Synchronization Analysis of Multiple Integral Inequalities Driven by Steklov Operator
Abstract
:1. Introduction
2. Basic Concepts of Hardy–Steklov Operator
3. Formulation of Copson Type Integral Inequalities via Steklov Operator
4. Induction of Steklov Operator on Hardy Integral Inequalities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1959. [Google Scholar]
- Hardy, G.H. Notes on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus, LXIV. Further inequalities between integrals. Mess. Math. 1928, 57, 12–16. [Google Scholar]
- Copson, E.T. Some integral inequalities. Prof. R. Soc. Edinburg. Sect. A 1976, 75, 157–164. [Google Scholar] [CrossRef]
- Khan, Z.A. On some explicit bounds of integral inequalities related to time scales. Adv. Differ. Equ. 2019, 243, 1–15. [Google Scholar] [CrossRef]
- Batuev, E.N.; Stepanov, V.D. Weighted inqualities of Hardy Type. Sib. Mat. Zhurnal 1989, 30, 13–22. [Google Scholar]
- Khan, Z.A. On some new variations of Hardy type inequalities. J. Nonlinear Sci. Appl. 2017, 10, 1709–1713. [Google Scholar] [CrossRef]
- Oinarov, R. Boundedness of integral operators from weighted Sobolev Space to Wieghted Lebesgue space. Complex Var. Elliptic Equ. 2011, 56, 1021–1038. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus, LX. An inequality between integrals. Mess. Math. 1925, 54, 150–156. [Google Scholar]
- Khan, Z.A. Still more generalizations of Hardy’s integral inequalities for functions of two independent variables. Int. J. Comtemporary Math. Sci 2011, 6, 1955–1968. [Google Scholar]
- Kufner, A.; Maligranda, L.; Persson, L.E. The Hardy Inequality—About Its History and Some Related Results; Vydavatesky Servis: Pilsen, Czech Republic, 2007. [Google Scholar]
- Khan, Z.A.; Salem, S. Hardy’S Inequality in Three Variables; Al-Azhar University: Cairo, Egypt, 2001. [Google Scholar]
- Pachpatte, B.G. On a new class of Hardy type inequalities. Proc. R. Soc. Edin. 1987, 105A, 265–274. [Google Scholar] [CrossRef]
- Khan, Z.A.; Salem, S.; Redheffer, R. Hardy’s inequality in several variables. JMAA 2000, 252, 989–993. [Google Scholar]
- Khan, Z.A. Further nonlinear version of inequalities and their applications. Filomat 2019, 33, 6005–6014. [Google Scholar] [CrossRef] [Green Version]
- Burenkov, V.; Jain, P.; Tararykova, T. On Hardy-Steklov and geometric Steklov operators. Math. Nachr. 2007, 280, 1244–1256. [Google Scholar] [CrossRef]
- Bernardis, A.L.; Martýn-Reyes, F.J.; Salvador, P.O. Weighted Inequalities for Hardy–Steklov Operators. Can. J. Math. 2007, 59, 276–295. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Sinnamon, G. Generalized Hardy operators and normalizing measures. J. Inequal. Appl. 2002, 7, 829–866. [Google Scholar] [CrossRef]
- Heinig, H.P.; Sinnamon, G. Mapping properties of integral averaging operators. Stud. Math. 1998, 129, 157–177. [Google Scholar]
- Gogatishvili, A.; Lang, J. The generalized Hardy operators with kernel and variable integral limits in Banach function spaces. J. Ineq. Appl. 1999, 4, 1–16. [Google Scholar] [CrossRef]
- Ushakova, E.P. Estimates for Schatten–von Neumann norms of Hardy–Steklov operators. J. Approx. Theory 2013, 173, 158–175. [Google Scholar] [CrossRef] [Green Version]
- Ushakova, E.P. Alternative Boundedness Characteristics for the Hardy-Steklov Operator. Eurasian Math. J. 2017, 8, 74–96. [Google Scholar]
- Singh, A.P. Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing functions. IOSR J. Math. 2015, 11, 83–86. [Google Scholar]
- Harper, Z. Weighted norm inqualities for convolution operators and links with Weiss conjecture. J. Evol. Equ. 2005, 5, 387–405. [Google Scholar] [CrossRef]
- Nasyrova, M.G.; Ushakova, E.P. Hardy-Steklov Operators and Sobolev-Type Embedding Inequalities, Trudy Matematicheskogo Instituta imeni V. A. Steklova 2016, 293, 236–262. [Google Scholar]
- Kufner, A.; Persson, L.E. Weighted Inequalities of Hardy Type; World Scientific: Singapore, 2003; p. 357. [Google Scholar]
- Chan, L.Y. Some extensions of Hardy’s inequality. Can. Math. Bull. 1979, 22, 165–169. [Google Scholar] [CrossRef]
- Salem, S. Cyclic inequalities related to Hardy’s type. Kyungpook Math. J. 1999, 39. [Google Scholar]
- Pachpatte, B.G. On some integral inequalities similar to Hardy’s inequality. J. Math. Appl. 1988, 129, 596–606. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albalawi, W.; Khan, Z.A. Synchronization Analysis of Multiple Integral Inequalities Driven by Steklov Operator. Fractal Fract. 2021, 5, 97. https://doi.org/10.3390/fractalfract5030097
Albalawi W, Khan ZA. Synchronization Analysis of Multiple Integral Inequalities Driven by Steklov Operator. Fractal and Fractional. 2021; 5(3):97. https://doi.org/10.3390/fractalfract5030097
Chicago/Turabian StyleAlbalawi, Wedad, and Zareen A. Khan. 2021. "Synchronization Analysis of Multiple Integral Inequalities Driven by Steklov Operator" Fractal and Fractional 5, no. 3: 97. https://doi.org/10.3390/fractalfract5030097
APA StyleAlbalawi, W., & Khan, Z. A. (2021). Synchronization Analysis of Multiple Integral Inequalities Driven by Steklov Operator. Fractal and Fractional, 5(3), 97. https://doi.org/10.3390/fractalfract5030097