A Novel Implementation of Mönch’s Fixed Point Theorem to a System of Nonlinear Hadamard Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- (1)
- If then ;
- (2)
- ;
- (3)
- ψ is relatively compact ;
- (4)
- ;
- (5)
- ;
- (6)
- (7)
- .
- is measurable in ϖ for ;
- is continuous in for .
3. Existence Results via Mönch’s Fixed Point Theorem
- Suppose that satisfy Carathéodory conditions.
- ∃, and ∃ such that ∀ we have
- Let , assumed to be bounded, and
4. Stability Results for the Problem
5. Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hinton, D. Handbook of Differential Equations (Daniel Zwillinger); SIAM Review; Society for Industrial and Applied Mathematics Publications: Philadelphia, PA, USA, 1994; Volume 36, pp. 126–127. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.; Kilbas, A.A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Manigandan, M.; Subramanian, M.; Nandha Gopal, T.; Unyong, B. Existence and Stability Results for a Tripled System of the Caputo Type with Multi-Point and Integral Boundary Conditions. Fractal Fract. 2022, 6, 285. [Google Scholar] [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.T.; Bates, J.H. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Toledo-Hernandez, R.; Rico-Ramirez, V.; Iglesias-Silva, G.A.; Diwekar, U.M. A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I Fract. Model. Biol. React. Chem. Eng. Sci. 2014, 117, 217–228. [Google Scholar]
- Awadalla, M.; Manigandan, M. Existence and Stability Results for Caputo-Type Sequential Fractional Differential Equations with New Kind of Boundary Conditions. Math. Probl. Eng. 2022, 2022, 3999829. [Google Scholar] [CrossRef]
- Muthaiah, S.; Baleanu, D.; Murugesan, M.; Palanisamy, D. Existence of solutions for the Caputo-Hadamard fractional differential equations and inclusions. J. Phys. Conf. Ser. 2021, 1850, 012107. [Google Scholar] [CrossRef]
- Subramanian, M.; Manigandan, M.; Gopal, T.N. Fractional Differential Equations Involving Hadamard Fractional Derivatives with Nonlocal Multi-point Boundary Conditions. Discontin. Nonlinearity Complex. 2020, 9, 421–431. [Google Scholar] [CrossRef]
- Awadalla, M.; Abuasbeh, K.; Subramanian, M.; Manigandan, M. On a System of Φ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions. Mathematics 2022, 10, 1681. [Google Scholar] [CrossRef]
- Manigandan, M.; Subramanian, M.; Duraisamy, P.; Gopal, T.N. On Caputo-Hadamard Type Fractional Differential Equations with Nonlocal Discrete Boundary Conditions. Discontin. Nonlinearity Complex. 2021, 10, 185–194. [Google Scholar] [CrossRef]
- Manigandan, M.; Muthaiah, S.; Nandhagopal, T.; Vadivel, R.; Unyong, B.; Gunasekaran, N. Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. Aims Math. 2022, 7, 723–755. [Google Scholar] [CrossRef]
- González, C.; Jiménez-Melado, A.; Llorens-Fuster, E. A Mönch type fixed point theorem under the interior condition. J. Math. Anal. Appl. 2009, 352, 816–821. [Google Scholar] [CrossRef]
- Pata, V. Fixed Point Theorems and Applications; Springer: Cham, Switzerland, 2019; Volume 116. [Google Scholar]
- Kimeu, J.M. Fractional Calculus: Definitions and Applications; Western Kentucky University: Bowling Green, KY, USA, 2009. [Google Scholar]
- Abdelrahman, M.A.; Hassan, S.Z.; Alomair, R.A.; Alsaleh, D.M. Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations. AIMS Math. 2021, 6, 6555–6568. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.; Sohaly, M.A.; Alharbi, Y.F. Fundamental stochastic solutions for the conformable fractional NLSE with spatiotemporal dispersion via exponential distribution. Phys. Scr. 2021, 96, 125223. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D.; Zhu, H.W. A new perspective on the study of the fractal coupled Boussinesq–Burger equation in shallow water. Fractals 2021, 29, 2150122. [Google Scholar] [CrossRef]
- Abdalla, B.; Abdeljawad, T. On the oscillation of Caputo fractional differential equations with Mittag–Leffler nonsingular kernel. Chaos Solitons Fractals 2019, 127, 173–177. [Google Scholar] [CrossRef]
- Refice, A.; Souid, M.S.; Stamova, I. On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique. Mathematics 2021, 9, 1134. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A.; Albideewi, A.F. A study of a coupled system of Hadamard fractional differential equations with nonlocal coupled initial-multipoint conditions. Adv. Differ. Equ. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Ahmad, B.; Albideewi, A.F.; Ntouyas, S.K.; Alsaedi, A. Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations. Cubo 2021, 23, 225–237. [Google Scholar] [CrossRef]
- Al-Mayyahi, S.Y.; Abdo, M.S.; Redhwan, S.S.; Abood, B.N. Boundary value problems for a coupled system of Hadamard-type fractional differential equations. IAENG Int. J. Appl. Math. 2021, 51, 1–10. [Google Scholar]
- Aljoudi, S.; Ahmad, B.; Nieto, J.J.; Alsaedi, A. A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions. Chaos Solitons Fractals 2016, 91, 39–46. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Asawasamrit, S.; Promsakon, C. Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain. Open Math. 2017, 15, 645–666. [Google Scholar]
- Aljoudi, S.; Ahmad, B.; Nieto, J.J.; Alsaedi, A. On coupled Hadamard type sequential fractional differential equations with variable coefficients and nonlocal integral boundary conditions. Filomat 2017, 31, 6041–6049. [Google Scholar] [CrossRef]
- Zhai, C.; Wang, W.; Li, H. A uniqueness method to a new Hadamard fractional differential system with four-point boundary conditions. J. Inequal. Appl. 2018, 2018, 207. [Google Scholar] [CrossRef]
- Du, X.; Meng, Y.; Pang, H. Iterative positive solutions to a coupled Hadamard-type fractional differential system on infinite domain with the multistrip and multipoint mixed boundary conditions. J. Funct. Spaces 2020, 2020, 6508075. [Google Scholar] [CrossRef]
- Ma, L. On the kinetics of Hadamard-type fractional differential systems. Fract. Calc. Appl. Anal. 2020, 23, 553–570. [Google Scholar] [CrossRef]
- Arab, M.; Awadalla, M. A Coupled System of Caputo-Hadamard Fractional Hybrid Differential Equations with Three-Point Boundary Conditions. Math. Probl. Eng. 2022, 2022, 1500577. [Google Scholar] [CrossRef]
- Awadalla, M. Applicability of Mönch’s Fixed Point Theorem on Existence of a Solution to a System of Mixed Sequential Fractional Differential Equation. J. Funct. Spaces 2022, 2022, 5807120. [Google Scholar]
- Khan, H.; Tunc, C.; Chen, W.; Khan, A. Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator. J. Appl. Anal. Comput. 2018, 8, 1211–1226. [Google Scholar]
- Ferraoun, S.; Dahmani, Z. Existence and stability of solutions of a class of hybrid fractional differential equations involving RL-operator. J. Interdiscip. Math. 2020, 23, 885–903. [Google Scholar] [CrossRef]
- Al-Sadi, W.; Zhenyou, H.; Alkhazzan, A. Existence and stability of a positive solution for nonlinear hybrid fractional differential equations with singularity. J. Taibah Univ. Sci. 2019, 13, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef]
- Banaś, J. On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carol. 1980, 21, 131–143. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Elaiw, A.; Awadalla, M.; Manigandan, M.; Abuasbeh, K. A Novel Implementation of Mönch’s Fixed Point Theorem to a System of Nonlinear Hadamard Fractional Differential Equations. Fractal Fract. 2022, 6, 586. https://doi.org/10.3390/fractalfract6100586
Al Elaiw A, Awadalla M, Manigandan M, Abuasbeh K. A Novel Implementation of Mönch’s Fixed Point Theorem to a System of Nonlinear Hadamard Fractional Differential Equations. Fractal and Fractional. 2022; 6(10):586. https://doi.org/10.3390/fractalfract6100586
Chicago/Turabian StyleAl Elaiw, Abeer, Muath Awadalla, Murugesan Manigandan, and Kinda Abuasbeh. 2022. "A Novel Implementation of Mönch’s Fixed Point Theorem to a System of Nonlinear Hadamard Fractional Differential Equations" Fractal and Fractional 6, no. 10: 586. https://doi.org/10.3390/fractalfract6100586
APA StyleAl Elaiw, A., Awadalla, M., Manigandan, M., & Abuasbeh, K. (2022). A Novel Implementation of Mönch’s Fixed Point Theorem to a System of Nonlinear Hadamard Fractional Differential Equations. Fractal and Fractional, 6(10), 586. https://doi.org/10.3390/fractalfract6100586