Controllability and Hyers–Ulam Stability of Fractional Systems with Pure Delay
Abstract
:1. Introduction
2. Preliminaries
- (i)
- , .
- (ii)
- , .
3. Controllability of Linear Fractional Delay System
4. Controllability of Nonlinear Fractional Delay System
- (G1)
- The function is continuous, and there exists a constant and such that
- (G2)
- The linear operator defined bySuppose that exists and takes values in , and there exists a constant such that .
5. Hyers–Ulam Stability of Nonlinear Fractional Delay System
6. Examples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coimbra, C.F.M. Mechanics with variable-order differential operators. Ann. Phys. 2003, 12, 692–703. [Google Scholar] [CrossRef]
- Shi, K.; Cai, X.; She, K.; Zhong, S.; Soh, Y.; Kwon, O. Quantized memory proportional–integral control of active power sharing and frequency regulation in island microgrid under abnormal cyber attacks. Appl. Energy 2022, 322, 119540. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Obembe, A.D.; Hossain, M.E.; Abu-Khamsin, S.A. Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Pet. Sci. Eng. 2017, 152, 391–405. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Al-Mekhlafi, S.M. Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives. J. Adv. Res. 2016, 7, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V. Handbook of Fractional Calculus with Applications; Applications in Physics, Part A; de Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Khusainov, D.Y.; Shuklin, G.V. Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Zilina. Math. Ser. 2003, 17, 101–108. [Google Scholar]
- Khusainov, D.Y.; Diblík, J.; Růžičková, M.; Lukáčová, J. Representation of a solution of the Cauchy problem for an oscillating system with pure delay. Nonlinear Oscil. 2008, 11, 276–285. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions for linear fractional systems with pure delay and multiple delays. Math. Meth. Appl. Sci. 2021, 44, 12835–12850. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions of linear differential systems with pure delay and multiple delays with linear parts given by non-permutable matrices. Appl. Math. Comput. 2021, 410, 126443. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions of delayed linear discrete systems with permutable or nonpermutable matrices and second-order differences. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2022, 116, 58. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T.; Mofarreh, F.; Bazighifan, O. Exact solutions and finite time stability of linear conformable fractional systems with pure delay. Comput. Model. Eng. Sci. 2023, 134, 927–940. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T.; Bazighifan, O.; Awrejcewicz, J. Finite-time stability analysis of linear differential systems with pure delay. Mathematics 2022, 10, 1359. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Controllability and Hyers–Ulam stability of differential systems with pure delay. Mathematics 2022, 10, 1248. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T.; Cesarano, C.; Almarri, B.; Moaaz, O. Finite-Time Stability Analysis of fractional-delay systems. Mathematics 2022, 10, 1883. [Google Scholar] [CrossRef]
- Huseynov, I.T.; Mahmudov, N.I. Delayed analogue of three-parameter Mittag–Leffler functions and their applications to Caputo-type fractional time delay differential equations. Math. Meth. Appl. Sci. 2020, 1–25. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Q.; Li, G. Exact solutions and Hyers–Ulam stability for fractional oscillation equations with pure delay. Appl. Math. Lett. 2021, 112, 106666. [Google Scholar] [CrossRef]
- Nawaz, M.; Jiang, W.; Sheng, J. The controllability of nonlinear fractional differential system with pure delay. Adv. Differ. Equ. 2020, 2020, 183. [Google Scholar] [CrossRef]
- Liang, C.; Wang, J.; O’Regan, D. Controllability of nonlinear delay oscillating systems. Electron. J. Qual. Theory Differ. Equ. 2017, 47, 1–18. [Google Scholar] [CrossRef]
- Klamka, J. Controllability of Dynamical Systems; Kluwer Academic: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Nirmala, R.J.; Balachandran, K.; Rodríguez-Germa, L.; Trujillo, J.J. Controllability of nonlinear fractional delay dynamical systems. Rep. Math. Phys. 2016, 77, 87–104. [Google Scholar] [CrossRef]
- Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Shukla, A.; Nisar, K.S. A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈1,2 with delay. Chaos Solitons Fractals 2021, 153, 111565. [Google Scholar] [CrossRef]
- Balachandran, K.; Park, J.Y.; Trujillo, J.J. Controllability of nonlinear fractional dynamical systems. Nonlinear Anal. 2012, 75, 1919–1926. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rodriguez-Germa, L.; Trujillo, J.J. Controllability results for nonlinear fractional-order dynamical systems. J. Optim. Theory Appl. 2012, 156, 33–44. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rivero, M.; Trujillo, J.J. Controllability of fractional damped dynamical systems. Appl. Math. Comput. 2015, 257, 66–73. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Ren, Y.; Anthoni, S.M. Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3498–3508. [Google Scholar] [CrossRef]
- Li, M.; Debbouche, A.; Wang, J. Relative controllability in fractional differential equations with pure delay. Math. Methods Appl. Sci. 2018, 41, 8906–8914. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Existence and Ulam type stability for nonlinear Riemann–Liouville fractional differential equations with constant delay. Electron. J. Qual. Theory Differ. Equ. 2020, 67, 1–18. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Zhou, Y.; O’Regan, D. Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel. Chaos Solitons Fractals 2020, 132, 109534. [Google Scholar] [CrossRef]
- Sharma, J.P.; George, R.K. Controllability of matrix second order systems: A trigonometric matrix approach. Electron. J. Diff. Equ. 2007, 80, 1–14. [Google Scholar]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63, 1–10. [Google Scholar]
- Smart, D.R. Fixed-Point Theorems; University Press: Cambridge, UK, 1980. [Google Scholar]
- Li, M.; Wang, J.R. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarri, B.; Wang, X.; Elshenhab, A.M. Controllability and Hyers–Ulam Stability of Fractional Systems with Pure Delay. Fractal Fract. 2022, 6, 611. https://doi.org/10.3390/fractalfract6100611
Almarri B, Wang X, Elshenhab AM. Controllability and Hyers–Ulam Stability of Fractional Systems with Pure Delay. Fractal and Fractional. 2022; 6(10):611. https://doi.org/10.3390/fractalfract6100611
Chicago/Turabian StyleAlmarri, Barakah, Xingtao Wang, and Ahmed M. Elshenhab. 2022. "Controllability and Hyers–Ulam Stability of Fractional Systems with Pure Delay" Fractal and Fractional 6, no. 10: 611. https://doi.org/10.3390/fractalfract6100611
APA StyleAlmarri, B., Wang, X., & Elshenhab, A. M. (2022). Controllability and Hyers–Ulam Stability of Fractional Systems with Pure Delay. Fractal and Fractional, 6(10), 611. https://doi.org/10.3390/fractalfract6100611