Fractal Geometry and Convolutional Neural Networks for the Characterization of Thermal Shock Resistances of Ultra-High Temperature Ceramics
Abstract
:1. Introduction
2. Methodology
2.1. Thermal Shock Experiment
2.2. Fractal Feature Recombination Method
2.3. Model Selection
2.4. Model Fusion
3. Experimental Results and Analysis
3.1. Dataset
3.1.1. Microscopic Image Acquisition of Oxidized Surface
3.1.2. Data Preprocessing
3.2. Experimental Parameter Settings and Evaluation Indicators
3.2.1. Parameter Settings
3.2.2. Experimental Evaluation Index
3.3. Result Analysis
4. Conclusions
- (1)
- A fractal feature recombination method for the oxidized surface of ultra-high temperature ceramics after thermal shocks was described. It is a novel method for the extraction of irregular and inhomogeneous microstructures of oxidized surfaces. The method transformed the parameters of fractal features into chromaticity maps suitable to input into deep learning models. In the image feature extraction process, the gray co-occurrence matrix was obtained by processing the reconstructed matrix. The p value was calculated and p = 3 resulted in the appropriate Minkowski distance for our images;
- (2)
- The original images and the recombination images of the fractal features with different numbers of thermal shock cycles were respectively input into the deep learning model and the model was fused in the softmax layer. Ultimately, the classification accuracy of the oxidized surface image reached 93.47%. It was verified that the fusion model could effectively identify the categories of oxidized surface images under different thermal shock cycles. The fractal features were able to increase the recognition accuracy in the fusion model;
- (3)
- A quantization method for the oxidized surface of ultra-high temperature ceramics with different numbers of thermal shock cycles was described. The relationship between the oxidized surface of the material and the strength was discussed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Fractal Feature Extraction Process
References
- Jin, X.; Fan, X.; Lu, C.; Wang, T. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. J. Eur. Ceram. Soc. 2018, 38, 1–28. [Google Scholar] [CrossRef]
- Opeka, M.M.; Talmy, I.G.; Wuchina, E.J.; Zaykoski, J.A.; Causey, S.J. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Euro. Ceram. Soc. 1999, 19, 2405–2414. [Google Scholar] [CrossRef] [Green Version]
- Fahrenholtz, W.G.; Hilmas, G.E. Ultra-high temperature ceramics: Materials for extreme environments. Scr. Mater. 2017, 129, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.J.; Ni, D.W.; Zou, J.; Liu, H.T.; Wu, W.W.; Liu, J.X.; Suzuki, T.S.; Sakka, S. Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review. J. Eur. Ceram. Soc. 2018, 38, 371–389. [Google Scholar] [CrossRef]
- Chaim, R.; Chevallier, G.; Weibel, A.; Estournes, C. Grain growth during spark plasma and flash sintering of ceramic nanoparticles: A review. J. Mater. Sci. 2018, 53, 3087–3105. [Google Scholar] [CrossRef] [Green Version]
- Gui, K.; Liu, F.; Wang, G.; Huang, Z.; Hu, P. Microstructural evolution and performance of carbon fiber-toughened ZrB2 ceramics with SiC or ZrSi2 additive. J. Adv. Ceram. 2018, 7, 343–351. [Google Scholar] [CrossRef]
- Yan, X.; Jin, X.; Li, P.; Hou, C.; Hao, X.; Li, Z.; Fan, X. Microstructures and mechanical properties of ZrB2-SiC-Ni ceramic composites prepared by spark plasma sintering. Ceram. Int. 2019, 45, 16707–16712. [Google Scholar] [CrossRef]
- Chu, S.H.; Chen, J.J.; Li, L.G.; Ng, P.L.; Kwan, A.K.H. Roles of packing density and slurry film thickness in synergistic effects of metakaolin and silica fume. Powder Technol. 2021, 387, 575–583. [Google Scholar] [CrossRef]
- Wang, R.; Li, W. Characterization models for thermal shock resistance and fracture strength of ultra-high temperature ceramics at high temperatures. Theor. Appl. Fract. Mec. 2017, 90, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, C.; Liu, R.; Wu, Y.; Li, D.; Ma, X.; Liu, L.; Wang, P.; Wang, Y. Experiment and simulation analysis on thermal shock resistance of laminated ceramics with graphite and boron nitride interfaces. Ceram. Int. 2021, 47, 11973–11978. [Google Scholar] [CrossRef]
- Liu, H.; Wang, B.; He, Y.; Wang, C.; Song, G.; Wu, Y.; Wang, Z. Significantly enhanced thermal shock resistance of α-Si3N4/O’-Sialon composite coating toughened by two-dimensional h-BN nanosheets on porous Si3N4 ceramics. Ceram. Int. 2022, 48, 30510–30516. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, H.; Hu, Y.; Zhang, P.; Hua, M.; Liang, X.; Chen, Y.; Zhang, Z. RMI-C/C-SiC-ZrSi2 composite serving in inert atmosphere up to 2100 °C: Thermal shock resistance, microstructure and damage mechanism. Ceram. Int. 2021, 47, 20371–20378. [Google Scholar] [CrossRef]
- Xu, Q.; Xie, S.; Chen, Y.; Wang, Q. Thermal shock resistance and crack growth behavior of Aurivillius phase Bi4Ti3O12-based ferroelectric ceramics. Prog. Nat. Sci. Mater. 2021, 31, 248–254. [Google Scholar] [CrossRef]
- Nisar, A.; Bajpai, S.; Khan, M.M.; Balani, K. Wear damage tolerance and high temperature oxidation behavior of HfB2:ZrB2–SiC composites. Ceram. Int. 2020, 46, 21689–21698. [Google Scholar] [CrossRef]
- Daghigh, V.; Lacy, T.E.; Daghigh, H.; Gu, G.; Baghaei, K.T.; Horstemeyer, M.F.; Pittman, C.U. Machine learning predictions on fracture toughness of multiscale bio-nano-composites. J. Reinf. Plast. Comp. 2020, 39, 587–598. [Google Scholar] [CrossRef]
- Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Classification of mechanism of reinforcement in the fiber-matrix interface: Application of machine learning on nanoindentation data. Mater. Des. 2020, 192, 108705. [Google Scholar] [CrossRef]
- Laban, O.; Gowid, S.; Mahdi, E.; Musharavati, F. Experimental investigation and artificial intelligence-based modeling of the residual impact damage effect on the crashworthiness of braided Carbon/Kevlar tubes. Compos. Struct. 2020, 243, 112247. [Google Scholar] [CrossRef]
- Artero-Guerrero, J.A.; Pernas-Sánchez, J.; Martín-Montal, J.; Varas, D.; López-Puente, J. The influence of laminate stacking sequence on ballistic limit using a combined Experimental/FEM/Artificial Neural Networks (ANN) methodology. Compos. Struct. 2018, 183, 299–308. [Google Scholar] [CrossRef]
- Yan, S.; Zou, X.; Ilkhani, M.; Jones, A. An efficient multiscale surrogate modelling framework for composite materials considering progressive damage based on artificial neural networks. Compos. Part B 2020, 194, 108014. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Alipour, M.; Harris, D.K. Increasing the robustness of material-specific deep learning models for crack detection across different materials. Eng. Struct. 2020, 206, 110157. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, C.H.; Buehler, M.J. Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci. Adv. 2021, 7, eabd7416. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Jain, A.K. Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans. Neural Netw. 1995, 6, 296–317. [Google Scholar]
- Yu, C.H.; Qin, Z.; Buehler, M.J. Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance. Nano. Futures. 2019, 3, 035001. [Google Scholar] [CrossRef]
- Roberto, G.F.; Lumini, A.; Neves, L.A.; Nascimento, M.Z. Fractal Neural Network: A new ensemble of fractal geometry convolutional neural network for the classification of history images. Expert Syst. Appl. 2021, 166, 114103. [Google Scholar] [CrossRef]
- Meng, S.; Qi, F.; Chen, H.; Wang, Z.; Bai, G. The repeated thermal shock behaviors of a ZrB2–SiC composite heated by electric resistance method. Int. J. Refract. Met. Hard Mater. 2011, 29, 44–48. [Google Scholar] [CrossRef]
- So, G.B.; So, H.R.; Jin, G.G. Enhancement of the box-counting algorithm for fractal dimension estimation. Pattern Recogn. Lett. 2017, 98, 53–58. [Google Scholar] [CrossRef]
- Ivanovici, M.; Richard, N. Fractal dimension of color fractal images. IEEE Trans. Image Process. 2011, 20, 227–235. [Google Scholar] [CrossRef]
- Zhua, J.; Hong, R.; Zhang, H.; Gu, R.; Wang, H.; Sun, F. Fired bullet signature correlation using the finite ridgelet transform (FRIT) and the gray level co-occurrence matrix (GLCM) methods. Forensic Sci. Int. 2022, 330, 111089. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. IEEE Conf. Comput. Vis. Pattern Recognit. 2016, 770–778. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Ding, S.; Guo, L. Low-degree term first in ResNet, its variants and the whole neural network family. Neural Netw. 2022, 148, 155–165. [Google Scholar] [CrossRef] [PubMed]
Category | Accuracy (%) | Precision (%) | Recall (%) |
---|---|---|---|
First | 100.0 | 100.0 | 100.0 |
Second | 100.0 | 100.0 | 100.0 |
Third | 91.5 | 84.2 | 71.6 |
Fourth | 90.1 | 73.6 | 79.1 |
Fifth | 98.1 | 93.0 | 98.5 |
Category | Accuracy (%) | Precision (%) | Recall (%) |
---|---|---|---|
First | 90.5 | 81.3 | 77.6 |
Second | 97.4 | 90.5 | 100.0 |
Third | 83.9 | 61.4 | 66.2 |
Fourth | 81.9 | 58.3 | 52.2 |
Fifth | 94.1 | 89.2 | 86.6 |
Category | Accuracy (%) | Precision (%) | Recall (%) |
---|---|---|---|
First | 100.0 | 100.0 | 100.0 |
Second | 100.0 | 100.0 | 100.0 |
Third | 93.0 | 85.5 | 79.1 |
Fourth | 91.3 | 77.9 | 79.1 |
Fifth | 98.1 | 93.0 | 98.5 |
Thermal Shock Cycles | Bending Strength (MPa) |
---|---|
0 | 440 ± 47 |
10 | 514 ± 34 |
20 | 645 ± 60 |
30 | 494 ± 147 |
50 | 589 ± 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, Z.; Qi, F.; Xu, C.; Wang, C.; Chen, T.; Guo, H. Fractal Geometry and Convolutional Neural Networks for the Characterization of Thermal Shock Resistances of Ultra-High Temperature Ceramics. Fractal Fract. 2022, 6, 605. https://doi.org/10.3390/fractalfract6100605
Wang S, Chen Z, Qi F, Xu C, Wang C, Chen T, Guo H. Fractal Geometry and Convolutional Neural Networks for the Characterization of Thermal Shock Resistances of Ultra-High Temperature Ceramics. Fractal and Fractional. 2022; 6(10):605. https://doi.org/10.3390/fractalfract6100605
Chicago/Turabian StyleWang, Shanxiang, Zailiang Chen, Fei Qi, Chenghai Xu, Chunju Wang, Tao Chen, and Hao Guo. 2022. "Fractal Geometry and Convolutional Neural Networks for the Characterization of Thermal Shock Resistances of Ultra-High Temperature Ceramics" Fractal and Fractional 6, no. 10: 605. https://doi.org/10.3390/fractalfract6100605
APA StyleWang, S., Chen, Z., Qi, F., Xu, C., Wang, C., Chen, T., & Guo, H. (2022). Fractal Geometry and Convolutional Neural Networks for the Characterization of Thermal Shock Resistances of Ultra-High Temperature Ceramics. Fractal and Fractional, 6(10), 605. https://doi.org/10.3390/fractalfract6100605