Some New Generalizations for Exponentially s-Convex Functions and Inequalities via Fractional Operators
Abstract
:1. Introduction
2. Preliminaries
- is exponentially convex on for any
- is exponentially convex on for any
- is exponentially convex on for any
- 1.
- ,
- 2.
- .
3. Main Results
- (i)
- If , then under the assumption of Theorem 6, we have a new result:
- (ii)
- If , then, under the assumption of Theorem 6, we have a new result:
4. Applications to Special Means
- The arithmetic mean:
- The generalized log mean:
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientifc Publishing Co.: Singapore, 2014. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientifc Publishing Co.: Singapore, 2000. [Google Scholar]
- Magin, R.; Ortigueira, M.D.; Podlubny, I.; Trujillo, J. On the fractional signals and systems. Signal Process. 2011, 91, 350–371. [Google Scholar] [CrossRef]
- Loverro, A. Fractional Calculus: History, Definitions and Applications for the Engineer; University of Notre Dame: Notre Dame, IN, USA, 2004. [Google Scholar]
- Baleanu, D.; Tenreiro, J.; Luo, A. Fractional Dynamics and Control; Springer: Berlin, Germany, 2012. [Google Scholar]
- Aguilar, J.F.G.; Atangaa, A. New insight in fractional differentiation: Power, exponential decay and Mittag–Leffler laws and applications. Eur. Phys. J. Plus 2017, 132, 13. [Google Scholar] [CrossRef]
- Atangna, A.; Aguilar, J.F.G. Hyperchaotic beghaviour obtained via a nonlocal operator with exponential decay and Mittag–Leffler laws. Chaos Solitons Fractals 2017, 102, 285–294. [Google Scholar] [CrossRef]
- Barro, B.C.; Hernandes, M.A.T.; Aguilar, J.F.G. On the solution of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos Solitons Fractals 2018, 115, 283–299. [Google Scholar] [CrossRef]
- Dugowson, S. Les Différentielles Métaphysiques: Histoire et Philosophie de la Généralisation de l’Ordre de la Dérivation. Ph.D. Thesis, Université Paris, Paris, France, 1994. [Google Scholar]
- Kumar, D.; Singh, J.; Baleanu, D.; Rathore, S. Analysis of fractional model of Ambartsumian equation. Eur. Phys. J. Plus 2018, 133, 259. [Google Scholar] [CrossRef]
- Kumar, D.; Tehior, F.; Singh, J.; Baleanu, D. An efficient computational technique for fractel vehicular traffic flow. Entropy 2018, 20, 259. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Baleanu, D. On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ. 2018, 2018, 231. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Baleanu, D. New aspects of fractional Biswas–Milovic model with Mittag–Leffler law. Math. Model. Nat. Phenom. 2019, 14, 303. [Google Scholar] [CrossRef]
- Jleli, M.O.; Regan, D.; Samet, B. On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 2016, 40, 1221–1230. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approch to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 662–669. [Google Scholar]
- Katugampola, U.N. New approch to generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar]
- Katugampola, U.N. Mellin transforms of generalized fractional integrals and derivatives. Appl. Math. Comput. 2015, 257, 566–580. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. On Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach Science Publisher: Amesterdam, The Netherlands, 1993. [Google Scholar]
- Liu, J.-B.; Pan, X.F. Asymptotic Laplacian-energy-like invariant of lattices. Appl. Math. Comput. 2015, 253, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Adil, M.; Khurshid, Y.; Du, T.S.; Chu, Y.M. On generalizations of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, 2018, 5357463. [Google Scholar] [CrossRef]
- Chen, F. On extension of the Hermite–Hadamard inequality for harmonically convex functions via fractioanl integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar]
- Iscan, I.; Wu, S. On Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
- Rashid, S.; Noor, M.A.; Noor, K.I. New estimates for exponentially convex functions via conformable fractional operator. Fractal Fract. 2019, 3, 19. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I. Fractional exponentially m-convex functions and inequalities. Int. J. Anal. Appl. 2019, 17. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. On Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Set, E.; Sarikaya, M.Z.; Ozdemir, M.E.; Yildrim, H. The Hermite–Hadamard’s inequality for some convex functions via fractional integrals and related results. J. Appl. Math. Stat. Inform. 2014, 10, 69–83. [Google Scholar] [CrossRef]
- Noor, M.A.; Cristescu, G.; Awan, M.U. On generalied fractional Hermite–Hadamard inequalities for twice differentiable s-convex functions. Filomat 2015, 29, 807–815. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. On fractional Hermite–Hadamard inequalities for convex functions and applications. Tbilisi J. Math. 2015, 8, 103–113. [Google Scholar] [CrossRef]
- Noor, M.A.; Awan, M.U. On some integral inequalities for two kinds of convexities via fractional integrals. Trans. J. Math. Mech. 2013, 5, 129–136. [Google Scholar]
- Hadamard, J. Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites d’une integrale definie. Mathesis 1883, 3, 82. [Google Scholar]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2018. [Google Scholar]
- Noor, M.A. General variational inequalities. Appl. Math. Lett. 1988, 1, 119–121. [Google Scholar] [CrossRef]
- Noor, M.A. Some new approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef]
- Noor, M.A. Some developments in general variational inequalities. Appl. Math. Comput. 2004, 152, 199–277. [Google Scholar]
- Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
- Pecaric, J.; Jaksetic, J. On exponential convexity, Euler–Radau expansions and Stolarsky means. Rad HAZU 2013, 515, 81–94. [Google Scholar]
- Antczak, T. On (p, r)-invex sets and functions. J. Math. Anal. Appl. 2001, 263, 355–379. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Gomm, I. Some Hermite–Hadamard type inequalities for functions whose exponentials are convex. Stud. Univ. Babes-Bolyai Math. 2015, 60, 527–534. [Google Scholar]
- Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite–Hadamard inequalities for exponentiaaly convex functions. Appl. Math. Inform. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
- Alirezaei, G.; Mathar, R. On exponentially concave functions and their impact in information theory. J. Inf. Theory Appl. 2018, 9, 265–274. [Google Scholar]
- Pal, S.; Wong, T.K.L. On exponentially concave functions and a new information geometry. Ann. Probab. 2018, 46, 1070–1113. [Google Scholar] [CrossRef]
- Pearce, C.E.M.; Pecaric, J.E. On inqualities for differentiable mappings with application to special means and quadrature formula. Appl. Math. Lett. 2000, 13, 15–55. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, S.; Noor, M.A.; Noor, K.I.; Akdemir, A.O. Some New Generalizations for Exponentially s-Convex Functions and Inequalities via Fractional Operators. Fractal Fract. 2019, 3, 24. https://doi.org/10.3390/fractalfract3020024
Rashid S, Noor MA, Noor KI, Akdemir AO. Some New Generalizations for Exponentially s-Convex Functions and Inequalities via Fractional Operators. Fractal and Fractional. 2019; 3(2):24. https://doi.org/10.3390/fractalfract3020024
Chicago/Turabian StyleRashid, Saima, Muhammad Aslam Noor, Khalida Inayat Noor, and Ahmet Ocak Akdemir. 2019. "Some New Generalizations for Exponentially s-Convex Functions and Inequalities via Fractional Operators" Fractal and Fractional 3, no. 2: 24. https://doi.org/10.3390/fractalfract3020024
APA StyleRashid, S., Noor, M. A., Noor, K. I., & Akdemir, A. O. (2019). Some New Generalizations for Exponentially s-Convex Functions and Inequalities via Fractional Operators. Fractal and Fractional, 3(2), 24. https://doi.org/10.3390/fractalfract3020024