Semidefinite Multiobjective Mathematical Programming Problems with Vanishing Constraints Using Convexificators
Abstract
:1. Introduction
2. Preliminaries
- is said to be convex at A if, and only if, for all
- is said to be strictly convex at A if, and only if, for all
- is said to be —pseudoconvex at A if, and only if, for all
- is said to be strictly —pseudoconvex at A if, and only if, for all
- is said to be quasiconvex at A if, and only if, for all
3. Optimality Conditions
- (i)
- is a local weak efficient solution for ;
- (ii)
- In addition to that if then is a weak efficient solution for .
4. Conclusions and Future Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lobo, M.S.; Vandenberghe, L.; Boyd, S.; Lebret, H. Applications of second-order cone programming. Linear Algebra Its Appl. 1998, 284, 193–228. [Google Scholar] [CrossRef] [Green Version]
- Vandenberghe, L.; Boyd, S. Semidefinite programming. SIAM Rev. 1996, 38, 49–95. [Google Scholar] [CrossRef] [Green Version]
- Fares, B.; Noll, D.; Apkarian, P. Robust control via sequential semidefinite programming. SIAM J. Control Optim. 2002, 4, 1791–1820. [Google Scholar] [CrossRef] [Green Version]
- Ben-Tal, A.; Jarre, F.; Kočvara, M.; Nemirovski, A.; Zowe, J. Optimal design of trusses under a nonconvex global buckling constraint. Optim. Eng. 2000, 1, 189–213. [Google Scholar] [CrossRef]
- Leibfritz, F. COMPleib 1.1: COnstraint Matrix-Optimization Problem Library—A Collection of Test Examples for Nonlinear Semidefinite Programs, Control System Design and Related Problems; Technical Report; Department of Mathematics, University of Trier: Trier, Germany, 2005. [Google Scholar]
- Shapiro, A. First and second order analysis of nonlinear semidefinite programs. Math. Program. 1997, 77, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Sun, J.; Zhang, L. The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. Ser. A 2008, 114, 349–391. [Google Scholar] [CrossRef]
- Forsgren, A. Optimality conditions for nonconvex semidefinite programming. Math. Program. Ser. A 2000, 88, 105–128. [Google Scholar] [CrossRef]
- Sun, J. On method for solving nonlinear semidefinite optimization problems. Numer. Algebr. Control Optim. 2011, 1, 1–14. [Google Scholar] [CrossRef]
- Yamashita, H.; Yabe, H. A survey of numerical methods doe nonlinear semidefinite programming. J. Oper. Res. Soc. Jpn. 2015, 58, 24–60. [Google Scholar]
- Golestani, M.; Nobakhtian, S. Optimality conditions for nonsmooth semidefinite programming via convexificators. Positivity 2015, 19, 221–236. [Google Scholar] [CrossRef]
- Achtziger, W.; Kanzow, C. Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications. Math. Program. Ser. A 2008, 114, 69–99. [Google Scholar] [CrossRef]
- Kirches, C.; Potschka, A.; Bock, H.G.; Sager, S. A parametric active-set method for QPS with vanishing constraints arising in a robot motion planning problem. Pac. J. Optim. 2013, 9, 275–299. [Google Scholar]
- Jung, M.N.; Kirches, C.; Sager, S. On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control; Springer: Berlin/Heidelberg, Germany, 2013; pp. 387–417. [Google Scholar]
- Jabr, R. Solution to economic dispatching with disjoint feasible regions via semidefinite programming. IEEE Trans. Power Syst. 2012, 27, 572–573. [Google Scholar] [CrossRef]
- Guu, S.M.; Singh, Y.; Mishra, S.K. On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints. J. Inequalities Appl. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.K.; Singh, V.; Laha, V. On duality for mathematical programs with vanishing constraints. Ann. Oper. Res. 2016, 243, 249–272. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.; Laha, V.; Mohapatra, R.N. On constraint qualifications for multiobjective optimization problems with vanishing constraints. In Optimization Methods, Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 95–135. [Google Scholar]
- Luo, Z.Q.; Pang, J.S.; Ralph, D. Mathematical Programs with Equilibrium Constraints; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Outrata, J.; Kocvara, M.; Zowe, J. Nonsmooth approach to optimization problems with equilibrium constraints. In Nonconvex Optimization and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Mishra, S.K.; Jaiswal, M. Optimality conditions and duality for semi-infinite mathematical programming problem with equilibrium constraints. Numer. Funct. Anal. Optim. 2015, 36, 460–480. [Google Scholar] [CrossRef]
- Pandey, Y.; Mishra, S.K. Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators. Ann. Oper. Res. 2018, 269, 549–564. [Google Scholar] [CrossRef]
- Pandey, Y.; Mishra, S.K. On strong KKT type sufficient optimality conditions for nonsmooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints. Oper. Res. Lett. 2016, 44, 148–151. [Google Scholar] [CrossRef]
- Singh, Y.; Pandey, Y.; Mishra, S.K. Saddle point optimality criteria for mathematical programming problems with equilibrium constraints. Oper. Res. Lett. 2017, 45, 254–258. [Google Scholar] [CrossRef]
- Guu, S.M.; Mishra, S.K.; Pandey, Y. Duality for nonsmooth mathematical programming problems with equilibrium constraints. J. Inequalities Appl. 2016, 2016, 28. [Google Scholar] [CrossRef] [Green Version]
- Pandey, Y.; Mishra, S.K. Duality of mathematical programming problems with equilibrium constraints. Pac. J. Optim. 2017, 13, 105–122. [Google Scholar]
- Mishra, S.K.; Pandey, Y. On sufficiency for mathematical programming problems with equilibrium constraints. Yugosl. J. Oper. Res. 2013, 23, 173–182. [Google Scholar]
- Pandey, Y.; Mishra, S.K. Duality for nonsmooth optimization problems with equilibrium constraints, using convexificators. J. Optim. Theory Appl. 2016, 171, 694–707. [Google Scholar] [CrossRef]
- Hoheisel, T.; Kanzow, C. First- and second-order optimality conditions for mathematical programs with vanishing constraints. Appl. Math. 2007, 52, 495–514. [Google Scholar] [CrossRef] [Green Version]
- Hoheisel, T.; Kanzow, C. Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl. 2008, 337, 292–310. [Google Scholar] [CrossRef] [Green Version]
- Hoheisel, T.; Kanzow, C. On the Abadie and Guignard constraint qualifications for mathematical programmes with vanishing constraints. Optimization 2009, 58, 431–448. [Google Scholar] [CrossRef]
- Hoheisel, T.; Kanzow, C.; Outrata, J.V. Exact penalty results for mathematical programs with vanishing constraints. Nonlinear Anal. 2010, 72, 2514–2526. [Google Scholar] [CrossRef]
- Izmailov, A.F.; Pogosyan, A.L. Optimality conditions and newton-type methods for mathematical programs with vanishing constraints. Comput. Math. Math. Phys. 2009, 49, 1128–1140. [Google Scholar] [CrossRef]
- Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
- Wendell, R.E.; Lee, D.N. Efficiency in multiple objective optimization problems. Math. Program 1977, 12, 406–414. [Google Scholar] [CrossRef]
- Maeda, T. Constraint qualifications in multiobjective optimization problems: Differentiable case. J. Optim. Theory Appl. 1994, 80, 483–500. [Google Scholar] [CrossRef]
- Preda, V.; Chiţescu, I. On constraint qualification in multiobjective optimization problems: Semidifferentiable case. J. Optim. Theory Appl. 1999, 100, 417–433. [Google Scholar] [CrossRef]
- Li, X.F. Constraint qualifications in nonsmooth multiobjective optimization. J. Optim. Theory Appl. 2000, 106, 373–398. [Google Scholar] [CrossRef]
- Lai, K.K.; Hassan, M.; Maurya, J.K.; Singh, S.K.; Mishra, S.K. Multiobjective Convex Optimization in Real Banach Space. Symmetry 2021, 13, 2148. [Google Scholar] [CrossRef]
- Treanţă, S. On a Dual Pair of Multiobjective Interval-Valued Variational Control Problems. Mathematics 2021, 9, 893. [Google Scholar] [CrossRef]
- Treanta, S. Duality Theorems for (ρ, ψ, d)—Quasiinvex multiobjective optimization problems with interval-valued components. Mathematics 2021, 9, 894. [Google Scholar] [CrossRef]
- Demyanov, V.F.; Jeyakumar, V. Hunting for a smaller convex subdifferential. J. Glob. Optim. 1997, 10, 305–326. [Google Scholar] [CrossRef]
- Jeyakumar, V.; Luc, D.T. Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 1999, 101, 599–621. [Google Scholar] [CrossRef]
- Dorsch, D.; Gómez, W.; Shikhman, V. Sufficient optimality conditions hold for almost all nonlinear semidefinite programs. Math. Program. 2016, 158, 77–97. [Google Scholar] [CrossRef]
- Yurtsever, A.; Tropp, J.A.; Fercoq, O.; Udell, M.; Cevherk, V. Scalable Semidefinite Programming. SIAM J. Math. Data Sci. 2021, 3, 171–200. [Google Scholar] [CrossRef]
- Andreani, R.; Haeser, G.; Viana, D.S. Optimality conditions and global convergence for nonlinear semidefinite programming. Math. Program. Ser. A 2020, 180, 203–235. [Google Scholar] [CrossRef]
- Andreani, R.; Haeser, G.; Mito, L.M.; Ramírez, H.; Santos, D.O.; Silveira, T.P. Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming. Optim. Lett. 2021, 2021, 1–22. [Google Scholar] [CrossRef]
- Berman, A.; Shaked-Monderer, N. Completely Positive Matrices; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2003. [Google Scholar]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory. In SIAM Studies in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1994; Volume 15. [Google Scholar]
- Clarke, F.H. Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, 2nd ed.; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1990; Volume 5. [Google Scholar]
- Michel, P.; Penot, J.P. A generalized derivative for calm and stable functions. Differ. Integr. Equ. 1992, 5, 433–454. [Google Scholar]
- Mordukhovich, B.S.; Shao, Y.H. On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 1995, 2, 211–227. [Google Scholar]
- Treiman, J.S. The linear nonconvex generalized gradient and Lagrange multipliers. SIAM J. Optim. 1995, 5, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Fan, J. Generalized separation theorems and the Farkas’ lemma. Appl. Math. Lett. 2005, 18, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Sadeghieh, A.; Kanzi, N.; Caristi, G.; Barilla, D. On stationarity for nonsmooth multiobjective problems with vanishing constraints. J. Glob. Optim. 2021, 2021, 1–21. [Google Scholar] [CrossRef]
- Kanzow, C.; Nagel, C.; Kato, H.; Fukushima, M. Successive linearization methods for nonlinear semidefinite programs. Comput. Optim. Appl. 2005, 31, 251–273. [Google Scholar] [CrossRef]
- Treanţă, S. On locally and globally optimal solutions in scalar variational control problems. Mathematics 2019, 7, 829. [Google Scholar] [CrossRef] [Green Version]
- Treanta, S.; Udriste, C. On efficiency conditions for multiobjective variational problems involving higher order derivatives. In Proceedings of the 15th International Conference on Automatic Control, Modelling & Simulation (ACMOS’13), Brasov, Romania, 1–3 June 2013; pp. 157–164. [Google Scholar]
- Treanţă, S. Well Posedness of New Optimization Problems with Variational Inequality Constraints. Fractal Fract. 2021, 5, 123. [Google Scholar] [CrossRef]
- Mititelu, Ş.; Treanţă, S. Efficiency conditions in vector control problems governed by multiple integrals. J. Appl. Math. Comput. 2018, 57, 647–665. [Google Scholar] [CrossRef]
- Treanţă, S. On modified interval-valued variational control problems with first-order PDE constraints. Symmetry 2020, 12, 472. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, K.K.; Hassan, M.; Singh, S.K.; Maurya, J.K.; Mishra, S.K. Semidefinite Multiobjective Mathematical Programming Problems with Vanishing Constraints Using Convexificators. Fractal Fract. 2022, 6, 3. https://doi.org/10.3390/fractalfract6010003
Lai KK, Hassan M, Singh SK, Maurya JK, Mishra SK. Semidefinite Multiobjective Mathematical Programming Problems with Vanishing Constraints Using Convexificators. Fractal and Fractional. 2022; 6(1):3. https://doi.org/10.3390/fractalfract6010003
Chicago/Turabian StyleLai, Kin Keung, Mohd Hassan, Sanjeev Kumar Singh, Jitendra Kumar Maurya, and Shashi Kant Mishra. 2022. "Semidefinite Multiobjective Mathematical Programming Problems with Vanishing Constraints Using Convexificators" Fractal and Fractional 6, no. 1: 3. https://doi.org/10.3390/fractalfract6010003
APA StyleLai, K. K., Hassan, M., Singh, S. K., Maurya, J. K., & Mishra, S. K. (2022). Semidefinite Multiobjective Mathematical Programming Problems with Vanishing Constraints Using Convexificators. Fractal and Fractional, 6(1), 3. https://doi.org/10.3390/fractalfract6010003