Fractional SIS Epidemic Models
Abstract
:1. Introduction
1.1. Statement of the Problem
1.2. Motivations
1.3. State of the Art
1.4. Main Results
1.5. Outline
2. The Settings
2.1. The Fractional Derivatives
- (P1)
- Let u be a constant function. Then .
- (P2)
- Let such that and , exist almost everywhere. Then, .
- (P3)
- Let be such that and exist almost everywhere in . Let . Then, exists almost everywhere in . In particular,
- (P4)
- Let . Then,
2.2. The Fractional SIS Model
3. Proof of the Main Results
4. Numerical Comparison
4.1. Numerical Approximation
4.2. Numerical Tests
- the solutions to the SIS model, our aim is to show the correspondence with the case ,
4.2.1. Test with
4.2.2. Test with
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. A Math. Phys. 1927, 115, 700–721. [Google Scholar]
- Hethcote, H.W. Three basic epidemiological models. In Applied Mathematical Ecology (Trieste, 1986); Springer: Berlin, Germany, 1989; Volume 18, pp. 119–144. [Google Scholar]
- Verhulst, P.F. Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 1838, 10, 113–126. [Google Scholar]
- El-Sayed, A.; El-Mesiry, A.; El-Saka, H. On the fractional-order logistic equation. Appl. Math. Lett. 2007, 20, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Area, I.; Losada, J.; Nieto, J.J. A note on the fractional logistic equation. Physica A 2016, 444, 182–187. [Google Scholar] [CrossRef] [Green Version]
- West, B. Exact solution to fractional logistic equation. Physica A 2015, 429, 103–108. [Google Scholar] [CrossRef]
- Yang, X.J.; Tenreiro Machado, J. A new insight into complexity from the local fractional calculus view point: Modelling growths of populations. Math. Mod. Meth. Appl. Sci. 2017, 40, 6070–6075. [Google Scholar] [CrossRef] [Green Version]
- Hassouna, M.; Ouhadan, A.; El Kinania, E. On the solution of fractional order SIS epidemic model. Chaos Solitons Fractals 2018, 117, 168–174. [Google Scholar] [CrossRef] [PubMed]
- El-Saka, H. The fractional-order SIS epidemic model with variable population size. J. Egypt. Math. Soc. 2014, 22, 50–54. [Google Scholar] [CrossRef] [Green Version]
- D’Ovidio, M.; Loreti, P. Solutions of fractional logistic equations by Euler’s numbers. Physica A 2018, 506, 1081–1092. [Google Scholar] [CrossRef] [Green Version]
- Angstmann, C.N.; Henry, B.I.; McGann, A.V. A Fractional-Order Infectivity and Recovery SIR Model. Fractal Fract. 2017, 1, 1–11. [Google Scholar]
- Pooseh, S.; Rodrigues, H.S.; Torres, D.F. Fractional derivatives in dengue epidemics. AIP Conf. Proc. 2011, 1389, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Rositch, A.F.; Koshiol, J.; Hudgens, M.G.; Razzaghi, H.; Backes, D.M.; Pimenta, J.M.; Franco, E.L.; Poole, C.; Smith, J.S. Patterns of persistent genital human papillomavirus infection among women worldwide: A literature review and meta-analysis. Int. J. Cancer 2013, 133, 1271–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.M.; May, R.M. The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. B 1981, 291, 451–524. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ferrari, F. Weyl and Marchaud Derivatives: A Forgotten History. Mathematics 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Hethcote, H.W. Population size dependent incidence in models for diseases without immunity. J. Math. Biol. 1994, 32, 809–834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.W.; Nie, L.F. Dynamics of SIS epidemic model with varying total population and multivaccination control strategies. Stud. Appl. Math. 2017, 139, 533–550. [Google Scholar] [CrossRef]
- Ahmed, E.; El-Sayed, A.M.A.; El-Mesiry, A.E.M.; El-Saka, H.A.A. Numerical solution for the fractional replicator equation. Int. J. Mod. Phys. C 2005, 16, 1017–1026. [Google Scholar] [CrossRef]
- Diethelm, K.; Freed, A.D. The FracPECE Subroutine for the Numerical Solution of Differential Equations of Fractional Order. Forsch. Wiss. Rechn. 1998, 1999, 57–71. [Google Scholar]
- Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics, 2nd ed.; Springer: Berlin, Germany, 2007; Volume 37, p. xviii+655. [Google Scholar]
- Giga, Y.; Liu, Q.; Mitake, H. On a discrete scheme for time fractional fully nonlinear evolution equations. Asymptot. Anal. 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press: Cambridge, MA, USA, 1999; Volume 198. [Google Scholar]
- Diethelm, K.; Ford, N.; Freed, A. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations. Nonlinear Dyn. 1999, 29, 3–22. [Google Scholar] [CrossRef]
- Ford, N.J.; Simpson, A. The numerical solution of fractional differential equations: Speed versus accuracy. Numer. Algorithms 2001, 26, 333–346. [Google Scholar] [CrossRef]
() | |||
---|---|---|---|
0.99 | 1 × 10 | 9 × 10 | 9 × 10 |
0.7 | 1 × 10 | 2 × 10 | 2 × 10 |
0.3 | 3 × 10 | 8 × 10 | 8 × 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balzotti, C.; D’Ovidio, M.; Loreti, P. Fractional SIS Epidemic Models. Fractal Fract. 2020, 4, 44. https://doi.org/10.3390/fractalfract4030044
Balzotti C, D’Ovidio M, Loreti P. Fractional SIS Epidemic Models. Fractal and Fractional. 2020; 4(3):44. https://doi.org/10.3390/fractalfract4030044
Chicago/Turabian StyleBalzotti, Caterina, Mirko D’Ovidio, and Paola Loreti. 2020. "Fractional SIS Epidemic Models" Fractal and Fractional 4, no. 3: 44. https://doi.org/10.3390/fractalfract4030044
APA StyleBalzotti, C., D’Ovidio, M., & Loreti, P. (2020). Fractional SIS Epidemic Models. Fractal and Fractional, 4(3), 44. https://doi.org/10.3390/fractalfract4030044