A Measurement of Visual Complexity for Heterogeneity in the Built Environment Based on Fractal Dimension and Its Application in Two Gardens
Abstract
:1. Introduction
1.1. Visual Research in the Built Environment
1.2. Visual Complexity as a Stimulus in the Built Environment
1.3. Measuring Visual Complexity by Fractal Dimension
1.4. Research Motivation
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Image Preprocessing
2.3. Fractal Dimension Computation
2.4. Comprehensive Evaluation System of Visual Complexity
3. Results
3.1. The Performance of the FDH Method
3.2. The Comparison between the FDT Method and the FDH Method
3.3. Scenario Classification in the FDT-FDH Evaluation System
- 1.
- Classification of ‘Simple’ scenario: low texture & low composition. Fractal dimension thresholds: 1.0 < FDT ≤ 1.5 & 1.0 < FDH ≤ 1.3. This type of scenario usually contains little texture because of the glaze surface or wide view. In addition, the composition is very simple so that the scenario does not have too much to see, making it easily to recognize (Figure 5).
- 2.
- Classification of ‘Textured but Simple’ scenario: high texture & low composition. Fractal dimension thresholds: 1.5 < FDT ≤ 2.0 and 1.0 < FDH ≤ 1.3. This type of scenario has a lot of homogeneous details, but its environmental composition is relatively simple. Mass homogeneous textures cause a higher range of fractal dimension in the FDT method, while the proposed FDH method can significantly reduce the influence of homogeneous texture on the perceptually evaluation the visual complexity, since the redundant textures have been largely diminished (Figure 6).
- 3.
- Classification of ‘Diverse’ scenario: high texture & high composition. Fractal dimension thresholds: 1.5 < FDT ≤ 2.0 and 1.3 < FDH ≤ 2.0. This type of scenario has high degree of texture and composition, which means diverse visual elements with textured details are contained (Figure 7).
- 4.
- Classification of ‘Invalid’: low texture & high composition. Fractal dimension thresholds: FDT < FDH. This type of scenario usually does not exist, because FDH eliminates many textured details in visual images, so generally FDT ≥ FDH.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, K. Image of the City, 1st ed.; The M.I.T. Press: Cambridge, UK, 1960; pp. 46–90. [Google Scholar]
- Nasar, J.L. Environmental Aesthetics: Theory, Research, and Application; Nasar, J.L., Ed.; Cambridge University Press: Cambridge, UK, 1988; pp. 275–289. [Google Scholar] [CrossRef]
- Hillier, B.; Leaman, A.; Stansall, P.; Bedford, M. Space Syntax. Environ. Plan. B Plan. Des. 1976, 3, 147–185. [Google Scholar] [CrossRef]
- Benedikt, M.L. To Take Hold of Space: Isovists and Isovist Fields. Environ. Plan. B Plan. Des. 1979, 6, 47–65. [Google Scholar] [CrossRef]
- Stucky, J.L.D. On Applying Viewshed Analysis for Determining Least-Cost Paths on Digital Elevation Models. Geogr. Inf. Syst. 1998, 12, 891–905. [Google Scholar] [CrossRef]
- Turner, A.; Doxa, M.; O’Sullivan, D.; Penn, A. From Isovists to Visibility Graphs: A Methodology for the Analysis of Architectural Space. Environ. Plan. B Plan. Des. 2001, 28, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Quercia, D.; O’Hare, N.K.; Cramer, H. Aesthetic Capital: What Makes London Look Beautiful, Quiet, and Happy? In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, Baltimore, MD, USA, 15–18 February 2014; ACM: New York, NY, USA, 2014; pp. 945–955. [Google Scholar] [CrossRef]
- Chen, X.; Meng, Q.; Hu, D.; Zhang, L.; Yang, J. Evaluating Greenery around Streets Using Baidu Panoramic Street View Images and the Panoramic Green View Index. Forests 2019, 10, 1109. [Google Scholar] [CrossRef] [Green Version]
- Van Tonder, G.J.; Lyons, M.J.; Ejima, Y. Visual Structure of a Japanese Zen Garden: Perception Psychology. Nature 2002, 419, 359–360. [Google Scholar] [CrossRef]
- Arietta, S.M.; Efros, A.A.; Ramamoorthi, R.; Agrawala, M. City Forensics: Using Visual Elements to Predict Non-Visual City Attributes. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2624–2633. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, Y.; Chen, L.; Chen, C. Assessing Personal Exposure to Urban Greenery Using Wearable Cameras and Machine Learning. Cities 2021, 109, 103006. [Google Scholar] [CrossRef]
- Mansouri, A.; Matsumoto, N.; Cavalcante, A.; Kacha, L. Study on entropy and emerging complexity in the visual composition of streetscapes in Tokyo and Kyoto cities. In Proceedings of the IAPS International Network Symposium 2011, Daegu, Korea, 10–14 October 2011. [Google Scholar]
- Moshagen, M.; Thielsch, M.T. Facets of Visual Aesthetics. Int. J. Hum. Comput. Stud. 2010, 68, 689–709. [Google Scholar] [CrossRef] [Green Version]
- Naik, N.; Philipoom, J.; Raskar, R.; Hidalgo, C. Streetscore—Predicting the Perceived Safety of One Million Streetscapes. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Kang, J. Relationship between Street Scale and Subjective Assessment of Audio-Visual Environment Comfort Based on 3D Virtual Reality and Dual-Channel Acoustic Tests. Build. Environ. 2018, 129, 35–45. [Google Scholar] [CrossRef]
- Jiang, B.; He, J.; Chen, J.; Larsen, L.; Wang, H. Perceived Green at Speed: A Simulated Driving Experiment Raises New Questions for Attention Restoration Theory and Stress Reduction Theory. Environ. Behav. 2021, 53, 296–335. [Google Scholar] [CrossRef]
- Kent, M.; Schiavon, S. Evaluation of the Effect of Landscape Distance Seen in Window Views on Visual Satisfaction. Build. Environ. 2020, 183, 107160. [Google Scholar] [CrossRef]
- Connor, C.E.; Egeth, H.E.; Yantis, S. Visual Attention: Bottom-up versus Top-Down. Curr. Biol. 2004, 14, R850–R852. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989; pp. 53–54. [Google Scholar]
- Ulrich, R.S. Aesthetic and Affective Response to Natural Environment. In Behavior and the Natural Environment; Springer: Boston, MA, USA, 1983; pp. 85–125. [Google Scholar] [CrossRef]
- Berlyne, D.E. Conflict, Arousal, and Curiosity; McGraw-Hill Book Company: New York, NY, USA, 1960; pp. 18–44. [Google Scholar]
- Sun, Z.; Firestone, C. Curious Objects: How Visual Complexity Guides Attention and Engagement. Cogn. Sci. 2021, 45, e12933. [Google Scholar] [CrossRef] [PubMed]
- Kacha, L.; Matsumoto, N.; Mansouri, A. Electrophysiological Evaluation of Perceived Complexity in Streetscapes. J. Asian Archit. Build. Eng. 2015, 14, 585–592. [Google Scholar] [CrossRef]
- Madan, C.R.; Bayer, J.; Gamer, M.; Lonsdorf, T.B.; Sommer, T. Visual Complexity and Affect: Ratings Reflect More than Meets the Eye. Front. Psychol. 2017, 8, 2368. [Google Scholar] [CrossRef] [Green Version]
- Machado, P.; Cardoso, A. Computing Aesthetics. In Advances in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 1998; pp. 219–228. [Google Scholar]
- Sigaki, H.Y.D.; Perc, M.; Ribeiro, H.V. History of Art Paintings through the Lens of Entropy and Complexity. Proc. Natl. Acad. Sci. USA 2018, 115, E8585–E8594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, A.S.-H.; Lin, Y.-J. The Effect of Landscape Colour, Complexity and Preference on Viewing Behaviour. Landsc. Res. 2020, 45, 214–227. [Google Scholar] [CrossRef]
- Vaughan, J.; Ostwald, M.J. Measuring the Geometry of Nature and Architecture: Comparing the Visual Properties of Frank Lloyd Wright’s Fallingwater and Its Natural Setting. Open House Int. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Abboushi, B.; Elzeyadi, I.; Taylor, R.; Sereno, M. Fractals in Architecture: The Visual Interest, Preference, and Mood Response to Projected Fractal Light Patterns in Interior Spaces. J. Environ. Psychol. 2019, 61, 57–70. [Google Scholar] [CrossRef]
- Hagerhall, C.M.; Laike, T.; Küller, M.; Marcheschi, E.; Boydston, C.; Taylor, R.P. Human Physiological Benefits of Viewing Nature: EEG Responses to Exact and Statistical Fractal Patterns. Nonlinear Dyn. Psychol. Life Sci. 2015, 19, 1–12. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: New York, NY, USA, 1982. [Google Scholar]
- Yang, Z.; Purves, D. A Statistical Explanation of Visual Space. Nat. Neurosci. 2003, 6, 632–640. [Google Scholar] [CrossRef]
- Cooper, J.; Su, M.-L.; Oskrochi, R. The Influence of Fractal Dimension and Vegetation on the Perceptions of Streetscape Quality in Taipei: With Comparative Comments Made in Relation to Two British Case Studies. Environ. Plan. B Plan. Des. 2013, 40, 43–62. [Google Scholar] [CrossRef]
- Juliani, A.W.; Bies, A.J.; Boydston, C.R.; Taylor, R.P.; Sereno, M.E. Navigation Performance in Virtual Environments Varies with Fractal Dimension of Landscape. J. Environ. Psychol. 2016, 47, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crompton, A. The Fractal Nature of the Everyday Environment. Environ. Plan. B Plan. Des. 2001, 28, 243–254. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, H.; Lu, M. Building’s Fractal Dimension Trend and Its Application in Visual Complexity Map. Build. Environ. 2020, 178, 106925. [Google Scholar] [CrossRef]
- Bovill, C. Fractal Geometry in Architecture and Design, 1996th ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Ostwald, M.J. The Fractal Analysis of Architecture: Calibrating the Box-Counting Method Using Scaling Coefficient and Grid Disposition Variables. Environ. Plan. B Plan. Des. 2013, 40, 644–663. [Google Scholar] [CrossRef]
- Patuano, A.; Tara, A. Fractal Geometry for Landscape Architecture: Review of Methodologies and Interpretations. J. Digit. Landsc. Archit. 2020, 5, 72–80. [Google Scholar] [CrossRef]
- Cooper, J.; Watkinson, D.; Oskrochi, R. Fractal Analysis and Perception of Visual Quality in Everyday Street Vistas. Environ. Plan. B Plan. Des. 2010, 37, 808–822. [Google Scholar] [CrossRef]
- Patuano, A. Measuring Naturalness and Complexity Using the Fractal Dimensions of Landscape Photographs. J. Digit. Lanscape Archit. 2018, 3, 328–335. [Google Scholar] [CrossRef]
- Potts, R.B. Some Generalized Order-Disorder Transformations. Math. Proc. Camb. Philos. Soc. 1952, 48, 106–109. [Google Scholar] [CrossRef]
- Menz, M.D.; Freeman, R.D. Stereoscopic Depth Processing in the Visual Cortex: A Coarse-to-Fine Mechanism. Nat. Neurosci. 2003, 6, 59–65. [Google Scholar] [CrossRef]
- Hegdé, J. Time Course of Visual Perception: Coarse-to-Fine Processing and Beyond. Prog. Neurobiol. 2008, 84, 405–439. [Google Scholar] [CrossRef]
- Kinchla, R.A.; Solis-Macias, V.; Hoffman, J. Attending to Different Levels of Structure in a Visual Image. Percept. Psychophys. 1983, 33, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storath, M.; Weinmann, A. Fast Partitioning of Vector-Valued Images. SIAM J. Imaging Sci. 2014, 7, 1826–1852. [Google Scholar] [CrossRef] [Green Version]
- Blake, A.; Zisserman, A. Visual Reconstruction; Bobrow, D.G., Brady, M., Davis, R., Winston, P.H., Eds.; MIT Press: London, UK, 1987; pp. 7–8. [Google Scholar] [CrossRef] [Green Version]
- Geman, S.; Geman, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, H.M.; Saad, K.M. Numerical Simulation of the Fractal-Fractional Ebola Virus. Fractal Fract. 2020, 4, 49. [Google Scholar] [CrossRef]
- Karydas, C.G. Unified Scale Theorem: A Mathematical Formulation of Scale in the Frame of Earth Observation Image Classification. Fractal Fract. 2021, 5, 127. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Q.; Wu, H.; Su, J.; Zhao, P. Application of Fractal Dimension of Terrestrial Laser Point Cloud in Classification of Independent Trees. Fractal Fract. 2021, 5, 14. [Google Scholar] [CrossRef]
- Falk, J.H.; Balling, J.D. Evolutionary Influence on Human Landscape Preference. Environ. Behav. 2010, 42, 479–493. [Google Scholar] [CrossRef]
- Ostwald, M.J.; Tucker, C. Reconsidering Bovill’s method for determining the fractal geometry of architecture. In Proceedings of the 41st Annual Conference of the Architectural Science Association ANZAScA, Melbourne, Australia, 14–16 November 2007. [Google Scholar]
- Vaughan, J.; Ostwald, M.J. Quantifying the Changing Visual Experience of Architecture: Combining Movement with Visual Complexity; Architectural Science Association and The University of Genova: Genoa, Italy, 2014; Available online: http://hdl.handle.net/1959.13/1296937 (accessed on 29 October 2021).
- Chambers, W.S. Designs of Chinese Buildings, Furnitures, Dresses, Machines, and Utensils; Creative Media Partners, LLC: Sacramento, CA, USA, 2016. [Google Scholar]
- Jones, P.B.; Meagher, M. Architecture and Movement: The Dynamic Experience of Buildings and Landscapes; Routledge: London, UK, 2015. [Google Scholar]
- Perry, S.; Reeves, R.; Sim, J. Landscape Design and the Language of Nature. Landsc. Rev. 2008, 12, 3–18. [Google Scholar]
- Dupont, L.; Antrop, M.; Van Eetvelde, V. Eye-Tracking Analysis in Landscape Perception Research: Influence of Photograph Properties and Landscape Characteristics. Landsc. Res. 2014, 39, 417–432. [Google Scholar] [CrossRef]
- Aks, D.J.; Sprott, J.C. Quantifying Aesthetic Preference for Chaotic Patterns. Empir. Stud. Arts 1996, 14, 1–16. [Google Scholar] [CrossRef]
- Hagerhall, C.M.; Purcell, T.; Taylor, R. Fractal Dimension of Landscape Silhouette Outlines as a Predictor of Landscape Preference. J. Environ. Psychol. 2004, 24, 247–255. [Google Scholar] [CrossRef]
- Taylor, R. The Potential of Biophilic Fractal Designs to Promote Health and Performance: A Review of Experiments and Applications. Sustainability 2021, 13, 823. [Google Scholar] [CrossRef]
- Geremek, A.; Greenlee, M.; Magnussen, S. Perception beyond Gestalt: Progress in Vision Research; Psychology Press: Hove, UK, 2013. [Google Scholar]
- Xiang, L.; Cai, M.; Ren, C.; Ng, E. Modeling Pedestrian Emotion in High-Density Cities Using Visual Exposure and Machine Learning: Tracking Real-Time Physiology and Psychology in Hong Kong. Build. Environ. 2021, 205, 108273. [Google Scholar] [CrossRef]
- Tang, J.; Long, Y. Measuring Visual Quality of Street Space and Its Temporal Variation: Methodology and Its Application in the Hutong Area in Beijing. Landsc. Urban Plan. 2019, 191, 103436. [Google Scholar] [CrossRef]
- Ivanovici, M.; Richard, N. Fractal Dimension of Color Fractal Images. IEEE Trans. Image Process. 2011, 20, 227–235. [Google Scholar] [CrossRef]
- Li, Y. Fractal Dimension Estimation for Color Texture Images. J. Math. Imaging Vis. 2020, 62, 37–53. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; He, S.; Lu, M. A Measurement of Visual Complexity for Heterogeneity in the Built Environment Based on Fractal Dimension and Its Application in Two Gardens. Fractal Fract. 2021, 5, 278. https://doi.org/10.3390/fractalfract5040278
Ma L, He S, Lu M. A Measurement of Visual Complexity for Heterogeneity in the Built Environment Based on Fractal Dimension and Its Application in Two Gardens. Fractal and Fractional. 2021; 5(4):278. https://doi.org/10.3390/fractalfract5040278
Chicago/Turabian StyleMa, Lan, Shaoying He, and Mingzhen Lu. 2021. "A Measurement of Visual Complexity for Heterogeneity in the Built Environment Based on Fractal Dimension and Its Application in Two Gardens" Fractal and Fractional 5, no. 4: 278. https://doi.org/10.3390/fractalfract5040278
APA StyleMa, L., He, S., & Lu, M. (2021). A Measurement of Visual Complexity for Heterogeneity in the Built Environment Based on Fractal Dimension and Its Application in Two Gardens. Fractal and Fractional, 5(4), 278. https://doi.org/10.3390/fractalfract5040278