On Fractional Geometry of Curves
Abstract
:1. Introduction
2. Basic Properties of Fractional Calculus
3. The Λ-Fractional Derivative
- Linearity: D(af + bg) (x) = aDf(x) + bDg(x);
- Composition (chain rule) ;
- Leibniz’s (product) rule: .
4. The Fractional Arc-Length
5. The Fractional Tangent Space of a Space Curve
6. Fractional Curvature of Curves
7. The Fractional Serret–Frenet Equations
8. The Fractional Radius of Curvature of a Plane Curve
9. Application
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leibnitz, G.W. Letter to GA L’Hospital. Leibnitzen Math. Schr. 1849, 2, 301–302. [Google Scholar]
- Liouville, J. Sur le calcul des differentielles a indices quelconques. J. Ec. Polytech. 1832, 13, 71–162. [Google Scholar]
- Riemann, B. Versuch einer allgemeinen Auffassung der Integration and Differentiation. Gesammelte Werke 1876, 62. [Google Scholar]
- Atanackovic, T.M.; Stankovic, B. Dynamics of a viscoelastic rod of fractional derivative type. ZAMM 2002, 82, 377–386. [Google Scholar] [CrossRef]
- Beyer, H.; Kempfle, S. Definition of physically consistent damping laws with fractional derivatives. ZAMM 1995, 75, 623–635. [Google Scholar] [CrossRef]
- Yao, K.; Su, W.Y.; Zhou, S.P. On the connection between the order of fractional calculus and the dimensions of a fractal function. Chaos Solitons Fractals 2005, 23, 621–629. [Google Scholar] [CrossRef]
- Adda, F.B. Interpretation geometrique de la differentiabilite et du gradient d’ordre reel. C. R. Acad. Sci. 1998, 326, 931–934. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations (An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications); Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Lazopoulos, K.A. Nonlocal continuum mechanics and fractional calculus. Mech. Res. Commun. 2006, 33, 753–757. [Google Scholar] [CrossRef]
- Carpinteri, A.; Cornetti, P.; Sapora, A. A fractional calculus approach to non-local elasticity. Eur. Phys. J. Spec. Top. 2011, 193, 193–204. [Google Scholar] [CrossRef]
- Cottrill-Shepherd, K.; Naber, M. Fractional Differential Forms. J. Math. Phys. 2001, 42, 2203–2212. [Google Scholar] [CrossRef] [Green Version]
- Albu, I.D.; Opris, D. The geometry of fractional tangent bundle and applications. In Proceedings of the BSG Proceedings 16. The Int. Conf. of Diff. Geom. and Dynamical Systems (DGDS-2008) and The V-th Int. Colloq. of Mathematics in Engineering and Numerical Physics (MENP-5), Mangalia, Romania, 29 August–2 September 2008; pp. 1–11. [Google Scholar]
- Jumarie, G. Riemann-Christoffel Tensor in Differential Geometry of Fractional Order Application to Fractal Space-Time. Fractals 2013, 21, 27. [Google Scholar] [CrossRef]
- Jumarie, G. Modified Riemann-Liouville Fractional Derivative and Fractional Taylor Series of non-differentiable functions: Further results. Comp. Math. Appl. 2006, 51, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Jumarie, G. Fractional Differential Calculus for Non-Differentiable Functions, Mechanics, Geometry, Stochastics, Information Theory; Lambert Academic Publishing: Saarbruecken, Germany, 2013. [Google Scholar]
- Drapaca, C.S.; Sivaloganathan, S. A fractional model of continuum mechanics. J. Elast. 2012, 107, 107–123. [Google Scholar] [CrossRef]
- Sumelka, W. Non-local Kirchhoff–Love plates in terms of fractional calculus. Arch. Civ. Mech. Eng. 2015, 15, 231–242. [Google Scholar] [CrossRef]
- Balankin, A.; Elizarrataz, B. Hydrodynamics of fractal continuum flow. Phys. Rev. 2012, 85, 025302. [Google Scholar] [CrossRef] [PubMed]
- Lazopoulos, A.K. On Fractional Peridynamic deformations. Arch. Appl. Mech. 2016, 86, 1987–1994. [Google Scholar] [CrossRef]
- Silling, S.A.; Zimmermann, M.; Abeyaratne, R. Deformation of a Peridynamic Bar. J. Elast. 2003, 73, 173–190. [Google Scholar] [CrossRef]
- Silling, S.A.; Lehoucq, R.B. Peridynamic Theory of Solid Mechanics. Adv. Appl. Mech. 2010, 44, 73–168. [Google Scholar]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 3581–3592. [Google Scholar] [CrossRef]
- Baleanu, D.; Srivastava, H.; Daftardar-Gezzi, V.; Li, C.; Machado, J.A.T. Advanced topics in Fractional dynamics. Adv. Math. Phys. 2013, 1, 723496. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Golmankhaneh, A.K.; Golmankhaneh, A.K.; Baleanu, M.C. Fractional electromagnetic equations using fractional forms. Int. J. Theor. Phys. 2009, 48, 3114–3123. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Golmankhaneh, A.K.; Baleanu, D. About Schrodinger Equation on Fractals Curves Imbedding in R3. Int. J. Theor. Phys. 2015, 54, 1275–1282. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Calcani, G. Geometry of Fractional Spaces. Adv. Theor. Math. Phys. 2012, 16, 549–644. [Google Scholar] [CrossRef]
- Carpinteri, A.; Cornetti, P.; Sapora, A. Static-kinematic fractional operator for fractal and non-local solids. ZAMM 2009, 89, 207–217. [Google Scholar] [CrossRef]
- Goldmankhaneh, A.K.; Baleanu, D. Lagrangian and Hamiltonian Mechanics. Int. J. Theor. Rhys. 2013, 52, 4210–4217. [Google Scholar] [CrossRef]
- Liang, Y.; Su, W. Connection between the order of fractional calculus and fractional dimensions of a type of fractal functions. Theory Appl. 2007, 23, 354–362. [Google Scholar]
- Adda, F.B. The differentiability in the fractional calculus. Nonlinear Anal. 2001, 47, 5423–5428. [Google Scholar] [CrossRef]
- Lazopoulos, K. Fractional Vector Calculus and Fractional Continuum Mechanics. In Proceedings of the Mechanics though Mathematical Modelling (Celebrating the 70th Birthday of Prof. T. Atanackovic), Novi Sad, Serbia, 6–11 September 2015; p. 40. [Google Scholar]
- Lazopoulos, K.; Lazopoulos, A. Fractional vector calculus and fractional continuum mechanics. Prog. Fract. Differ. Appl. 2016, 2, 67–86. [Google Scholar] [CrossRef]
- Lazopoulos, K.; Lazopoulos, A. On the Mathematical Formulation of Fractional Derivatives. Prog. Fract. Differ. Appl. 2019, 5, 261–267. [Google Scholar]
- Lazopoulos, K.; Lazopoulos, A. On Fractional Beam Bending of Beams with Λ-Fractional Derivative. Arch. Appl. Mech. 2020, 90, 573–584. [Google Scholar]
- Lazopoulos, K.; Lazopoulos, A. On the Fractional deformation of a linearly elastic bar. JMBM. 2019, 29, 9–18. [Google Scholar] [CrossRef]
- Lazopoulos, K.; Lazopoulos, A. On plane Λ-fractional linear elasticity theory. Theory Appl. Mech. Lett. 2020, 10, 270–275. [Google Scholar] [CrossRef]
- Lazopoulos, K.; Lazopoulos, A. On Fractional Taylor series and variations. Prog. Fract. Differ. Appl. 2020, 6, 169–182. [Google Scholar]
- Lazopoulos, K.; Lazopoulos, A. On Λ-fractional Elastic Solid Mechanics. Meccanica 2021. [Google Scholar] [CrossRef]
- Guggenheimer, H. Differential Geometry; Dover: New York, NY, USA, 1977. [Google Scholar]
- Porteous, I.R. Geometric Differentiation; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazopoulos, K.A.; Lazopoulos, A.K. On Fractional Geometry of Curves. Fractal Fract. 2021, 5, 161. https://doi.org/10.3390/fractalfract5040161
Lazopoulos KA, Lazopoulos AK. On Fractional Geometry of Curves. Fractal and Fractional. 2021; 5(4):161. https://doi.org/10.3390/fractalfract5040161
Chicago/Turabian StyleLazopoulos, Konstantinos A., and Anastasios K. Lazopoulos. 2021. "On Fractional Geometry of Curves" Fractal and Fractional 5, no. 4: 161. https://doi.org/10.3390/fractalfract5040161
APA StyleLazopoulos, K. A., & Lazopoulos, A. K. (2021). On Fractional Geometry of Curves. Fractal and Fractional, 5(4), 161. https://doi.org/10.3390/fractalfract5040161