(k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities
Abstract
:1. Introduction
2. Essential Preliminaries
3. (k, )-Proportional Fractional Integrals and Derivatives
- 1.
- , then we obtain the ψ-fractional proportional operators introduced by [7];
- 2.
- and then we obtain the fractional proportional operators introduced by [6];
- 3.
- and then we obtain the ψ-RL fractional operators introduced by Kilbas et al. [3];
- 4.
- and then we obtain the k-RL fractional operators introduced by [49];
- 5.
- , , and then we obtain the standard RL fractional operators; see [3].
- 1.
- 2.
- 3.
- 4.
- 1.
- 2.
- 3.
- 4.
- 1.
- 2.
- 3.
- 4.
- .
4. Certain Pólya–Szegö- and Grüss-Type Inequalities Involving the Proportional k-Fractional Integral concerning Another Strictly Increasing Continuous Function
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional integrals and derivatives. In Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Özarslan, M.A.; Baleanu, D. On fractional calculus with general analytic kernels. Appl. Math. Comput. 2019, 354, 248–265. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Jarad, F.; Alqudah, M.A.; Abdeljawad, T. On more generalized form of proportional fractional operators. Open Math. 2020, 18, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Erdelyi, A. An integral equation involving Legendre functions. J. Soc. Ind. Appl. Math. 1964, 12, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Osler, T.J. Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: San Diego, CA, USA, 1974. [Google Scholar]
- Aljaaidi, T.A.; Pachpatte, D.B. The Minkowski’s Inequalities via ψ-Riemann–Liouville fractional Integral Operators. Rend. Circ. Mat. Palermo Ser. 2021, 70, 893–906. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. Existence and Ulam–Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations. Results Appl. Math. 2021, 10, 100142. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Romero, L.G.; Luque, L.L.; Dorrego, G.A.; Cerutti, R.A. On the k-Riemann–Liouville fractional derivative. Int. J. Contemp. Math. Sci. 2013, 8, 41–51. [Google Scholar] [CrossRef]
- Dorrego, G.; Cerutti, R. The k-Fractional Hilfer Derivative. Int. J. Math. Anal. 2013, 7, 543–550. [Google Scholar] [CrossRef]
- Dorrego, G.A. Generalized Riemann–Liouville fractional operators associated with a generalization of the Prabhakar integral operator. Progr. Fract. Differ. Appl. 2016, 2, 131–140. [Google Scholar] [CrossRef]
- Pucheta, P.I. On the k-Caputo-Fabrizio fractional derivative and its applications. Int. J. Math. Appl. 2018, 6, 179–185. [Google Scholar]
- Farid, G.; Latif, N.; Anwar, M.; Imran, A.; Ozair, M.; Nawaz, M. On applications of Caputo k-fractional derivatives. Adv. Differ. Equ. 2019, 2019, 439. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Çelİk, B. Certain Hermite-Hadamard type inequalities involving generalized fractional integral operators. Rev. de la Real Acad. de Cienc. Exactas Fís. y Nat. Ser. A Mat. 2018, 112, 1539–1547. [Google Scholar] [CrossRef]
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
- Pachpatte, B.G. A note on Chebyshev-Grüss type inequalities for differential functions. Tamsui Oxf. J. Manag. Sci. 2006, 22, 29–36. [Google Scholar]
- Gavrea, I. On Chebyshev type inequalities involving functions whose derivatives belog to Lp spaces via isotanic functional. J. Inequal. Pure Appl. Math. 2006, 7, 121–128. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus Integral and Differential Equations of Fractional Order; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Dragomir, S.S. Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. 2000, 31, 397–415. [Google Scholar] [CrossRef]
- Dragomir, S.S. A generalization of Grüss’s inequality in inner product spaces and applications. J. Math. Anal. Appl. 1999, 237, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, Z.; Mechouar, O.; Brahami, S. Certain inequalities related to the Chebyshev’s functional involving a Riemann-liouville operator. Bull. Math. Anal. Appl. 2011, 3, 38–44. [Google Scholar]
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. [Google Scholar]
- Belarbi , S.; Dahmani, Z. On some new fractional inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 1–12. [Google Scholar]
- Grüss, G. Uber das Maximum des absoluten Betrages von. Math. Z. 1935, 39, 215–226. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Classical and New Inequalities in Analysis of Mathematics and Its Applications; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Dahmani, Z.; Tabharit, L.; Taf, S. New generalisations of Grüss inequality using Riemann–Liouville fractional integrals. Bull. Math. Anal. Appl. 2010, 2, 93–99. [Google Scholar]
- Tariboon, J.; Ntouyas, S.; Sudsutad, W. Some new Riemann–Liouville fractional integral Inequalities. Int. J. Math. Math. Sci. 2014, 2014, 869434. [Google Scholar] [CrossRef] [Green Version]
- Aljaaidi, T.A.; Pachpatte, D.B. Some Grüss-type Inequalities Using Generalized Katugampola Fractional Integral. AIMS Math. 2020, 5, 1011–1024. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B. Some Grüss-type Inequalities via ψ-Riemann–Liouville fractional integral. Indian J. Math. 2020, 62, 249–268. [Google Scholar]
- Pólya, G.; Szegö, G. Problems and Theorems in Analysis, Translated from the German; original version: Julius Springer Berlin 1925; Springer: New York, NY, USA; Berlin, Germany, 1972; Volume I. [Google Scholar]
- Dragomir, S.S.; Diamond, N.T. Integral inequalities of Grüss type via Pólya–Szegö and Shisha-Mond results. East Asian Math. J. 2003, 19, 27–39. [Google Scholar]
- Anber, A.; Dahmani, Z. New integral results using Pólya–Szegö inequality. Acta Comment. Univ. Tartu. Math. 2013, 17, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Ntouyas, S.K.; Agarwal, P.; Tariboon, J. On Pólya–Szegö and Chebyshev types inequalities involving the Riemann–Liouville fractional integral operators. J. Math. Inequal. 2016, 10, 491–504. [Google Scholar] [CrossRef]
- Agarwal, P.; Tariboon, J.; Ntouyas, S.K. Some generalized Riemann–Liouville k-fractional integral inequalities. J. Inequal. Appl. 2016, 2016, 122. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Dahmani, Z.; Mumcu, İ. New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szegö inequality. Int. J. Optim. Control Theor. Appl. 2018, 8, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, L.; Varošanec, S. Cauchy and Pólya–Szegö type inequalities involving two linear isotonic functionals. J. Math. Inequal. 2018, 12, 325–338. [Google Scholar] [CrossRef]
- Nisar, K.S.; Rahman, G.; Baleanu, D.; Samraiz, M.; Iqbal, S. On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function. Adv. Differ. Equ. 2020, 2020, 623. [Google Scholar] [CrossRef]
- Iqbal, S.; Samraiz, M.; Abdeljawad, T.; Nisar, K.S.; Rahman, G.; Khan, M.A. New generalized Pólya–Szegö and Čebyšev type inequalities with general kernel and measure. Adv. Differ. Equ. 2020, 2020, 672. [Google Scholar] [CrossRef]
- Deniz, E.; Akdemir, A.; Yüksel, E. New extensions of Chebyshev-Pólya–Szegö type inequalities via conformable integrals. AIMS Math. 2020, 5, 956–965. [Google Scholar] [CrossRef]
- Set, E.; Kashuri, A.; Mumcu, I. Chebyshev type inequalities by using generalized proportional Hadamard fractional integrals via Polya-Szegö inequality with applications. Chaos Solitons Fractals 2021, 146, 110860. [Google Scholar] [CrossRef]
- Dorrego, G.A. An alternative definition for the k-Riemann–Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljaaidi, T.A.; Pachpatte, D.B.; Abdo, M.S.; Botmart, T.; Ahmad, H.; Almalahi, M.A.; Redhwan, S.S. (k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities. Fractal Fract. 2021, 5, 172. https://doi.org/10.3390/fractalfract5040172
Aljaaidi TA, Pachpatte DB, Abdo MS, Botmart T, Ahmad H, Almalahi MA, Redhwan SS. (k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities. Fractal and Fractional. 2021; 5(4):172. https://doi.org/10.3390/fractalfract5040172
Chicago/Turabian StyleAljaaidi, Tariq A., Deepak B. Pachpatte, Mohammed S. Abdo, Thongchai Botmart, Hijaz Ahmad, Mohammed A. Almalahi, and Saleh S. Redhwan. 2021. "(k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities" Fractal and Fractional 5, no. 4: 172. https://doi.org/10.3390/fractalfract5040172
APA StyleAljaaidi, T. A., Pachpatte, D. B., Abdo, M. S., Botmart, T., Ahmad, H., Almalahi, M. A., & Redhwan, S. S. (2021). (k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities. Fractal and Fractional, 5(4), 172. https://doi.org/10.3390/fractalfract5040172