The Darboux Transformation and N-Soliton Solutions of Coupled Cubic-Quintic Nonlinear Schrödinger Equation on a Time-Space Scale
Abstract
:1. Introduction
2. Preliminaries
3. The Coupled CQNLS Equation on a Time-Space Scale
- Case I
- Case II
4. Darboux Transformation of CQNLS Equation on a Time-Space Scale
- Case I
- Case II
- Case III
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, H.Q.; Tian, B.; Xu, T.; Li, H.; Zhang, C.; Zhang, H. Lax pair and Darboux transformation for multi-component modified korteweg-de vries equations. J. Phys. A Math. Theor. 2008, 41, 1–13. [Google Scholar] [CrossRef]
- Doktorov, E.V.; Leble, S.B. A Dressing Method in Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Guo, B.; Ling, L.; Liu, Q.P. Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 2012, 85, 026607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagrov, V.G.; Samsonov, B.F. Darboux transformation of the Schrdinger equation. Phys. Part. Nucl. 1997, 28, 374–397. [Google Scholar] [CrossRef]
- Xu, S.; He, J.; Wang, L. The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A Math. Theor. 2011, 44, 6629–6636. [Google Scholar] [CrossRef] [Green Version]
- Debnath, L. Solitons and the Inverse Scattering Transform. SIAM Rev. Soc. Ind. Appl. Math. 1981, 9, 426–533. [Google Scholar]
- Matsuno, Y. The N-soliton solution of a two-component modified nonlinear Schrödinger equation. Appl. Phys. Lett. 2011, 375, 3090–3094. [Google Scholar] [CrossRef] [Green Version]
- Miki, W.; Heiji, S.; Kimiaki, K. Relationships among Inverse Method, Backlund Transformation and an Infinite Number of Conservation Laws. Prog. Orthod. 1975, 53, 419–436. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: Berlin, Germany, 1991. [Google Scholar]
- Hilger, S. Analysis on Measure Chains-A Unified Approach to Continuous and Discrete Calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales an Introduction with Applications; Birkhauser: Boston, MA, USA, 2001. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Peterson, A. Inequalities on Time Scales: A Survey. Math. Inequal. Appl. 2003, 4, 535–558. [Google Scholar] [CrossRef]
- Honey, C.J.; Kotter, R.; Breakspear, M.; Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA 2007, 104, 10240–10245. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, F.B.; Fenchel, T.M. Theories of Populations in Biological Communities; Springer: Berlin, Germany, 1997. [Google Scholar]
- Manore, C.A.; Hyman, J.M.; Bergsman, L.D. A mathematical model for the spread of west nile virus in migratory and resident birds. Math. Biosci. Eng. 2017, 13, 401–424. [Google Scholar]
- Peng, Y.; Xiang, X.; Jiang, Y. Nonlinear dynamic systems and optimal control problems on time scales. Esaim. Contr. Optim. Calc. Var. 2010, 17, 654–681. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, Y. Existence of Positive Periodic Solutions For Functional Differential Equations With Impulse Effects On Time Scales. Commun. Nonlinear. Sci. Numer. Simul. 2019, 14, 19–26. [Google Scholar] [CrossRef]
- Benoist, Y.; Foulon, P.; Labourie, F. Double solutions of impulsive dynamic boundary value problems on time scale. J. Differ. Equ. Appl. 2002, 8, 345–356. [Google Scholar]
- Atici, F.M.; Biles, D.C.; Lebedinsky, A. An application of time scales to economics. Commun. Nonlinear. Sci. Numer. Simul. 2006, 43, 718–726. [Google Scholar] [CrossRef]
- Ramsey, J.B.; Lampart, C. Decomposition of economic relationships by timescale using wavelets: Money and income. Macroecon. Dyn. 1988, 2, 49–71. [Google Scholar] [CrossRef]
- Albuch, L.; Malomed, B.A. Transitions between symmetric and asymmetric solitons in dual-core systems with cubic-quintic nonlinearity. Math. Comput. Simulat. 2007, 74, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Shan, W.R.; Qi, F.H.; Guo, R.; Xue, Y.S.; Wang, P.; Tian, B. Conservation laws and solitons for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics. Phys. Scr. 2012, 85, 015002. [Google Scholar] [CrossRef]
- Azzouzi, F.; Triki, H.; Mezghiche, K.; Akrmi, A.E. Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrödinger equation. Chaos. Solitons Fract. 2009, 39, 1304–1307. [Google Scholar] [CrossRef]
- Triki, H.; Wazwaz, A.M. Soliton solutions of the cubic-quintic nonlinear Schrödinger equation with variable coefficients. Rom. J. Phys. 2016, 61, 360–366. [Google Scholar]
- Kengne, E.; Vaillancourt, R.; Malomed, B.A. Bose-Einstein condensates in optical lattices: The cubic-quintic nonlinear Schrödinger equation with a periodic potential. J. Phys. B At. Mol. Opt. 2008, 41, 205202. [Google Scholar] [CrossRef]
- Carr, L.D.; Kutz, J.N.; Reinhardt, W.P. Stability of stationary states in the cubic nonlinear Schrödinger equation: Applications to the Bose-Einstein condensate. Phys. Rev. E 2001, 63, 066604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnon, L.; Winternitz, P. Exact solutions of the cubic and quintic nonlinear Schrödinger equation for a cylindrical geometry. Phys. Rev. A. 1989, 39, 296. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, X.J.; Zha, Q.L. Rogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics. J. Am. Math. Soc. 2014, 378, 191–197. [Google Scholar] [CrossRef]
- Wang, P.; Tian, B. Symbolic computation on soliton dynamics and Backlünd transformation for the generalized coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity. J. Mod. Optic. 2012, 9, 1786–1796. [Google Scholar] [CrossRef]
- Hamanaka, M. Noncommutative Solitons and Integrable Systems. Physics 2005, 861, 175–198. [Google Scholar]
- Takao, K. Soliton Equations Extracted from the Noncommutative Zero-Curvature Equation. Prog. Theor. Phys. 2001, 105, 1045–1057. [Google Scholar]
- Tu, G.Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A 1989, 22, 2375. [Google Scholar]
- Krichever, I. Vector bundles and Lax equations on algebraic curves. Commun. Math. Phys. 2001, 229, 229–269. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X.; Xu, X.X. Positive and Negative Hierarchies of Integrable Lattice Models Associated with a Hamiltonian Pair. Int. J. Theor. Phys. 2004, 43, 219–235. [Google Scholar] [CrossRef]
- Hovhannisyan, G. On Dirac equation on a time scale. J. Math. Phys. 2011, 52, 1967–1981. [Google Scholar] [CrossRef]
- Liu, M.S.; Dong, H.; Fang, Y.; Zhang, Y. Lie symmetry analysis of burgers equation and the euler equation on a time scale. Symmetry 2019, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.R.; Bullock, J.; Erbe, L.; Peterson, A.; Tran, H.N. Nabla dynamic equations on time scales. Discret. Appl. Math. 2003, 13, 1–47. [Google Scholar]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear schrdinger equation. Phys. Rev. Lett. 2013, 110, 064105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Wei, C.; Zhang, Y.; Liu, M.; Fang, Y. The Darboux Transformation and N-Soliton Solutions of Coupled Cubic-Quintic Nonlinear Schrödinger Equation on a Time-Space Scale. Fractal Fract. 2022, 6, 12. https://doi.org/10.3390/fractalfract6010012
Dong H, Wei C, Zhang Y, Liu M, Fang Y. The Darboux Transformation and N-Soliton Solutions of Coupled Cubic-Quintic Nonlinear Schrödinger Equation on a Time-Space Scale. Fractal and Fractional. 2022; 6(1):12. https://doi.org/10.3390/fractalfract6010012
Chicago/Turabian StyleDong, Huanhe, Chunming Wei, Yong Zhang, Mingshuo Liu, and Yong Fang. 2022. "The Darboux Transformation and N-Soliton Solutions of Coupled Cubic-Quintic Nonlinear Schrödinger Equation on a Time-Space Scale" Fractal and Fractional 6, no. 1: 12. https://doi.org/10.3390/fractalfract6010012
APA StyleDong, H., Wei, C., Zhang, Y., Liu, M., & Fang, Y. (2022). The Darboux Transformation and N-Soliton Solutions of Coupled Cubic-Quintic Nonlinear Schrödinger Equation on a Time-Space Scale. Fractal and Fractional, 6(1), 12. https://doi.org/10.3390/fractalfract6010012