Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators
Abstract
:1. Introduction
2. Preliminaries
- 1.
- If, and, then thecorresponds to the classical R-L fractional derivative:
- 2.
- If, and, then thecorresponds to the classical Caputo fractional derivative:
- (i)
- ;
- (ii)
- There exists that is a constant such that
- 1.
- 2.
- there exists that is a constant such that , for any
- 3.
- is the range of contained in . Specifically, for all with ,and hence, there exists a constant such that
- 4.
- If then ;
- 5.
- .
- (a)
- (b)
- (c)
- .
- (a)
- has a fixed point in , or
- (b)
- there is a and with .
3. Approximate Controllability
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Hilfer fractional derivative | |
Hilfer fractional differential | |
Hilfer fractional |
References
- Balachandran, K.; Sakthivel, R. Controllability of integro-differential systems in Banach spaces. Appl. Math. Comput. 2001, 118, 63–71. [Google Scholar]
- Sakthivel, R.; Ganesh, R.; Anthoni, S.M. Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 2013, 225, 708–717. [Google Scholar] [CrossRef]
- Chang, Y.K.; Chalishajar, D.N. Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces. J. Franklin Inst. 2008, 345, 499–507. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y. Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. 2011, 12, 3642–3653. [Google Scholar] [CrossRef]
- Wan, X.J.; Zhang, Y.P.; Sun, J.T. Controllability of impulsive neutral fractional differential inclusions in Banach Space. Abstr. Appl. Anal. 2013, 2013, 1–8. [Google Scholar]
- Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear. Anal. Theory Methods Appl. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Elsevier: New York, NY, USA, 2015. [Google Scholar]
- Ahmad, B.; Garout, D.; Ntouyas, S.K.; Alsaedi, A. Caputo fractional differential inclusions of arbitrary order with non-local integro-multipoint boundary conditions. Miskolc Math. Notes 2019, 20, 683–699. [Google Scholar] [CrossRef]
- Falguni, A.; Jitendra, P. Contrallability of fractional impulsive differential inclusions with sectorial operators in Banach space. J. Appl. Anal. Comput. 2018, 5, 184–196. [Google Scholar]
- Zhou, Y.; Vijayakumar, V.; Murugesu, R. Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 2015, 4, 507–524. [Google Scholar] [CrossRef] [Green Version]
- Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Nisar, K.S. Results on approximate controllability of neutral integro-differential stochastic system with state-dependent delay. Numer. Methods Partial Differential Equations 2020, 1–15. [Google Scholar] [CrossRef]
- Du, J.; Jiang, J.W.; Niazi, A.U.K. Approximate controllability of impulsive Hilfer fractional differential inclusions. J. Nonlinear Sci. Appl. 2017, 10, 595–611. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Nikan, O.; Avazzadeh, Z. A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels. Appl. Numer. Math. 2023, 183, 140–156. [Google Scholar] [CrossRef]
- Ahmed Hamdy, M.; El-Borai Mahmoud, M.; El-Owaidy, H.M.; Ghanem, A.S. Null controllability of fractional stochastic delay integro-differential equations. J. Math. Comput. 2019, 19, 143–150. [Google Scholar] [CrossRef]
- Yousefi, A.; Mahdavi, R.T.; Shafiei, S.G. A Quadrature Tau Method for Solving Fractional Integro-differential Equations in the Caputo Sense. J. Math. Comput. 2015, 15, 97–107. [Google Scholar] [CrossRef]
- Hashem, H.H.G.; Alrashidi Hessah, O. Characteristics of solutions of nonlinear neutral integro-differential equation via Chandrasekhar integral. J. Math. Comput. 2022, 24, 173–185. [Google Scholar] [CrossRef]
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Dineshkumar, C.; Udhayakumar, R. New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay integro-differential system. Numer. Methods Partial Differ. Equ. 2020, 1–19. [Google Scholar] [CrossRef]
- Furati, K.M.; Kassim, M.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 641, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Wang, Q. Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 2017, 20, 679–705. [Google Scholar] [CrossRef]
- Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Sakthivel, N.; Nissar, K.S. A note on approaximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 2021, 44, 4428–4447. [Google Scholar] [CrossRef]
- Gu, H.; Trujillo, J.J. Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar]
- Yang, M.; Wang, Q. Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 2017, 40, 1126–1138. [Google Scholar] [CrossRef]
- Zhou, M.; Li, C.; Zhou, Y. Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators. Axioms 2022, 11, 144. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y. Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 2014, 257, 145–157. [Google Scholar] [CrossRef]
- Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, Z.A.; Khan, A. Existence and approaximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2020, 615, 1–15. [Google Scholar]
- Jaiswal, A.; Bahuguna, D. Hilfer fractional differantial equations with almost sectorial operators. Differ. Equ. Dyn. Syst. 2020, 1–17. [Google Scholar] [CrossRef]
- Sivasankar, S.; Udhayakumar, R. Hilfer fractional neutral stochastic Volterra integro-differential inclusions via almost sectorial operators. Mathematics 2022, 10, 2074. [Google Scholar] [CrossRef]
- Varun Bose, C.S.; Udhayakumar, R. A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators. Math. Methods Appl. Sci. 2022, 45, 2530–2541. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Periago, F.; Straub, B. A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol. Equ. 2002, 2, 41–68. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varun Bose, C.S.; Udhayakumar, R.; Elshenhab, A.M.; Kumar, M.S.; Ro, J.-S. Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators. Fractal Fract. 2022, 6, 607. https://doi.org/10.3390/fractalfract6100607
Varun Bose CS, Udhayakumar R, Elshenhab AM, Kumar MS, Ro J-S. Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators. Fractal and Fractional. 2022; 6(10):607. https://doi.org/10.3390/fractalfract6100607
Chicago/Turabian StyleVarun Bose, Chandrabose Sindhu, Ramalingam Udhayakumar, Ahmed M. Elshenhab, Marappan Sathish Kumar, and Jong-Suk Ro. 2022. "Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators" Fractal and Fractional 6, no. 10: 607. https://doi.org/10.3390/fractalfract6100607
APA StyleVarun Bose, C. S., Udhayakumar, R., Elshenhab, A. M., Kumar, M. S., & Ro, J. -S. (2022). Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators. Fractal and Fractional, 6(10), 607. https://doi.org/10.3390/fractalfract6100607