Hardware Implementation and Performance Study of Analog PIλDμ Controllers on DC Motor
Abstract
:1. Introduction
2. Theory
2.1. DC Motor Emulator
2.2. Type A and Type B PID Controllers
2.3. Fractional PID Controller Using Optimal Pole-Zero Interlacing Algorithm (Type A Controller)
2.3.1. Optimal Pole-Zero Interlacing Algorithm Based Fractional I Controller
2.3.2. Fractional Differentiator (D) Using Optimal Pole-Zero Interlacing Algorithm
2.4. Fractional PID Controller Using Solid-State Fractional Capacitor (Type B Controller)
3. Details of Hardware Implementation
- Type of DC motor emulator: Armature controlled DC motor
- Op-amp IC used for DC motor emulator and analog PID controller: TL084
- Supply voltage for TL084 IC: ±12 V
- Reference signal: 1 , 25 Hz square wave signal from an arbitrary function generator (Model number: AFG 3052C, 50 MHz, 1 GS/s)
- Oscilloscope for capturing output: Lecroy oscilloscope (Model number: Waverunner 604 zi, 400 MHz, 20 G/s).
4. Tuning PID Controllers
- The Simulink model (in MATLAB 2016b) of the controller DC motor system is generated with an input of 1 V.
- We define the step response requirements in “Check Response Characteristics” block of MATLAB with rise time <1.98 ms, settling time <13 ms and overshoot ≤12%.
- The variable set is designed with = [0,10], = [0,200] and = [0,10]. These values are the maximum gains from the analog circuit of PID controller, which provides a stable output.
- Once the model is created, the pattern search optimization method [42] is run to obtain the tuned parameters , and for Type A and Type B controllers.
5. Results and Discussion
5.1. Discussion on the Fractional PI Controller Designed by Pole-Zero Interlacing Algorithm
5.1.1. Fractional Integration of Type A Controller
5.1.2. Fractional Differentiation of Type A Controller
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Astrom, K.J.; Hagglund, T. PID Controllers: Theory, Design and Tuning; Instrument Society of America: Research Triangle, NC, USA, 1995. [Google Scholar]
- Astrom, K.; Hagglund, T. The future of PID control. Control. Eng. Pract. 2001, 9, 1163–1175. [Google Scholar] [CrossRef]
- Podlubny, I.; Petráš, I.; Vinagre, B.M.; O’Leary, P.; Dorčák, Ľ. Analogue Realizations of Fractional-Order Controllers. Nonlinear Dyn. 2002, 29, 281–296. [Google Scholar] [CrossRef]
- Zhao, C.; Xue, D.; Chen, Y. A fractional order PID tuning algorithm for a class of fractional order plants. In Proceedings of the IEEE International Conference Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005; Volume 1, pp. 216–221. [Google Scholar]
- Valério, D.; Da Costa, J.S. Tuning of Fractional PID Controllers with Ziegler-Nichols-type Rules. Signal Process. 2006, 86, 2771–2784. [Google Scholar] [CrossRef]
- Monje, C.; Vinagre, B.; Feliu, V.; Chen, Y. Tuning and auto-tuning of fractional order controllers for industry applications. Control. Eng. Pract. 2008, 16, 798–812. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Bhaskaran, T.; Xue, D. Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers. J. Comput. Nonlinear Dyn. 2008, 3, 021403. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Das, S.; Abraham, A.; Dasgupta, S. Design of fractional-order PIλDμ controllers with an improved differential evolution. Eng. Appl. Artif. Intell. 2009, 22, 343–350. [Google Scholar] [CrossRef]
- Ahn, H.; Bhambhani, V.; Chen, Y. Fractional-order integral and derivative controller for temperature profile tracking. Sadhana Acad. Proc. Eng. Sci. 2009, 34, 833–850. [Google Scholar] [CrossRef] [Green Version]
- Tepljakov, A.; Petlenkov, E.; Belikov, J. FOMCON: A MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2011, 2, 51–62. [Google Scholar]
- Pan, I.; Das, S. Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system. Int. J. Electr. Power Energy Syst. 2012, 43, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Pan, I.; Das, S.; Gupta, A. Improved model reduction and tuning of fractional-order PIλDμ controllers for analytical rule extraction with genetic programming. ISA Trans. 2012, 51, 237–261. [Google Scholar] [CrossRef] [Green Version]
- Caponetto, R. Auto-Tuning and Fractional Order Controller Implementation on Hardware in the Loop System. J. Optim. Theory Appl. 2013, 156, 141–152. [Google Scholar] [CrossRef]
- Caponetto, R.; Dongola, G. A numerical approach for computing stability region of FO-PID controller. J. Frankl. Inst. 2013, 350, 871–889. [Google Scholar] [CrossRef]
- Oustaloup, A. Diversity and Non-Integer Differentiation for System Dynamics; Wiley-ISTE: London, UK, 2014. [Google Scholar]
- Caponetto, R.; Dongola, G.; Maione, G.; Pisano, A. Integrated technology fractional order proportional-integral-derivative design. J. Vib. Control 2014, 20, 1066–1075. [Google Scholar] [CrossRef]
- Sabatier, J.; Lanusse, P.; Melchior, P.; Oustaloup, A. Fractional Order Differentiation and Robust Control Design: CRONE, H-Infinity and Motion Control; Springer: Berlin, Germany, 2015. [Google Scholar]
- Shah, P.; Agashe, S. Review of fractional PID controller. Mechatronics 2016, 38, 29–41. [Google Scholar] [CrossRef]
- Xue, D.; Zhao, C.; Chen, Y. Fractional order PID control of a DC-motor with elastic shaft: A case study. In Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; p. 6. [Google Scholar]
- Petráš, I. Fractional-Order feedback control of a DC motor. J. Electr. Eng. 2009, 60, 117–128. [Google Scholar]
- Mehra, V.; Srivastava, S.; Varshney, P. Fractional-order PID controller design for speed control of DC motor. In Proceedings of the 2010 3rd International Conference on Emerging Trends in Engineering and Technology, Goa, India, 19–21 November 2010; pp. 422–425. [Google Scholar]
- Lazarević, M.P.; Batalov, S.A.; Latinović, T.S. Fractional PID Controller Tuned by Genetic Algorithms for a Three DOF’s Robot System Driven by DC motors. IFAC Proc. Vol. 2013, 46, 385–390. [Google Scholar] [CrossRef]
- Roy, A.; Srivastava, S. Design of optimal PIλDμ controller for speed control of DC motor using constrained particle swarm optimization. In Proceedings of the IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2016, Kumaracoil, India, 18–19 March 2016. [Google Scholar]
- Viola, J.; Angel, L.; Sebastian, J. Design and robust performance evaluation of a fractional order PID controller applied to a DC motor. IEEE/CAA J. Autom. Sin. 2017, 4, 304–314. [Google Scholar] [CrossRef]
- Jain, R.V.; Aware, M.; Junghare, A. Tuning of Fractional Order PID controller using particle swarm optimization technique for DC motor speed control. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–4. [Google Scholar]
- Aware, M.; Junghare, A.; Khubalkar, S.; Dhabale, A.; Das, S.; Dive, R. Design of new practical phase shaping circuit using optimal pole-zero interlacing algorithm for fractional order PID controller. Analog. Integr. Circuits Signal Process. 2017, 91, 131–145. [Google Scholar] [CrossRef]
- Dimeas, I.; Petráš, I.; Psychalinos, C. New analog implementation technique for fractional-order controller: A DC motor control. AEU Int. J. Electron. Commun. 2017, 78, 192–200. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V. Hybridized ABC-GA optimized fractional order fuzzy pre-compensated FOPID control design for 2-DOF robot manipulator. AEU Int. J. Electron. Commun. 2017, 79, 219–233. [Google Scholar] [CrossRef]
- John, D.A.; Biswas, K. Analysis of disturbance rejection by PIλ controller using solid state fractional capacitor. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Kapoulea, S.; Psychalinos, C.; Petráš, I. Simple Design of Fractional-Order DC Motor Controller. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; pp. 867–871. [Google Scholar]
- Herencsar, N.; Kartci, A.; Koton, J.; Sotner, R.; Alagoz, B.B.; Yeroglu, C. Analogue Implementation of a Fractional-PIλ Controller for DC Motor Speed Control. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 467–472. [Google Scholar]
- Copot, C.; Muresan, C.; Ionescu, C.M.; De Keyser, R. Fractional order control of a DC motor with load changes. In Proceedings of the 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 22–24 May 2014; pp. 956–961. [Google Scholar]
- Lino, P.; Maione, G.; Stasi, S.; Padula, F.; Visioli, A. Synthesis of fractional-order PI controllers and fractional-order filters for industrial electrical drives. IEEE/CAA J. Autom. Sin. 2017, 4, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Villagra, J.; Vinagre, B.; Tejado, I. Data-driven fractional PID control: Application to DC motors in flexible joints. IFAC Proc. Vol. 2012, 45, 709–714. [Google Scholar] [CrossRef]
- Adhikary, A.; Sen, P.; Sen, S.; Biswas, K. Design and Performance Study of Dynamic Fractors in Any of the Four Quadrants. Circuits Syst. Signal Process. 2016, 35, 1909–1932. [Google Scholar] [CrossRef]
- John, D.A.; Banerjee, S.; Biswas, K. A CNT-Epoxy Nanoparticle Based Fractional Capacitor and a Method for Fabricating the Same. Patent Application No. 20,163,1042,210, 15 June 2018. [Google Scholar]
- John, D.A.; Aware, M.V.; Junghare, A.S.; Biswas, K. Performance Analysis of Solid-State Fractional Capacitor-Based Analog PIλDμ Controller. Circuits Syst. Signal Process. 2020, 39, 1815–1830. [Google Scholar] [CrossRef]
- Charef, A. Analogue realisation of fractional-order integrator, differentiator and fractional PI/spl lambda/D/spl mu/ controller. IEE Proc. Control Theory Appl. 2006, 153, 714–720. [Google Scholar] [CrossRef]
- Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F. Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2000, 47, 25–39. [Google Scholar] [CrossRef]
- Khanra, M.; Pal, J.; Biswas, K. Rational Approximation and Analog Realization of Fractional Order Transfer Function with Multiple Fractional Powered Terms. Asian J. Control 2013, 15, 723–735. [Google Scholar] [CrossRef]
- John, D.A.; Banerjee, S.; Bohannan, G.W.; Biswas, K. Solid-state fractional capacitor using MWCNT-epoxy nanocomposite. Appl. Phys. Lett. 2017, 110, 163504. [Google Scholar] [CrossRef]
- Simulink Design Optimization. Available online: http://www.apmath.spbu.ru/ru/staff/smirnovmn/files/sldo_ug.pdf/ (accessed on 26 June 2020).
Controller Type | % Overshoot | (Rise Time) | (Settling Time) | SS Error |
---|---|---|---|---|
Multisim | ||||
DC motor | 28.5% | 1.79 ms | 13.8 ms | 54.2 mV |
Type A controller | 13.4% | 0.8 ms | 6.02 ms | 23.1 mV |
Type B controller | 7.4% | 0.8 ms | 4.55 ms | 16.3 mV |
Experimental | ||||
DC motor | 31.1% | 1.9 ms | 16.9 ms | 67 mV |
Type A controller | 11.78% | 0.580 ms | 6.8 ms | 12.4 mV |
Type B controller | 11% | 0.58 ms | 4.6 ms | 12 mV |
Section | Frequency (Hz) | Calculated Gain | e | / | Actual Gain | Phase (in deg) |
---|---|---|---|---|---|---|
Fractional Integration () | ||||||
0-A | 106 | 5.63 | 2 | 10.44 | 5.24 | −33 |
A-B | 1000 | 2.83 | 155 m | 548 m | 3.53 | −33 |
B-C | 1500 | 1.87 | 35 m | 106 m | 3.08 | −35.6 |
Fractional Differentiation () | ||||||
0-A | 106 | 17.34 | 2 | 10.44 | 5.09 | 33 |
A-B | 1000 | 33.22 | 155 m | 4.5 | 32.2 | 30.9 |
B-C | 1500 | 33.8 | 35 m | 1.26 | 36.11 | 29.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, D.A.; Sehgal, S.; Biswas, K. Hardware Implementation and Performance Study of Analog PIλDμ Controllers on DC Motor. Fractal Fract. 2020, 4, 34. https://doi.org/10.3390/fractalfract4030034
John DA, Sehgal S, Biswas K. Hardware Implementation and Performance Study of Analog PIλDμ Controllers on DC Motor. Fractal and Fractional. 2020; 4(3):34. https://doi.org/10.3390/fractalfract4030034
Chicago/Turabian StyleJohn, Dina A., Saket Sehgal, and Karabi Biswas. 2020. "Hardware Implementation and Performance Study of Analog PIλDμ Controllers on DC Motor" Fractal and Fractional 4, no. 3: 34. https://doi.org/10.3390/fractalfract4030034
APA StyleJohn, D. A., Sehgal, S., & Biswas, K. (2020). Hardware Implementation and Performance Study of Analog PIλDμ Controllers on DC Motor. Fractal and Fractional, 4(3), 34. https://doi.org/10.3390/fractalfract4030034