Fractional Dynamics of Typhoid Fever Transmission Models with Mass Vaccination Perspectives
Abstract
:1. Introduction
- Using a fractional derivative in place of an integer derivative, as used in our previous model [5], we formulate a new model. To prove the existence and uniqueness of the solutions, we use fixed point theory. The corresponding numerical scheme is obtained through the Adams–Bashforth–Moulton method [24,25]. The stability of this numerical scheme is also proven. Finally, several numerical simulations are carried out from the real values of parameters estimated with real data of Mbandjock, in Cameroon (see [5]).
- Secondly, we extend the previous models by replacing the mass action incidence law with the standard incidence law. For these new models, we compute the corresponding control reproduction number, , and ensure the uniform stability of the equilibrium point without disease. As in [6], model parameters are estimated. With these new parameter values, we finally perform several numerical simulations that permit us to compare the quantitative dynamics of the two types of models.
2. Materials and Methods
2.1. Useful Definitions and Results
2.2. Model Dynamics with Mass Action Incidence Law
2.2.1. Model Formulation in ODE Sense and Its Analysis
2.2.2. Fractional-Order Typhoid Model
Asymptotic Stability of the Disease-Free Equilibrium
Existence and Uniqueness Analysis
Numerical Scheme of the Fractional Model and Its Stability Analysis
2.3. Model Dynamics with the Standard Incidence Law
3. Results
3.1. Numerical Results of the Fractional Model with Mass Action Incidence Law
3.2. Numerical Results of the Fractional Model with Standard Incidence Law
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Proposition 3
Appendix B. Proof of Theorem 6
References
- World Health Organization. Typhoid vaccines: WHO position paper. Wkly. Epidemiol. Rec. 2008, 83, 49–59. [Google Scholar]
- World Health Organization. Typhoid vaccines: WHO position paper–March 2018–Vaccins antityphoïdiques: Note de synthèse de l’OMS–mars 2018. Wkly. Epidemiol. Rec. 2018, 93, 153–172. [Google Scholar]
- Ross, R. Some quantitative studies in epidemiology. Nature 1911, 87, 466–467. [Google Scholar] [CrossRef]
- Abboubakar, H.; Kumar, P.; Erturk, V.S.; Kumar, A. A mathematical study of a tuberculosis model with fractional derivatives. Int. J. Model. Simul. Sci. Comput. 2021, 12, 2150037. [Google Scholar] [CrossRef]
- Abboubakar, H.; Racke, R. Mathematical modeling, forecasting, and optimal control of typhoid fever transmission dynamics. Chaos Solitons Fractals 2021, 149, 111074. [Google Scholar] [CrossRef]
- Abboubakar, H.; Kombou, L.K.; Koko, A.D.; Fouda, H.P.E.; Kumar, A. Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon. Chaos Solitons Fractals 2021, 150, 111129. [Google Scholar] [CrossRef]
- Edward, S.; Nyerere, N. Modelling typhoid fever with education, vaccination and treatment. Eng. Math. 2016, 1, 44–52. [Google Scholar]
- Mushayabasa, S. Modeling the impact of optimal screening on typhoid dynamics. Int. J. Dyn. Control 2016, 4, 330–338. [Google Scholar] [CrossRef]
- Peter, O.J.; Ibrahim, M.O.; Edogbanya, H.O.; Oguntolu, F.A.; Oshinubi, K.; Ibrahim, A.A.; Ayoola, T.A.; Lawal, J.O. Direct and Indirect Transmission of Typhoid Fever Model with Optimal Control. Results Phys. 2021, 27, 104463. [Google Scholar] [CrossRef]
- Tilahun, G.T.; Makinde, O.D.; Malonza, D. Modelling and optimal control of typhoid fever disease with cost-effective strategies. Comput. Math. Methods Med. 2017, 2017, 2324518. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, G.T.; Makinde, O.D.; Malonza, D. Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis. Appl. Math. Comput. 2018, 316, 438–459. [Google Scholar] [CrossRef]
- Shaikh, A.S.; Nisar, K.S. Transmission dynamics of fractional order Typhoid fever model using Caputo–Fabrizio operator. Chaos Solitons Fractals 2019, 128, 355–365. [Google Scholar] [CrossRef]
- Erturk, V.S.; Kumar, P. Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives. Chaos Solitons Fractals 2020, 139, 110280. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S. Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative. Chaos Solitons Fractals 2021, 144, 110672. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S.; Almusawa, H. Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana–Baleanu derivatives. Results Phys. 2021, 24, 104186. [Google Scholar] [CrossRef]
- Kumar, P.; Suat Ertürk, V.; Nisar, K.S. Fractional dynamics of huanglongbing transmission within a citrus tree. Math. Methods Appl. Sci. 2021, 44, 11404–11424. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S.; Murillo-Arcila, M. A complex fractional mathematical modeling for the love story of Layla and Majnun. Chaos Solitons Fractals 2021, 150, 111091. [Google Scholar] [CrossRef]
- Loverro, A. Fractional Calculus: History, Definitions and Applications for the Engineer; Rapport Technique; Department of Aerospace and Mechanical Engineering, Univeristy of Notre Dame: Notre Dame, IN, USA, 2004; pp. 1–28. [Google Scholar]
- Nabi, K.N.; Abboubakar, H.; Kumar, P. Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives. Chaos Solitons Fractals 2020, 141, 110283. [Google Scholar] [CrossRef] [PubMed]
- Angstmann, C.N.; Jacobs, B.A.; Henry, B.I.; Xu, Z. Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators. Mathematics 2020, 8, 2023. [Google Scholar] [CrossRef]
- Tarasov, V.E. On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 1–4. [Google Scholar] [CrossRef]
- Tarasov, V.E. No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2945–2948. [Google Scholar] [CrossRef] [Green Version]
- Peter, O.; Ibrahim, M.; Oguntolu, F.; Akinduko, O.; Akinyemi, S. Direct and indirect transmission dynamics of typhoid fever model by differential transform method. ATBU J. Sci. Technol. Educ. (JOSTE) 2018, 6, 167–177. [Google Scholar]
- Diethelm, K. An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal 1997, 5, 1–6. [Google Scholar]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, S.; Ditto, W.; Mindlin, G.; Atangana, A. Modeling and forecasting of epidemic spreading: The case of Covid-19 and beyond. Chaos Solitons Fractals 2020, 135, 109794. [Google Scholar] [CrossRef]
- Khan, M.A.; Atangana, A.; Alzahrani, E. The dynamics of COVID-19 with quarantined and isolation. Adv. Differ. Equ. 2020, 2020, 425. [Google Scholar] [CrossRef]
- Schmidt, A.; Gaul, L. On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems. Signal Process. 2006, 86, 2592–2601. [Google Scholar] [CrossRef]
- van den Driessche, P.; Watmough, J. Reproduction numbers and the sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Li, H.; Cheng, J.; Li, H.B.; Zhong, S.M. Stability analysis of a fractional-order linear system described by the Caputo–Fabrizio derivative. Mathematics 2019, 7, 200. [Google Scholar] [CrossRef] [Green Version]
- Wojtak, W.; Silva, C.J.; Torres, D.F. Uniform asymptotic stability of a fractional tuberculosis model. Math. Model. Nat. Phenom. 2018, 13, 9. [Google Scholar] [CrossRef]
- Li, C.; Zeng, F. The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 2013, 34, 149–179. [Google Scholar] [CrossRef]
- Diethelm, K.; Luchko, Y. Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl. 2004, 6, 243–263. [Google Scholar]
- Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002, 29, 3–22. [Google Scholar] [CrossRef]
- Pieskä, J.; Laitinen, E.; Lapin, A. Predictor-corrector methods for solving continuous casting problem. In Domain Decomposition Methods in Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2005; pp. 677–684. [Google Scholar]
- Butcher, J.C. Numerical methods for ordinary differential equations in the 20th century. J. Comput. Appl. Math. 2000, 125, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Tao, C. On the fractional Adams method. Comput. Math. Appl. 2009, 58, 1573–1588. [Google Scholar] [CrossRef] [Green Version]
- Abboubakar, H.; Kumar, P.; Rangaig, N.A.; Kumar, S. A Malaria Model with Caputo-Fabrizio and Atangana-Baleanu Derivatives. Int. J. Model. Simul. Sci. Comput. 2021, 12, 2150013. [Google Scholar] [CrossRef]
- Garrappa, R. Predictor-Corrector PECE Method for Fractional Differential Equations. MATLAB, Central File Exchange [File ID: 32918]. Available online: https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations (accessed on 23 September 2021).
- Lakshmikantham, V.; Leela, S.; Martynyuk, A.A. Stability Analysis of Non Linear Systems; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
1 | 0.149990 | ||||
0.2145 | 0.9495 | 0.1499 | |||
0.1498 | 0.3221 | 0.49992 | |||
0.0834 | 0.0833 | 2.4750 |
Parameter | Values | Source | Parameter | Values | Source |
---|---|---|---|---|---|
3 | Fitted | 0.0015 | Fitted | ||
0.1512 | Fitted | 0.9497 | Fitted | ||
0.3039 | Fitted | 0.1538 | Fitted | ||
0.1382 | Fitted | 0.60 | Fitted | ||
0.00050 | Fitted | K | 995.7957 | Fitted | |
0.4992 | Fitted | 1.4348 | Estimated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abboubakar, H.; Kom Regonne, R.; Sooppy Nisar, K. Fractional Dynamics of Typhoid Fever Transmission Models with Mass Vaccination Perspectives. Fractal Fract. 2021, 5, 149. https://doi.org/10.3390/fractalfract5040149
Abboubakar H, Kom Regonne R, Sooppy Nisar K. Fractional Dynamics of Typhoid Fever Transmission Models with Mass Vaccination Perspectives. Fractal and Fractional. 2021; 5(4):149. https://doi.org/10.3390/fractalfract5040149
Chicago/Turabian StyleAbboubakar, Hamadjam, Raissa Kom Regonne, and Kottakkaran Sooppy Nisar. 2021. "Fractional Dynamics of Typhoid Fever Transmission Models with Mass Vaccination Perspectives" Fractal and Fractional 5, no. 4: 149. https://doi.org/10.3390/fractalfract5040149
APA StyleAbboubakar, H., Kom Regonne, R., & Sooppy Nisar, K. (2021). Fractional Dynamics of Typhoid Fever Transmission Models with Mass Vaccination Perspectives. Fractal and Fractional, 5(4), 149. https://doi.org/10.3390/fractalfract5040149