Fractional COVID-19 Modeling and Analysis on Successive Optimal Control Policies
Abstract
:1. Introduction
2. Formulation of the Model
3. Analysis of the Model
- i.
- Disease-free equilibrium ()
- ii.
- Endemic with respect to only ()
- iii.
- Endemic with respect to only ()
- iv.
- Endemic with respect to only ()
- v.
- Endemic with respect to ()
4. Optimal Control Analysis
5. Numerical Simulation and Discussion
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Sheikh, S.; Musali, F.M.; Alsolami, M.R. Stability Analysis of an HIV/AIDS Epidemic Model with Screening. In Proceedings of the International Mathematical Forum, Sanya, China, July 2011; Hikari Ltd.: Rousse, Bulgaria, 2011; Volume 6, pp. 3251–3273. [Google Scholar]
- Owolabi, K.M.; Atangana, A. Mathematical Analysis and Computational Experiments for an Epidemic System with Nonlocal and Nonsingular Derivative. Chaos Solitons Fractals 2019, 126, 41–49. [Google Scholar] [CrossRef]
- Do, T.S.; Lee, Y.S. Modeling the Spread of Ebola. Osong Public Health Res. Perspect. 2016, 7, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Chowell, D.; Castillo-Chavez, C.; Krishna, S.; Qiu, X.; Anderson, K.S. Modelling the Effect of Early Detection of Ebola. Lancet Infect. Dis. 2015, 15, 148–149. [Google Scholar] [CrossRef]
- Liu, Z.; Magal, P.; Seydi, O.; Webb, G. Predicting the Cumulative Number of Cases for the COVID-19 Epidemic in China from Early Data. arXiv 2020, arXiv:2002.12298. [Google Scholar]
- Chen, T.-M.; Rui, J.; Wang, Q.-P.; Zhao, Z.-Y.; Cui, J.-A.; Yin, L. A Mathematical Model for Simulating the Phase-Based Transmissibility of a Novel Coronavirus. Infect. Dis. Poverty 2020, 9, 24. [Google Scholar] [CrossRef]
- Khan, M.A.; Atangana, A. Modeling the Dynamics of Novel Coronavirus (2019-NCov) with Fractional Derivative. Alex. Eng. J. 2020, 59, 2379–2389. [Google Scholar] [CrossRef]
- Coccia, M. Pandemic Prevention: Lessons from COVID-19. Encyclopedia 2021, 1, 433–444. [Google Scholar] [CrossRef]
- Coccia, M. The Impact of First and Second Wave of the COVID-19 Pandemic in Society: Comparative Analysis to Support Control Measures to Cope with Negative Effects of Future Infectious Diseases. Environ. Res. 2021, 197, 111099. [Google Scholar] [CrossRef]
- Coccia, M. High Health Expenditures and Low Exposure of Population to Air Pollution as Critical Factors That Can Reduce Fatality Rate in COVID-19 Pandemic Crisis: A Global Analysis. Environ. Res. 2021, 199, 111339. [Google Scholar] [CrossRef]
- Coccia, M. Preparedness of Countries to Face COVID-19 Pandemic Crisis: Strategic Positioning and Factors Supporting Effective Strategies of Prevention of Pandemic Threats. Environ. Res. 2022, 203, 111678. [Google Scholar] [CrossRef]
- Abdullahi Baba, I.; Ahmad Nasidi, B. Fractional Order Epidemic Model for the Dynamics of Novel COVID-19. Alex. Eng. J. 2021, 60, 537–548. [Google Scholar] [CrossRef]
- Ivorra, B.; Ferrández, M.R.; Vela-Pérez, M.; Ramos, A.M. Mathematical Modeling of the Spread of the Coronavirus Disease 2019 (COVID-19) Taking into Account the Undetected Infections. The Case of China. Commun. Nonlinear Sci. Numer. Simul. 2020, 88, 105303. [Google Scholar] [CrossRef]
- Zamir, M.; Nadeem, F.; Abdeljawad, T.; Hammouch, Z. Threshold Condition and Non Pharmaceutical Interventions’s Control Strategies for Elimination of COVID-19. Results Phys. 2021, 20, 103698. [Google Scholar] [CrossRef]
- Gomes, C. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Braz. J. Implantol. Health Sci. 2020, 2, 16–24. [Google Scholar]
- Escalante-Martínez, J.E.; Gómez-Aguilar, J.F.; Calderón-Ramón, C.; Aguilar-Meléndez, A.; Padilla-Longoria, P. Synchronized Bioluminescence Behavior of a Set of Fireflies Involving Fractional Operators of Liouville–Caputo Type. Int. J. Biomath. 2018, 11, 1850041. [Google Scholar] [CrossRef]
- Escalante-Martínez, J.E.; Gómez-Aguilar, J.F.; Calderón-Ramón, C.; Aguilar-Meléndez, A.; Padilla-Longoria, P. A Mathematical Model of Circadian Rhythms Synchronization Using Fractional Differential Equations System of Coupled van Der Pol Oscillators. Int. J. Biomath. 2018, 11, 1850014. [Google Scholar] [CrossRef]
- Ullah, S.; Altaf Khan, M.; Farooq, M. A Fractional Model for the Dynamics of TB Virus. Chaos Solitons Fractals 2018, 116, 63–71. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F. Fundamental Solutions to Electrical Circuits of Non-Integer Order via Fractional Derivatives with and without Singular Kernels. Eur. Phys. J. Plus 2018, 133, 197. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A New Definition of Fractional Derivative without Singular Kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Saad, K.M.; Gómez-Aguilar, J.F. Analysis of Reaction–Diffusion System via a New Fractional Derivative with Non-Singular Kernel. Phys. A 2018, 509, 703–716. [Google Scholar] [CrossRef]
- Abdeljawad, T. Fractional Operators with Exponential Kernels and a Lyapunov Type Inequality. Adv. Differ. Equ. 2017, 2017, 313. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. On Fractional Derivatives with Exponential Kernel and Their Discrete Versions. Rep. Math. Phys. 2017, 80, 11–27. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Abdo, M.S.; Shah, K. Theoretical and Numerical Analysis for Transmission Dynamics of COVID-19 Mathematical Model Involving Caputo-Fabrizio Derivative. Adv. Differ. Equ. 2021, 2021, 184. [Google Scholar] [CrossRef] [PubMed]
- Bonyah, E.; M. Juga, F. Fractional Dynamics of Coronavirus with Comorbidity via Caputo-Fabrizio Derivative. Commun. Math. Biol. Neurosci. 2022, 2022. [Google Scholar] [CrossRef]
- Pandey, P.; Gómez-Aguilar, J.F.; Kaabar, M.K.A.; Siri, Z.; Mousa, A.A.A. Mathematical Modeling of COVID-19 Pandemic in India Using Caputo-Fabrizio Fractional Derivative. Comput. Biol. Med. 2022, 145, 105518. [Google Scholar] [CrossRef]
- Kumar, A.; Prakash, A.; Mehmet Baskonus, H. The Epidemic COVID-19 Model via Caputo–Fabrizio Fractional Operator. Waves Random Complex Media 2022, 32, 1–15. [Google Scholar] [CrossRef]
- Atangana, A. Blind in a Commutative World: Simple Illustrations with Functions and Chaotic Attractors. Chaos Solitons Fractals 2018, 114, 347–363. [Google Scholar] [CrossRef]
- Becerra, V. Optimal Control. Sch. J. 2008, 3, 5354. [Google Scholar] [CrossRef]
- Baba, I.A.; Rihan, F.A. A Fractional–Order Model with Different Strains of COVID-19. Phys. A Stat. Mech. Its Appl. 2022, 603, 127813. [Google Scholar] [CrossRef]
- Baba, I.A.; Sani, M.A.; Nasidi, B.A. Fractional Dynamical Model to Assess the Efficacy of Facemask to the Community Transmission of COVID-19. Comput. Methods Biomech. Biomed. Engin. 2022, 1–11. [Google Scholar] [CrossRef]
- Abdullahi Baba, I.; Ahmad Nasidi, B.; Baleanu, D. Optimal Control Model for the Transmission of Novel COVID-19. Comput. Mater. Contin. 2021, 66, 3089–3106. [Google Scholar] [CrossRef]
- Baba, I.A.; Yusuf, A.; Nisar, K.S.; Abdel-Aty, A.-H.; Nofal, T.A. Mathematical Model to Assess the Imposition of Lockdown during COVID-19 Pandemic. Results Phys. 2021, 20, 103716. [Google Scholar] [CrossRef] [PubMed]
- Baba, I.A.; Nasidi, B.A. Fractional Order Model for the Role of Mild Cases in the Transmission of COVID-19. Chaos Solitons Fractals 2021, 142, 110374. [Google Scholar] [CrossRef] [PubMed]
- Baba, I.A.; Baba, B.A.; Esmaili, P. A Mathematical Model to Study the Effectiveness of Some of the Strategies Adopted in Curtailing the Spread of COVID-19. Comput. Math. Methods Med. 2020, 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi Baba, I.; Baleanu, D. Awareness as the Most Effective Measure to Mitigate the Spread of COVID-19 in Nigeria. Comput. Mater. Contin. 2020, 65, 1945–1957. [Google Scholar] [CrossRef]
- Ahmed, I.; Baba, I.A.; Yusuf, A.; Kumam, P.; Kumam, W. Analysis of Caputo Fractional-Order Model for COVID-19 with Lockdown. Adv. Differ. Equ. 2020, 2020, 394. [Google Scholar] [CrossRef]
- Xu, J.; Goodrich, C.S.; Cui, Y. Positive Solutions for a System of First-Order Discrete Fractional Boundary Value Problems with Semipositone Nonlinearities. Rev. Real Acad. Cienc. Exactas Fis. Nat. A Mat. 2019, 113, 1343–1358. [Google Scholar] [CrossRef]
- Jajarmi, A.; Ghanbari, B.; Baleanu, D. A New and Efficient Numerical Method for the Fractional Modeling and Optimal Control of Diabetes and Tuberculosis Co-Existence. Chaos 2019, 29, 093111. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Sajjadi, S.S.; Mozyrska, D. A New Fractional Model and Optimal Control of a Tumor-Immune Surveillance with Non-Singular Derivative Operator. Chaos 2019, 29, 083127. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Al-Mekhlafi, S.M.; Baleanu, D. Optimal Control for a Fractional Tuberculosis Infection Model Including the Impact of Diabetes and Resistant Strains. J. Adv. Res. 2019, 17, 125–137. [Google Scholar] [CrossRef]
- Akman Yıldız, T.; Arshad, S.; Baleanu, D. New Observations on Optimal Cancer Treatments for a Fractional Tumor Growth Model with and without Singular Kernel. Chaos Solitons Fractals 2018, 117, 226–239. [Google Scholar] [CrossRef]
- Akman Yıldız, T.; Arshad, S.; Baleanu, D. Optimal Chemotherapy and Immunotherapy Schedules for a Cancer-Obesity Model with Caputo Time Fractional Derivative. Math. Methods Appl. Sci. 2018, 41, 9390–9407. [Google Scholar] [CrossRef]
- Baleanu, D.; Joseph, C.; Mophou, G. Low-Regret Control for a Fractional Wave Equation with Incomplete Data. Adv. Differ. Equ. 2016, 2016, 941. [Google Scholar] [CrossRef] [Green Version]
- Baba, I.A.; Abdulkadir, R.A.; Esmaili, P. Analysis of Tuberculosis Model with Saturated Incidence Rate and Optimal Control. Phys. A 2020, 540, 123237. [Google Scholar] [CrossRef]
- Treesatayapun, C. Epidemic Model Dynamics and Fuzzy Neural-Network Optimal Control with Impulsive Traveling and Migrating: Case Study of COVID-19 Vaccination. Biomed. Signal Process. Control. 2022, 71, 103227. [Google Scholar] [CrossRef]
- Kumar, P.; Rangaig, N.A.; Abboubakar, H.; Kumar, A.; Manickam, A. Prediction Studies of the Epidemic Peak of Coronavirus Disease in Japan: From Caputo Derivatives to Atangana–Baleanu Derivatives. Adv. Complex Syst. 2022, 13, 2250012. [Google Scholar] [CrossRef]
- Batiha, I.M.; Al-Nana, A.A.; Albadarneh, R.B.; Ouannas, A.; Al-Khasawneh, A.; Momani, S. Fractional-Order Coronavirus Models with Vaccination Strategies Impacted on Saudi Arabia’s Infections. AIMS Math. 2022, 7, 12842–12858. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; Bontempi, E.; Coccia, M.; Kumar, M.; Farkas, K.; Domingo, J.L. SARS-CoV-2 and Other Pathogenic Microorganisms in the Environment. Environ. Res. 2021, 201, 111606. [Google Scholar] [CrossRef]
- Saha, S.; Samanta, G.P.; Nieto, J.J. Epidemic Model of COVID-19 Outbreak by Inducing Behavioural Response in Population. Nonlinear Dyn. 2020, 102, 455–487. [Google Scholar] [CrossRef]
- Batiha, I.M.; Momani, S.; Ouannas, A.; Momani, Z.; Hadid, S.B. Fractional-Order COVID-19 Pandemic Outbreak: Modeling and Stability Analysis. Int. J. Biomath. 2022, 15, 2150090. [Google Scholar] [CrossRef]
- Nana-Kyere, S.; Boateng, F.A.; Jonathan, P.; Donkor, A.; Hoggar, G.K.; Titus, B.D.; Kwarteng, D.; Adu, I.K. Global Analysis and Optimal Control Model of COVID-19. Comput. Math. Methods Med. 2022, 2022, 9491847. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Samanta, G.; Nieto, J.J. Application of Non-Parametric Models for Analyzing Survival Data of COVID-19 Patients. J. Infect. Public Health 2021, 14, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Zarin, R.; Khan, S.; Saeed, A.; Gul, T.; Humphries, U.W. Fractional Dynamics and Stability Analysis of COVID-19 Pandemic Model under the Harmonic Mean Type Incidence Rate. Comput. Methods Biomech. Biomed. Engin. 2022, 25, 619–640. [Google Scholar] [CrossRef] [PubMed]
- Dhar, B.; Gupta, P.K.; Sajid, M. Solution of a Dynamical Memory Effect COVID-19 Infection System with Leaky Vaccination Efficacy by Non-Singular Kernel Fractional Derivatives. Math. Biosci. Eng. 2022, 19, 4341–4367. [Google Scholar] [CrossRef]
- Mohammadi, H.; Rezapour, S. Some Fractional Mathematical Models of the COVID-19 Outbreak. In Modeling, Control and Drug Development for COVID-19 Outbreak Prevention; Studies in Systems, Decision and Control; Springer International Publishing: Berlin, Germany, 2022; pp. 957–1021. (In Cham) [Google Scholar]
- Nadim, S.S.; Ghosh, I.; Chattopadhyay, J. Short-Term Predictions and Prevention Strategies for COVID-19: A Model-Based Study. Appl. Math. Comput. 2021, 404, 126251. [Google Scholar] [CrossRef]
- Alqahtani, R.T.; Yusuf, A. Development and Analysis of a Seir Model for Covid-19 Epidemic with Vaccination and Nonsingular Kernel. Fractals 2022, 30, 2240040. [Google Scholar] [CrossRef]
- Zeb, A.; Kumar, P.; Erturk, V.S.; Sitthiwirattham, T. A New Study on Two Different Vaccinated Fractional-Order COVID-19 Models via Numerical Algorithms. J. King Saud Univ. Sci. 2022, 34, 101914. [Google Scholar] [CrossRef]
- Benati, I.; Coccia, M. Global Analysis of Timely COVID-19 Vaccinations: Improving Governance to Reinforce Response Policies for Pandemic Crises. Int. J. Health Gov. 2022, 27, 240–253. [Google Scholar] [CrossRef]
- Coccia, M. Optimal Levels of Vaccination to Reduce COVID-19 Infected Individuals and Deaths: A Global Analysis. Environ. Res. 2022, 204, 112314. [Google Scholar] [CrossRef]
- Coccia, M. COVID-19 Pandemic over 2020 (Withlockdowns) and 2021 (with Vaccinations): Similar Effects for Seasonality and Environmental Factors. Environ. Res. 2022, 208, 112711. [Google Scholar] [CrossRef]
Parameter | Meaning |
---|---|
π | Recruitment rate |
The transmission rate of COVID-19 in a susceptible unaware compartment | |
The transmission rate of COVID-19 in a susceptible aware compartment | |
The transmission rate of COVID-19 in a susceptible vaccinated compartment | |
μ | Natural death rate |
γ | Recovery rate |
δ | Disease induced death rate |
Fraction order |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadi, M.S.; Bilgehan, B. Fractional COVID-19 Modeling and Analysis on Successive Optimal Control Policies. Fractal Fract. 2022, 6, 533. https://doi.org/10.3390/fractalfract6100533
Hadi MS, Bilgehan B. Fractional COVID-19 Modeling and Analysis on Successive Optimal Control Policies. Fractal and Fractional. 2022; 6(10):533. https://doi.org/10.3390/fractalfract6100533
Chicago/Turabian StyleHadi, Mohammed Subhi, and Bülent Bilgehan. 2022. "Fractional COVID-19 Modeling and Analysis on Successive Optimal Control Policies" Fractal and Fractional 6, no. 10: 533. https://doi.org/10.3390/fractalfract6100533
APA StyleHadi, M. S., & Bilgehan, B. (2022). Fractional COVID-19 Modeling and Analysis on Successive Optimal Control Policies. Fractal and Fractional, 6(10), 533. https://doi.org/10.3390/fractalfract6100533