Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators
Abstract
:1. Introduction
2. Preliminaries
- Taking with and for all and in our definition, then we have Definition 1.
- Choosing in our definition, then we get Definition 2.
- Setting and for all and in our definition, then we obtain Definition 3.
- (I)
- Taking for all and we have the so-called conformable left-side and right-side fractional integral operators defined by
- (II)
- Choosing
3. Main Results and Their Consequences
4. Further Results
Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RL | Riemann–Liouville |
ML | Mittag–Leffler |
FW | Fox–Wright |
References
- Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo Hadamard fractional derivatives. Math. Meth. Appl. Sci. 2016, 40, 661–681. [Google Scholar]
- Tan, W.; Jiang, F.-L.; Huang, C.-X.; Zhou, L. Synchronization for a class of fractional-order hyperchaotic system and its application. J. Appl. Math. 2012, 2012, 974639. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.-S.; Huang, C.-X.; Hu, H.-J.; Liu, L. Inequality estimates for the boundedness of multilinear singular and fractional integral operators. J. Inequal. Appl. 2013, 2013, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L.G.; Agarwal, R.P. Adomian decomposition and fractional power series solution of a class of nonlinear fractional differential equations. Mathematics 2021, 9, 1070. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Cai, Z.-W.; Huang, J.-H.; Huang, L.-H. Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 2018, 146, 4667–4682. [Google Scholar] [CrossRef]
- Chen, T.; Huang, L.-H.; Yu, P.; Huang, W.-T. Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal. Real World Appl. 2018, 41, 82–106. [Google Scholar] [CrossRef]
- Wang, J.-F.; Chen, X.-Y.; Huang, L.-H. The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 2019, 469, 405–427. [Google Scholar] [CrossRef]
- Aldhaifallah, M.; Tomar, M.; Nisar, K.S.; Purohit, S.D. Some new inequalities for (k, s)–fractional integrals. J. Nonlinear Sci. Appl. 2016, 9, 5374–5381. [Google Scholar] [CrossRef]
- Houas, M. Certain weighted integral inequalities involving the fractional hypergeometric operators. Scientia Ser. A Math. Sci. 2016, 27, 87–97. [Google Scholar]
- Houas, M. On some generalized integral inequalities for Hadamard fractional integrals. Mediterr. J. Model. Simul. 2018, 9, 43–52. [Google Scholar]
- Mohammed, P.O.; Abdeljawad, T.; Alqudah, M.A.; Jarad, F. New discrete inequalities of Hermite–Hadamard type for convex functions. Adv. Differ. Equ. 2021, 2021, 122. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L. Inequalities, 2nd ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Atıcı, F.M.; Yaldız, H. Convex functions on discrete time domains. Canad. Math. Bull. 2016, 59, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abualnaja, K.M. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef]
- Sana, G.; Mohammed, P.O.; Shin, D.Y.; Noor, M.A.; Oudat, M.S. On iterative methods for solving nonlinear equations in quantum calculus. Fractal Fract. 2021, 5, 60. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Guirao, J.L.G. Fuzzy mixed variational-like and integral inequalities for strongly preinvex fuzzy mappings. Symmetry 2021, 13, 1816. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- Alsmeyer, G. Chebyshev’s Inequality. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2011. [Google Scholar]
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
- Baleanu, D.; Purohit, S.D. Chebyshev type integral inequalities involving the fractional hypergeometric operators. Abstr. Appl. Anal. 2014, 2014, 609160. [Google Scholar] [CrossRef]
- Rahman, G.; Ullah, Z.; Khan, A.; Set, E.; Nisar, K.S. Certain Chebyshev-type inequalities involving fractional conformable integral operators. Mathematics 2019, 7, 364. [Google Scholar] [CrossRef] [Green Version]
- Ntouyas, S.K.; Purohit, S.D.; Tariboon, J. Certain Chebyshev type integral inequalities involving Hadamard’s fractional operators. Abst. Appl. Anal. 2014, 2014, 249091. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Alsharif, A.M.; Guirao, J.L.G. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag–Leffler kernel. AIMS Math. 2021, 6, 11167–11186. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T. Certain new proportional and Hadamard proportional fractional integral inequalities. J. Inequal. Appl. 2021, 71, 1–14. [Google Scholar]
- Nisar, K.S.; Rahman, G.; Baleanu, D.; Samraiz, M.; Iqbal, S. On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function. Adv. Differ. Equ. 2020, 623, 1–18. [Google Scholar] [CrossRef]
- Rahman, G.; Abdeljawad, T.; Jarad, F.; Khan, A.; Nisar, K.S. Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv Differ. Equ. 2019, 454, 1–10. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Khan, S.U.; Baleanu, D.; Vijayakumar, V. On the weighted fractional integral inequalities for Chebyshev functionals. Adv Differ. Equ. 2021, 18, 1–19. [Google Scholar]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T. Certain Hadamard proportional fractional integral inequalities. Mathematics 2020, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T.; Ullah, S. Certain fractional proportional integral inequalities via convex functions. Mathematics 2020, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Abdeljawad, T.; Jarad, F.; Nisar, K.S. Bounds of generalized proportional fractional integrals in general form via convex functions and their applications. Mathematics 2020, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, Z. About some integral inequalities using Riemann–Liouville integrals. Gen. Math. 2012, 20, 63–69. [Google Scholar]
- Niculescu, C.P.; Roventa, I. An extention of Chebyshev’s algebric inequality. Math. Reports 2013, 15, 91–95. [Google Scholar]
- Özdemir, M.E.; Set, E.; Akdemir, A.O.; Sarikaya, M.Z. Some new Chebyshev type inequalities for functions whose derivatives belongs to spaces. Afr. Mat. 2015, 26, 1609–1619. [Google Scholar] [CrossRef]
- Usta, F.; Budak, H.; Sarikaya, M.Z. On Chebyshev type inequalities for fractional integral operators. AIP Conf. Proc. 2017, 1833, 1–4. [Google Scholar]
- Usta, F.; Budak, H.; Sarikaya, M.Z. Some new Chebyshev type inequalities utilizing generalized fractional integral operators. AIMS Math. 2020, 5, 1147–1161. [Google Scholar] [CrossRef]
- Pachpatte, B.G. A note on Chebyshev-Grüss type inequalities for differential functions. Tamsui Oxford J. Math. Sci. 2006, 22, 29–36. [Google Scholar]
- Liu, Z. A variant of Chebyshev inequality with applications. J. Math. Inequal. 2013, 7, 551–561. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Dahmani, Z.; Muncu, İ. New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Pólya–Szegö inequality. Int. J. Optim. Control Theory Appl. (IJOCTA) 2018, 8, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Özdemir, M.E.; Demirbaş, S. Chebyshev type inequalities involving extended generalized fractional integral operators. AIMS Math. 2020, 5, 3573–3583. [Google Scholar] [CrossRef]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, G.S.; Machado, J.A.T.; Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Atangana, A. Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology; Academic Press: New York, NY, USA, 2017. [Google Scholar]
- Hristov, J. (Ed.) The Craft of Fractional Modelling in Science and Engineering; MDPI: Basel, Switzerland, 2018. [Google Scholar]
- Ata, E.; Kıymaz, İ.O. A study on certain properties of generalized special functions defined by Fox–Wright function. Appl. Math. Nonlinear Sci. 2020, 5, 147–162. [Google Scholar] [CrossRef] [Green Version]
- İlhan, E.; Kıymaz, İ.O. A generalization of truncated M–fractional derivative and applications to fractional differential equations. Appl. Math. Nonlinear Sci. 2020, 5, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Şahin, R.; Yağci, O. Fractional calculus of the extended hypergeometric function. Appl. Math. Nonlinear Sci. 2020, 5, 369–384. [Google Scholar] [CrossRef]
- Kaur, D.; Agarwal, P.; Rakshit, M.; Chand, M. Fractional calculus involving (p, q)–Mathieu type series. Appl. Math. Nonlinear Sci. 2020, 5, 15–34. [Google Scholar] [CrossRef]
- Kabra, S.; Nagar, H.; Nisar, K.S.; Suthar, D.L. The Marichev–Saigo–Maeda fractional calculus operators pertaining to the generalized k–Struve function. Appl. Math. Nonlinear Sci. 2020, 5, 593–602. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Baleanu, D.; Kashuri, A.; Hamasalh, F.; Agarwal, P. New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions. J. Inequal. Appl. 2020, 2020, 263. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions: Related Topics and Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
- Gorenflo, R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18–23 August 1997; Bainov, D., Ed.; VSP Publishers: Utrecht, The Netherlands; Tokyo, Japan, 1998; pp. 195–202. [Google Scholar]
- Fernandez, A.; Mohammed, P. Hermite-Hadamard inequalities in fractional calculus defined using Mittag–Leffler kernels. Math. Meth. Appl. Sci. 2020, 1–18. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. Mittag–Leffler Functions and Fractional Calculus. In Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q–calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some families of Mittag–Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Srivastava, H.M.; Bansal, M.K.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag–Leffler function. Math. Meth. Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, M.K.; Harjule, P. A class of fractional integral operators involving a certain general multi-index Mittag–Leffler function. Ukr. Math. J. 2020, in press. [Google Scholar]
- Fox, C. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. 1928, 27, 389–400. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. Proc. Lond. Math. Soc. 1940, 46, 389–408. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1940, 238, 423–451. [Google Scholar]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Baleanu, D. Fractional integral inequalities for exponentially nonconvex functions and their applications. Fractal Fract. 2021, 5, 80. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Ertuğral, F. On the generalized Hermite–Hadamard inequalities. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators. Fractal Fract. 2021, 5, 160. https://doi.org/10.3390/fractalfract5040160
Srivastava HM, Kashuri A, Mohammed PO, Nonlaopon K. Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators. Fractal and Fractional. 2021; 5(4):160. https://doi.org/10.3390/fractalfract5040160
Chicago/Turabian StyleSrivastava, Hari Mohan, Artion Kashuri, Pshtiwan Othman Mohammed, and Kamsing Nonlaopon. 2021. "Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators" Fractal and Fractional 5, no. 4: 160. https://doi.org/10.3390/fractalfract5040160
APA StyleSrivastava, H. M., Kashuri, A., Mohammed, P. O., & Nonlaopon, K. (2021). Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators. Fractal and Fractional, 5(4), 160. https://doi.org/10.3390/fractalfract5040160