On the Volterra-Type Fractional Integro-Differential Equations Pertaining to Special Functions
Abstract
:1. Introduction
2. Definitions and Preliminaries
2.1. Elzaki Transform
Convolution Property
2.2. Generalized Lorenzo-Hartley Function
2.3. Hilfer Derivative Operator
2.4. Generalized Lauricella Confluent Hypergeometric Function
3. Elzaki Transform of Generalized Lorenzo-Hartley Function, Hilfer Derivative & Generalized Lauricella Confluent Hypergeometric Function
4. Solution of Generalized Fractional Integro-Differential Equations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons, INC.: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.; Spanier, J. Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North.-Holland Mathematical Studies; Elsevier (North-Holland) Science Publisher: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Gill, V.; Singh, J.; Singh, Y. Analytical solution of generalized space-time fractional advection-dispersion equation via coupling of Sumudu and Fourier transforms. Front. Phys. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Singh, J.; Tanwar, K.; Baleanu, D. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Tran. 2019, 138, 1222–1227. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Novel dynamical structures of 2019-n CoV with non operator via powerful computational technique. Biology 2020, 9, 107. [Google Scholar] [CrossRef]
- Bhatter, S.; Mathur, A.; Kumar, D.; Singh, J. A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory. Phys. A 2020, 537, 122578. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Baleanu, D. A new analysis of fractional fish farm model associated with Mittag-Leffler type kernel. Int. J. Biomath. 2020, 12, 2050010. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baleanu, D. On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law. Math. Method App. Sci. 2020, 43, 443–457. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Hackensack, NJ, USA, 2000. [Google Scholar]
- Mainardi, F.; Tomirotti, M. Seismic pulse propagation with constant Q and stable probability distributions. Ann. Geophys. 1997, 40, 1311–1328. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Theory and Applications, Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Boyadjiev, L.; Kalla, S.L.; Kajah, H.G. Analytical and numerical treatment of a fractional integro-differential equation of Volterra-type. Math. Comput. Modelling. 1997, 25, 1–9. [Google Scholar] [CrossRef]
- Al-Shammery, A.H.; Kalla, S.L.; Khajah, H.G. A fractional generalization of the free electron laser equation. Fract. Calc. Appl. Anal. 1999, 2, 501–508. [Google Scholar]
- Al-Shammery, A.H.; Kalla, S.L.; Khajah, H.G. On a generalized fractional integro-differential equation of Volterra-type. Integral Transform. Spec. Funct. 2000, 9, 81–90. [Google Scholar] [CrossRef]
- Saxena, R.K.; Kalla, S.L. On a fractional generalization of the free electron laser equation. Appl. Math. Comput. 2003, 143, 89–97. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Solution of Volterra integro-differential equations with generalized Mittag-Leffler functions in the kernels. J. Integral Equ. Appl. 2002, 14, 377–396. [Google Scholar] [CrossRef]
- Saxena, R.K.; Kalla, S.L. Solution of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels. Int. J. Math. Math. Sci. 2005, 8, 1155–1170. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Saxena, R.K. Some Volterra-type fractional integro-differential equations with a multivariable confluent hypergeometric function in their kernel. J. Integral Equ. Appl. 2005, 17, 199–217. [Google Scholar] [CrossRef]
- Singh, Y.; Gill, V.; Kundu, S.; Kumar, D. On the Elzaki transform and its application in fractional free electron laser equation. Acta Univ. Sapientiae Math. 2019, 11, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.; Kumar, D.; Modi, K.; Gill, V. A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Math. 2019, 5, 843–855. [Google Scholar]
- Veeresha, P.; Prakasha, D.G.; Kumar, D.; Baleanu, D.; Singh, J. An efficient computational technique for fractional model of generalized Hirota-Satsuma coupled KdV and coupled mKdV equations. J. Comput. Nonlin. Dyn. 2020, 15, 071003. [Google Scholar] [CrossRef]
- Saxena, R.K. Alternative derivation of the solution of certain integro-differential equations of volterra type. Ganita Sandesh 2003, 17, 51–56. [Google Scholar]
- Singh, J.; Kumar, D.; Bansal, M.K. Solution of nonlinear differential equation and special functions. Math. Methods Appl. Sci. 2020, 43, 2106–2116. [Google Scholar] [CrossRef]
- Srivastava, H.M. An integral equation involving the confluent hypergeometric functions of several complex variables. Appl. Anal. 1976, 5, 251–256. [Google Scholar] [CrossRef]
- Chaurasia, V.B.L.; Singh, Y. New generalization of integral equations of Fredholm type using Aleph- function. Int. J. Mod. Math. Sci. 2014, 9, 208–220. [Google Scholar]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. New numerical results for the time-fractional Phi-four equation using a novel analytic approach. Symmetry 2020, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. Chaos Solitons Fractals 2020, 134, 1–11. [Google Scholar] [CrossRef]
- Li, M. Three classes of fractional oscillators. Symmetry 2018, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Tomar, D.S. An integro-differential equation of Volterra type with Sumudu transform. Math. Aeterna 2012, 2, 541–547. [Google Scholar]
- Shrivastava, S.; Tomar, D.S.; Verma, A. Application of Sumudu transform to fractional integro-differential equations involving generalized R-function. Ganita 2019, 69, 09–13. [Google Scholar]
- Elzaki, T.M. The new integral transform “ELzaki Transform” fundamental properties investigations and applications. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Elzaki, T.M. Application of new transform “Elzaki Transform” to partial differential equations. Glob. J. Pure Appl. Math. 2011, 7, 65–70. [Google Scholar]
- Eslaminasab, M.; Abbasbandy, S. Study on usage of Elzaki transform for the ordinary differential equations with non-constant coefficients. Int. J. Ind. Math. 2015, 7, 277–281. [Google Scholar]
- Garra, R.; Goreno, R.; Polito, F.; Tomovski, Z. Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 2014, 242, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, C.F.; Hartley, T.T. Generalized Functions for the Fractional Calculus; Technical report NASA/TP-1999-209424, NAS 1.60:209424, E-11944; NASA: Washington, DC, USA, 1999; pp. 1–17. [Google Scholar]
- Srivastava, H.M.; Daoust, M.C. Certain generalized Neumann expansions associated with the Kampe de Feriet function. Nederl. Akad. Wetensch. Proc. Ser. Indag Math. 1969, 31, 449–457. [Google Scholar]
- Srivastava, H.M.; Daoust, M.C. A note on convergence of Kampe de Feriet double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, Y.; Gill, V.; Singh, J.; Kumar, D.; Nisar, K.S. On the Volterra-Type Fractional Integro-Differential Equations Pertaining to Special Functions. Fractal Fract. 2020, 4, 33. https://doi.org/10.3390/fractalfract4030033
Singh Y, Gill V, Singh J, Kumar D, Nisar KS. On the Volterra-Type Fractional Integro-Differential Equations Pertaining to Special Functions. Fractal and Fractional. 2020; 4(3):33. https://doi.org/10.3390/fractalfract4030033
Chicago/Turabian StyleSingh, Yudhveer, Vinod Gill, Jagdev Singh, Devendra Kumar, and Kottakkaran Sooppy Nisar. 2020. "On the Volterra-Type Fractional Integro-Differential Equations Pertaining to Special Functions" Fractal and Fractional 4, no. 3: 33. https://doi.org/10.3390/fractalfract4030033
APA StyleSingh, Y., Gill, V., Singh, J., Kumar, D., & Nisar, K. S. (2020). On the Volterra-Type Fractional Integro-Differential Equations Pertaining to Special Functions. Fractal and Fractional, 4(3), 33. https://doi.org/10.3390/fractalfract4030033