Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators
Abstract
:1. Introduction
2. Preliminaries
- 2.
- If , and , then the corresponds to the classical Caputo fractional derivative:
- (i)
- ;
- (ii)
- For any is a constant, such that,
- 1.
- 2.
- ∃ is the constant, such that , for any
- 3.
- The range of is contained in . Particularly, for all with ,
- 4.
- If then ;
- 5.
- .
- (a)
- (b)
- (c)
- .
3. Existence
- (H1)
- The almost sectorial operator produces an analytic semigroup , where in Y and , for some .
- (H2)
- (a)
- Let be measurable to for each fixed , upper semi-continuous to for each , and each , take
- (b)
- For , , are continuous functions and for each , and are strongly measurable.
- (c)
- There exists a function satisfying
- (d)
- There exists , such that
- (H3)
- For any , multi-valued map is a continuous function and there exists , such that and all satisfy the following:
- (H3)
- is completely continuous, and for any bounded set , the set is equicontinuous in Y.
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HFD | Hilfer fractional derivative |
HF | Hilfer fractional |
References
- Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.J.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Chang, Y.K.; Chalishajar, D.N. Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces. J. Franklin Inst. 2008, 345, 499–507. [Google Scholar] [CrossRef]
- Diemling, K. Multivalued Differential Equations; De Gruyter Series in Nonlinear Analysis and Applications; De Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Ding, X.L.; Ahmad, B. Analytical solutions to fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2016, 2016, 203. [Google Scholar] [CrossRef]
- Du, J.; Jiang, W.; Niazi, A.U.K. Approximate controllability of impulsive Hilfer fractional differential inclusions. J. Nonlinear Sci. Appl. 2017, 10, 595–611. [Google Scholar] [CrossRef]
- Furati, K.M.; Kassim, M.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 641, 616–626. [Google Scholar] [CrossRef]
- Ganesh, R.; Sakthivel, R.; Mahmudov, N.I.; Anthoni, S.M. Approximate controllability of fractional integro-differential evolution equations. J. Appl. Math. 2013, 225, 708–717. [Google Scholar]
- Gu, H.; Trujillo, J.J. Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 1983. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Khaminsou, B.; Thaiprayoon, C.; Sudsutad, W.; Jose, S.A. Qualitative analysis of a proportional Caputo fractional Pantograph differential equation with mixed nonlocal conditions. Nonlinear Funct. Anal. Appl. 2021, 26, 197–223. [Google Scholar]
- Mallika Arjunan, M.; Abdeljawad, T.; Kavitha, K.; Yousef, A. On a class of Atangana-Boleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses. Chaos Solitons Fractals 2021, 148, 1–13. [Google Scholar] [CrossRef]
- Salmon, N.; SenGupta, I. Fractional Barndorff-Nielsen and Shephard model: Applications in variance and volatility swaps, and hedging. Ann. Financ. 2021, 17, 529–558. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Q. Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 2017, 40, 1126–1138. [Google Scholar] [CrossRef]
- Martelli, M. A Rothe’s type theorem for non-compact acyclic-valued map. Boll. Dell’unione Math. Ital. 1975, 2, 70–76. [Google Scholar]
- Wan, X.J.; Zhang, Y.P.; Sun, J.T. Controllability of impulsive neutral fractional differential inclusions in Banach Space. Abstr. Appl. Anal. 2013, 2013, 861568. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Elsevier: New York, NY, USA, 2015. [Google Scholar]
- Zhou, Y.; Vijayakumar, V.; Murugesu, R. Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 2015, 4, 507–524. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, Z.A.; Khan, A. Existence and approaximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2020, 2020, 615. [Google Scholar] [CrossRef]
- Jaiswal, A.; Bahuguna, D. Hilfer fractional differantial equations with almost sectorial operators. Differ. Equ. Dyn. Syst. 2020, 1–17. [Google Scholar] [CrossRef]
- Karthikeyan, K.A.; Debbouche, A.; Torres, D.F.M. Analysis of Hilfer fractional integro-differential equations with almost sectorial operators. Fractal Fract. 2021, 5, 22. [Google Scholar] [CrossRef]
- Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Sakthivel, N.; Nissar, K.S. A note on approaximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 2021, 44, 4428–4447. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Anthoni, S.M. Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 2013, 225, 708–717. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y. Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. 2011, 12, 3642–3653. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K. Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach Spaces. J. Math. Anal. Appl. 2001, 263, 763–780. [Google Scholar] [CrossRef]
- Li, F.; Xiao, T.J.; Xu, H.K. On nonlinear neutral fractional integro-differential inclusions with infinite delay. J. Appl. Math. 2012, 2012, 916543. [Google Scholar] [CrossRef]
- Fu, X.; Cao, Y. Existence for neutral impulsive differential inclusions with nonlocal conditions. Nonlinear Anal. 2008, 68, 3707–3718. [Google Scholar] [CrossRef]
- Zhou, M.; Li, C.; Zhou, Y. Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators. Axioms 2022, 11, 144. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y. Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 2014, 257, 145–157. [Google Scholar] [CrossRef]
- Li, F. Mild solutions for abstract differential equations with almost sectorial operators and infinite delay. Adv. Differ. Equ. 2013, 2013, 327. [Google Scholar] [CrossRef]
- Sivasankar, S.; Udhayakumar, R. Hilfer fractional neutral stochastic Volterra integro-differential inclusions via almost sectorial operators. Mathematics 2022, 10, 2074. [Google Scholar] [CrossRef]
- Varun Bose, C.S.; Udhayakumar, R. A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators. Math. Methods Appl. Sci. 2022, 45, 2530–2541. [Google Scholar] [CrossRef]
- Wang, R.N.; Chen, D.-H.; Xiao, T.J. Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 2002, 252, 202–235. [Google Scholar]
- Periago, F.; Straub, B. A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol. Equ. 2002, 2, 41–68. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Q. Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 2017, 20, 679–705. [Google Scholar] [CrossRef]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 1965, 13, 781–786. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varun Bose, C.B.S.; Udhayakumar, R. Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators. Fractal Fract. 2022, 6, 532. https://doi.org/10.3390/fractalfract6090532
Varun Bose CBS, Udhayakumar R. Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators. Fractal and Fractional. 2022; 6(9):532. https://doi.org/10.3390/fractalfract6090532
Chicago/Turabian StyleVarun Bose, Chandra Bose Sindhu, and Ramalingam Udhayakumar. 2022. "Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators" Fractal and Fractional 6, no. 9: 532. https://doi.org/10.3390/fractalfract6090532
APA StyleVarun Bose, C. B. S., & Udhayakumar, R. (2022). Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators. Fractal and Fractional, 6(9), 532. https://doi.org/10.3390/fractalfract6090532