mahanti, G.K.; Panda, G. Performance Evaluation and Ranking of Deep Learning Feature Extraction Models for Thyroid Cancer Diagnosis using D-CRITIC TOPSIS. In Proceedings of the 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Kirtipur, Nepal, 11–13 October 2023; pp. 702–708. [Google Scholar]
- Pedraza, L.; Vargas, C.; Narváez, F.; Durán, O.; Muñoz, E.; Romero, E. An open access thyroid ultrasound image database. In Proceedings of the 10th International Symposium on Medical Information Processing and Analysis, Cartagena de Indias, Colombia, 14–16 October 2014; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Volume 9287, p. 92870W. [Google Scholar]
- Thompson, L.D.R.; Poller, D.N.; Kakudo, K.; Burchette, R.; Nikiforov, Y.E.; Seethala, R.R. An International Interobserver Variability Reporting of the Nuclear Scoring Criteria to Diagnose Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features: A Validation Study. Endocr. Pathol. 2018, 29, 242–249. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. arXiv 2021, arXiv:2103.14030. [Google Scholar]
- Acevedo, A.; Merino González, A.; Alférez Baquero, E.S.; Molina Borrás, Á; Boldú Nebot, L.; Rodellar Benedé, J. A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data Brief 2020, 30, 105474. [Google Scholar] [CrossRef] [PubMed]
- Borgli, H.; Thambawita, V.; Smedsrud, P.H.; Hicks, S.; Jha, D.; Eskeland, S.L.; Randel, K.R.; Pogorelov, K.; Lux, M.; Nguyen, D.T.D.; et al. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 2020, 7, 283. [Google Scholar] [CrossRef]
- Bilic, P.; Christ, P.; Li, H.B.; Vorontsov, E.; Ben-Cohen, A.; Kaissis, G.; Szeskin, A.; Jacobs, C.; Mamani, G.E.H.; Chartrand, G.; et al. The Liver Tumor Segmentation Benchmark (LiTS). Med. Image Anal. 2023, 84, 102680. [Google Scholar] [CrossRef]
- Heller, N.; Sathianathen, N.; Kalapara, A.; Walczak, E.; Moore, K.; Kaluzniak, H.; Rosenberg, J.; Blake, P.; Rengel, Z.; Oestreich, M.; et al. The KiTS19 Challenge Data: 300 Kidney Tumor Cases with Clinical Context, CT Semantic Segmentations, and Surgical Outcomes. arXiv 2019, arXiv:1904.00445. [Google Scholar]
- Degerli, A.; Kiranyaz, S.; Chowdhury, M.E.H.; Gabbouj, M. Osegnet: Operational Segmentation Network for COVID-19 Detection Using Chest X-Ray Images. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 2306–2310. [Google Scholar]
- Patel, J.; Patel, S.; Thakkar, S.; Saraswat, D. Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images. In Proceedings of the 2023 International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal, 26–28 April 2023; pp. 619–626. [Google Scholar]
- Tayebi Arasteh, S.; Isfort, P.; Saehn, M.; Mueller-Franzes, G.; Khader, F.; Kather, J.N.; Kuhl, C.; Nebelung, S.; Truhn, D. Collaborative training of medical artificial intelligence models with non-uniform labels. Sci. Rep. 2023, 13, 6046. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Lam, K.; Le, L.T.; Pham, H.H.; Tran, D.Q.; Nguyen, D.B.; Le, D.D.; Pham, C.M.; Tong, H.T.T.; Dinh, D.H.; et al. VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations. Sci. Data 2022, 9, 429. [Google Scholar] [CrossRef]
- Khader, F.; Han, T.; Müller-Franzes, G.; Huck, L.; Schad, P.; Keil, S.; Barzakova, E.; Schulze-Hagen, M.; Pedersoli, F.; Schulz, V.; et al. Artificial Intelligence for Clinical Interpretation of Bedside Chest Radiographs. Radiology 2023, 307, e220510. [Google Scholar] [CrossRef]
- Qayyum, A.; Ahmad, K.; Ahsan, M.A.; Al-Fuqaha, A.; Qadir, J. Collaborative Federated Learning for Healthcare: Multi-Modal COVID-19 Diagnosis at the Edge. IEEE Open J. Comput. Soc. 2022, 3, 172–184. [Google Scholar] [CrossRef]
- Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.Q.; Ghassemi, M. COVID-19 Image Data Collection: Prospective Predictions Are the Future. arXiv 2020, arXiv:2006.11988. [Google Scholar] [CrossRef]
- Born, J.; Brändle, G.; Cossio, M.; Disdier, M.; Goulet, J.; Roulin, J.; Wiedemann, N. POCOVID-Net: Automatic Detection of COVID-19 From a New Lung Ultrasound Imaging Dataset (POCUS). arXiv 2021, arXiv:2004.12084. [Google Scholar]
- Chowdhury, D.; Banerjee, S.; Sannigrahi, M.; Chakraborty, A.; Das, A.; Dey, A.; Dwivedi, A.D. Federated learning based COVID-19 detection. Expert Syst. 2023, 40, e13173. [Google Scholar] [CrossRef]
- Sheet, D.; Chakravarty, A.; Sarkar, T.; Sathish, R.; Raj, A.; Balasubramanian, V.; Rajan, R.; Sathish, R.; Chakravorty, N.; Sinha, M.; et al. Covid19action-radiology-CXR. IEEE Dataport 2020. [Google Scholar] [CrossRef]
- Malik, H.; Naeem, A.; Naqvi, R.A.; Loh, W.K. DMFL_Net: A Federated Learning-Based Framework for the Classification of COVID-19 from Multiple Chest Diseases Using X-rays. Sensors 2023, 23, 743. [Google Scholar] [CrossRef] [PubMed]
- Rastgarpour, M.; Shanbehzadeh, J. Application of AI techniques in medical image segmentation and novel categorization of available methods and tools. In Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, China, 16–18 March 2011; Volume 1, pp. 16–18. [Google Scholar]
- Hwang, E.J.; Park, S.; Jin, K.N.; Im Kim, J.; Choi, S.Y.; Lee, J.H.; Goo, J.M.; Aum, J.; Yim, J.J.; Cohen, J.G.; et al. Development and validation of a deep learning–based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw. Open 2019, 2, e191095. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, J.; Katsuragawa, S.; Ikezoe, J.; Matsumoto, T.; Kobayashi, T.; Komatsu, K.i.; Matsui, M.; Fujita, H.; Kodera, Y.; Doi, K. Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 2000, 174, 71–74. [Google Scholar] [CrossRef]
- Deslattes, R.D.; Kessler, E.G., Jr.; Indelicato, P.; de Billy, L.; Lindroth, E.; Anton, J.; Coursey, J.S.; Schwab, D.J.; Chang, C.; Sukumar, R.; et al. X-ray Transition Energies (Version 1.2). 2015. Available online: http://physics.nist.gov/XrayTrans (accessed on 8 August 2024).
- Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Emadi, N.A.; et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Y. Federated Object Detection: Optimizing Object Detection Model with Federated Learning. In Proceedings of the ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1234–1242. [Google Scholar]
- Visuña, L.; Yang, D.; Garcia-Blas, J.; Carretero, J. Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning. BMC Med. Imaging 2022, 22, 1–16. [Google Scholar] [CrossRef]
- Jaeger, S.; Karargyris, A.; Candemir, S.; Folio, L.; Siegelman, J.; Callaghan, F.; Xue, Z.; Palaniappan, K.; Singh, R.K.; Antani, S.; et al. Automatic Tuberculosis Screening Using Chest Radiographs. IEEE Trans. Med. Imaging 2014, 33, 233–245. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. arXiv 2020, arXiv:1912.04958v2. [Google Scholar]
- Ramgopal, S.; Ambroggio, L.; Lorenz, D.; Shah, S.S.; Ruddy, R.M.; Florin, T.A. A Prediction Model for Pediatric Radiographic Pneumonia. Pediatrics 2021, 149, e2021051405. [Google Scholar] [CrossRef]
- Litjens, G.; Debats, O.; Barentsz, J.; Karssemeijer, N.; Huisman, H. Computer-Aided Detection of Prostate Cancer in MRI. IEEE Trans. Med. Imaging 2014, 33, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput Med. Imaging Graph 2015, 43, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.; Sánchez, J.; Vilariño, F. Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 2012, 45, 3166–3182. [Google Scholar] [CrossRef]
- Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 283–293. [Google Scholar] [CrossRef]
- Lemaître, G.; Martí, R.; Freixenet, J.; Vilanova, J.C.; Walker, P.M.; Meriaudeau, F. Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Comput. Biol. Med. 2015, 60, 8–31. [Google Scholar] [CrossRef]
- Litjens, G.; Toth, R.; van de Ven, W.; Hoeks, C.; Kerkstra, S.; van Ginneken, B.; Vincent, G.; Guillard, G.; Birbeck, N.; Zhang, J.; et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Med. Image Anal. 2014, 18, 359–373. [Google Scholar] [CrossRef]
- Fumero, F.; Alayon, S.; Sanchez, J.L.; Sigut, J.; Gonzalez-Hernandez, M. RIM-ONE: An open retinal image database for optic nerve evaluation. In Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), Bristol, UK, 27–30 June 2011; pp. 1–6. [Google Scholar]
- Sivaswamy, J.; Krishnadas, S.R.; Datt Joshi, G.; Jain, M.; Syed Tabish, A.U. Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April 2014–2 May 2014; pp. 53–56. [Google Scholar]
- Orlando, J.I.; Fu, H.; Barbosa Breda, J.; van Keer, K.; Bathula, D.R.; Diaz-Pinto, A.; Fang, R.; Heng, P.A.; Kim, J.; Lee, J.; et al. REFUGE-Challenge: A unified framework for evaluating automated-methods for glaucoma-assessment from fundus photographs. Med. Image Anal. 2020, 59, 101570. [Google Scholar] [CrossRef]
- Guan, Y.; Wen, P.; Li, J.; Zhang, J.; Xie, X. Deep Learning Blockchain Integration Framework for Ureteropelvic Junction Obstruction Diagnosis Using Ultrasound Images. Tsinghua Sci. Technol. 2024, 29, 1–12. [Google Scholar] [CrossRef]
- Fernbach, S.; Maizels, M.; Conway, J. Ultrasound grading of hydronephrosis: Introduction to the system used by the Society for Fetal Urology. Pediatr. Radiol. 1993, 23, 478–480. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Cruz, N.; Saha, P.; Sarker, M.M.K.; Noble, J.A. Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis. Big Data Cogn. Comput. 2024, 8, 99. https://doi.org/10.3390/bdcc8090099
Hernandez-Cruz N, Saha P, Sarker MMK, Noble JA. Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis. Big Data and Cognitive Computing. 2024; 8(9):99. https://doi.org/10.3390/bdcc8090099
Chicago/Turabian StyleHernandez-Cruz, Netzahualcoyotl, Pramit Saha, Md Mostafa Kamal Sarker, and J. Alison Noble. 2024. "Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis" Big Data and Cognitive Computing 8, no. 9: 99. https://doi.org/10.3390/bdcc8090099
APA StyleHernandez-Cruz, N., Saha, P., Sarker, M. M. K., & Noble, J. A. (2024). Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis. Big Data and Cognitive Computing, 8(9), 99. https://doi.org/10.3390/bdcc8090099