Microstructure of Epoxy-Based Composites: Fractal Nature Analysis †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing of Hybrid Composite Materials
2.2.1. Composites with Glass Fibers and Electrospun PS Fibers
2.2.2. Composites with Glass Capillaries
2.3. Fractal Shape Reconstruction
3. Results and Discussion
3.1. Glass Fiber Shape Reconstruction
3.2. Electrospun PS Fiber Shape Reconstruction
3.3. Ring-Like Shape Reconstruction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radović, I.M.; Stajčić, A.; Mitić, V.V.; Serpa, C.; Paunović, V.; Ranđelović, B. Fractal reconstruction of fiber-reinforced epoxy microstructure. In Proceedings of the International Conference on Microelectronics, MIEL, Nis, Serbia, 12–14 September 2021; pp. 203–206. [Google Scholar]
- Kaw, A.K. Mechanics of Composite Materials, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Callister, W.D., Jr. Materials Science and Engineering: An Introduction, 7th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Zucchelli, A.; Focarete, M.L.; Gualandi, C.; Ramakrishna, S. Electrospun nanofibers for enhancing structural performance of composite materials. Polym. Adv. Technol. 2011, 22, 339–349. [Google Scholar] [CrossRef]
- Zhang, P.; Li, G. Advances in healing-on-demand polymers and polymer composites. Prog. Polym. Sci. 2016, 57, 32–63. [Google Scholar] [CrossRef] [Green Version]
- Bailey, B.M.; Leterrier, Y.; Garcia, S.J.; van der Zwaag, S.; Michaud, V. Electrically conductive self-healing polymer composite coatings. Prog. Org. Coat. 2015, 85, 189–198. [Google Scholar] [CrossRef]
- Chortos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950. [Google Scholar] [CrossRef]
- Murphy, E.B.; Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 2010, 35, 223–251. [Google Scholar] [CrossRef]
- Kou, Y.; Cheng, X.; Macosko, C.W. Degradation and Breakdown of Polymer/Graphene Composites under Strong Electric Field. J. Compos. Sci. 2022, 6, 139. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, X.; Zhang, F.; Wu, X.; Huang, W.; Liu, W.; Wang, X. Influence of gamma irradiation on the molecular dynamics and mechanical properties of epoxy resin. Polym. Degrad. Stab. 2019, 168, 108940. [Google Scholar] [CrossRef]
- Sharma, A.; Jung, D.H.; Cheon, J.S.; Jung, J.P. Epoxy Polymer Solder Pastes for Micro-Electronic Packaging Applications. J. Weld. Join. 2019, 37, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design; Taylor & Francis Group, LLC CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Radovic, I.; Stajcic, A.; Radisavljevic, A.; Veljkovic, F.; Cebela, M.; Mitic, V.V.; Radojevic, V. Solvent effects on structural changes in self-healing epoxy composites. Mater. Chem. Phys. 2020, 256, 123761. [Google Scholar] [CrossRef]
- Radovic, I.M.; Stojanovic, D.B.; Kojovic, A.; Petrovic, M.; Uskokovic, P.S.; Radojevic, V.J.; Aleksic, R.R. Healing efficiency of polystyrene electrospun nanofibers with Grubbs catalyst in thermosetting composite. J. Compos. Mater. 2017, 51, 3003–3016. [Google Scholar] [CrossRef]
- Kanu, N.J.; Gupta, E.; Vates, U.K.; Singh, G.K. Self-healing composites: A state-of-the-art review. Compos. Part A Appl. Sci. Manuf. 2019, 121, 474–486. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X.; Sui, G.; Yang, X. Surface Sizing Treated MWCNTs and Its Effect on the Wettability, Interfacial Interaction and Flexural Properties of MWCNT/Epoxy Nanocomposites. Nanomaterials 2018, 8, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Song, B.; Wang, L. A New Filler for Epoxy Resin: Study on the Properties of Graphite Carbon Nitride (g-C3N4) Reinforced Epoxy Resin Composites. Polymers 2020, 12, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, S.; Hamouda, T.; Midani, M.; Zhou, Y.; Katsou, E.; Fan, M. Date palm fibre geometry and its effect on the physical and mechanical properties of recycled polyvinyl chloride composite. Ind. Crops Prod. 2021, 175, 114172. [Google Scholar] [CrossRef]
- Ellyin, F.; Maser, R. Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens. Compos. Sci. Technol. 2004, 64, 1863–1874. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, H.S.; Thomas Hahn, H. Healing behavior of a matrix crack on a carbon fiber/mendomer composite. Compos. Sci. Technol. 2009, 69, 1082–1087. [Google Scholar] [CrossRef]
- Peterson, A.M.; Jensen, R.E.; Palmese, G.R. Thermoreversible and remendable glass–polymer interface for fiber-reinforced composites. Compos. Sci. Technol. 2011, 71, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Ajisafe, O.; Meng, H. Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. Polymer 2013, 54, 920–928. [Google Scholar] [CrossRef]
- Patel, A.J.; Sottos, N.R.; Wetzel, E.D.; White, S.R. Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Comp. Part A 2010, 41, 360–368. [Google Scholar] [CrossRef]
- Ghosh, S.K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications; Ghosh, S.K., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009. [Google Scholar]
- Scheiner, M.; Dickens, T.J.; Okoli, O. Progress towards self-healing polymers for composite structural applications. Polymer 2016, 83, 260–282. [Google Scholar] [CrossRef]
- Yin, T.; Rong, M.Z.; Wu, J.; Chen, H.; Zhang, M.Q. Healing of impact damage in woven glass fabric reinforced epoxy composites. Comp. Part A 2008, 39, 1479–1487. [Google Scholar] [CrossRef]
- Wang, C.H.; Sidhu, K.; Yang, T.; Zhang, J.; Shanks, R. Interlayer self-healing and toughening of carbon fibre/epoxy composites using copolymer films. Comp. Part A 2012, 43, 512–518. [Google Scholar] [CrossRef]
- Lee, J.; Bhattacharyya, D.; Zhang, M.Q.; Yuan, Y.C. Mechanical properties of a self-healing fibre reinforced epoxy composites. Comp. Part B 2015, 78, 515–519. [Google Scholar] [CrossRef]
- Huan, S.; Liu, G.; Han, G.; Cheng, W.; Fu, Z.; Wu, Q. Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials 2015, 8, 2718–2734. [Google Scholar] [CrossRef] [Green Version]
- Mitić, V.V.; Lazović, G.; Paunović, V.; Cvetković, N.; Jovanović, D.; Veljković, S.; Randjelović, B.; Vlahović, B. Fractal frontiers in microelectronic ceramic materials. Ceram. Int. 2019, 45, 9679–9685. [Google Scholar] [CrossRef]
- Mitic, V.V.; Lazovic, G.; Mirjanic, D.; Fecht, H.; Vlahovic, B.; Arnold, W. The fractal nature as new frontier in microstructural characterization and relativization of scale sizes within space. Mod. Phys. Lett. B 2020, 34, 2050421. [Google Scholar] [CrossRef]
- Mitic, V.V.; Kostic, L.j.; Paunovic, V.; Lazovic, G.; Miljkovic, M. Fractal nature structure reconstruction method in designing microstructure properties. Mater. Res. Bull. 2018, 101, 175–183. [Google Scholar] [CrossRef]
- Taylor, R.P.; Spehar, B. Fractal Fluency: An intimate relationship between the brain and processing of fractal stimuli. In The Fractal Geometry of the Brain; Ieva, A.D., Ed.; Springer: New York, NY, USA, 2016; pp. 485–496. [Google Scholar]
- Kenkel, N.C.; Walker, D.J. Fractals in the biological sciences. Coenoses 1996, 11, 77–100. [Google Scholar]
- Dimri, V.P. Application of Fractals in Earth Sciences; CRC Press: Rotterdam, The Netherlands, 2000. [Google Scholar]
- Lanza, L.G.; Gallant, J. Fractals and Similarity Approaches in Hydrology. In Encyclopedia of Hydrological Sciences; Anderson, M.G., Ed.; John Wiley and Sons: New York, NY, USA, 2006. [Google Scholar]
- Cohen, N. Fractal Antennas and Fractal Resonators. U.S. Patent 6452553B1, 9 August 1995. [Google Scholar]
- Baliarda, C.P. Space-Filling Miniature Antennas. U.S. Patent 8207893B2, 19 January 2000. [Google Scholar]
- Mitic, V.V.; Lazovic, G.; Lu, C.A.; Paunovic, V.; Radovic, I.; Stajcic, A.; Vlahovic, B. The nano-scale modified BaTiO3 morphology influence on electronic properties and ceramics fractal nature frontiers. Appl. Sci. 2020, 10, 3485. [Google Scholar] [CrossRef]
- Kozlov, G.V.; Dolbin, I.V. Effect of a nanofiller structure on the degree of reinforcement of polymer–carbon nanotube nanocomposites with the use of a percolation model. J. Appl. Mech. Tech. Phys. 2018, 59, 765–769. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Abdolghaderi, S.; Pinto, E.P.; Matos, R.S.; Salerno, M. Advanced fractal analysis of nanoscale topography of Ag/DLC composite synthesized by RF-PECVD. Surf. Eng. 2020, 36, 713–719. [Google Scholar] [CrossRef]
- Amâncio, M.A.; Pinto, E.P.; Matos, R.S.; Nobre, F.X.; Brito, W.R.; da Fonseca Filho, H.D. Nanoscale morphology and fractal analysis of TiO2 coatings on ITO substrate by electrodeposition. J. Microsc. 2021, 282, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Shao, W.; Feng, L.; Lv, L.; Zhen, L. Fractal Analysis of Disordered Conductor–Insulator Composites with Different Conductor Backbone Structures near Percolation Threshold. J. Phys. Chem. C 2012, 116, 19517–19525. [Google Scholar] [CrossRef]
- Pramanik, B.; Tadepalli, T.; Mantena, P.R. Surface Fractal Analysis for Estimating the Fracture Energy Absorption of Nanoparticle Reinforced Composites. Materials 2012, 5, 922–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiang, T.; Yu, D. Correlation between Fractal Dimension and Impact Strength for Wood Plastic Composites. Adv. Mater. Res. 2012, 411, 548–551. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, H.; Liang, B.; Hou, G.; Zhao, D.; Liu, C.; Zhang, K. Fractal characteristic evaluation and interpolation reconstruction for surface topography of drilled composite hole wall. Front. Mech. Eng. 2021, 16, 840–854. [Google Scholar] [CrossRef]
- Gusev, B.; Grishina, A.; Korolev, E.; Ayzenshtadt, A. Strength equation of composite materials and fractal dimension of cracks. Energy Rep. 2021, 7, 569–578. [Google Scholar] [CrossRef]
- Xia, D.; Chen, R.; Zhang, D.; Cheng, J. Relationship between Fractal Dimension and Properties of Engineered Cementitious Composites with Different Aggregates. Materials 2022, 15, 7666. [Google Scholar] [CrossRef]
- Eyssautier, J.; Levitz, P.; Espinat, D.; Jestin, J.; Gummel, J.; Grillo, I.; Barré, L. Insight into Asphaltene Nanoaggregate Structure Inferred by Small Angle Neutron and X-ray Scattering. J. Phys. Chem. B 2011, 115, 6827–6837. [Google Scholar] [CrossRef]
- Buescu, J.; Serpa, C. Fractal and Fractal dimensions for systems of iterative functional equations. J. Math. Anal. Appl. 2019, 480, 123429. [Google Scholar] [CrossRef]
- Serpa, C.; Buescu, J. Constructive Solutions for Systems of Iterative Functional Equations. Constr. Approx. 2017, 45, 273–299. [Google Scholar] [CrossRef]
- Serpa, C. Affine Fractal Least Squares Regression Model. Fractals 2022, 30, 2250138. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractal functions and interpolation. Constr. Approx. 1986, 2, 303–329. [Google Scholar] [CrossRef]
0 | 1 | 2 | 3 | 4 | 5 | |
aj | −0.058 | −0.086 | −0.009 | −0.229 | −0.076 | −0.161 |
bj | −0.397 | −0.47 | −0.224 | −0.606 | −0.446 | −0.701 |
cj | 3.39 | 3.256 | 2.849 | 3.371 | 2.896 | 2.886 |
6 | 7 | 8 | 9 | 10 | ||
aj | −0.365 | −0.021 | −0.097 | 0.001 | −0.017 | |
bj | −1.2 | −0.518 | −0.725 | −0.561 | −0.54 | |
cj | 3.244 | 1.976 | 1.809 | 1.135 | 0.703 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
aj | 0.056 | 0.036 | −0.006 | 0.001 | 0.017 | 0.021 | 0.042 | −0.195 |
bj | 2.197 | 1.069 | 0.485 | 0.113 | −0.188 | −0.841 | −2.021 | −5.291 |
cj | 1.402 | 3.542 | 4.711 | 5.2 | 5.253 | 4.999 | 4.087 | 1.997 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
aj | 0.047 | 0.015 | 0.011 | −0.006 | 0.0 | 0.019 | 0.016 | 0.015 | 0.027 |
bj | 1.634 | 1.026 | 0.639 | 0.351 | 0.14 | −0.179 | −0.455 | −0.898 | −1.407 |
cj | 3.108 | 4.928 | 5.963 | 6.675 | 6.968 | 6.998 | 6.907 | 6.506 | 5.601 |
0 | 1 | 2 | 3 | 4 | 5 | |
aj | −0.057 | −0.499 | −0.051 | −0.113 | −0.066 | −0.139 |
bj | −0.195 | 0.648 | −0.048 | 0.178 | 0.155 | 0.308 |
cj | 3.123 | 4.226 | 3.221 | 3.368 | 3.363 | 3.729 |
6 | 7 | 8 | 9 | 10 | 11 | |
aj | 0.022 | 0.196 | 0.058 | −0.029 | 0.208 | −0.168 |
bj | −0.62 | −0.445 | 0.335 | 0.41 | 0.126 | −0.104 |
cj | 3.63 | 2.549 | 2.71 | 3.253 | 2.7 | 3.829 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stajcic, I.; Stajcic, A.; Serpa, C.; Vasiljevic-Radovic, D.; Randjelovic, B.; Radojevic, V.; Fecht, H. Microstructure of Epoxy-Based Composites: Fractal Nature Analysis. Fractal Fract. 2022, 6, 741. https://doi.org/10.3390/fractalfract6120741
Stajcic I, Stajcic A, Serpa C, Vasiljevic-Radovic D, Randjelovic B, Radojevic V, Fecht H. Microstructure of Epoxy-Based Composites: Fractal Nature Analysis. Fractal and Fractional. 2022; 6(12):741. https://doi.org/10.3390/fractalfract6120741
Chicago/Turabian StyleStajcic, Ivana, Aleksandar Stajcic, Cristina Serpa, Dana Vasiljevic-Radovic, Branislav Randjelovic, Vesna Radojevic, and Hans Fecht. 2022. "Microstructure of Epoxy-Based Composites: Fractal Nature Analysis" Fractal and Fractional 6, no. 12: 741. https://doi.org/10.3390/fractalfract6120741
APA StyleStajcic, I., Stajcic, A., Serpa, C., Vasiljevic-Radovic, D., Randjelovic, B., Radojevic, V., & Fecht, H. (2022). Microstructure of Epoxy-Based Composites: Fractal Nature Analysis. Fractal and Fractional, 6(12), 741. https://doi.org/10.3390/fractalfract6120741