Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications
Abstract
:1. Introduction
2. Comparison Principles
3. Linear Fractional Equations
4. Monotone Iterative Sequences of Lower and Upper Solutions
- is an increasing sequence;
- on for all
- is a decreasing sequence;
- on , for all
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittag-Leffler, M.G. Sur l’intégrale de laplace-abel. C. R. L’Académie Des Sci. 1902, 136, 937–939. [Google Scholar]
- Mittag-Leffler, M.G. Sopra la funzione Eα(x). Rend. Acad. Lincei 1904, 13, 3–5. [Google Scholar]
- Wiman, A. Über den Fundamentalsatz in der Teorie der Funktionen Ea(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Gerhold, S. Asymptotics for a variant of the Mittag–Leffler function. Integral Transform. Spec. Funct. 2012, 23, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.; Koroleva, A.; Rogosin, S. Multi-parametric Mittag-Leffler functions and their extension. Fract. Calc. Appl. Anal. 2013, 16, 378–404. [Google Scholar] [CrossRef]
- Kiryakova, V. The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus. Comput. Math. Appl. 2010, 59, 1885–1895. [Google Scholar] [CrossRef] [Green Version]
- Vanterler da, C.; Sousa, J.; Capelas de Oliveira, E. Mittag-Leffler functions and the truncated V-fractional derivative. arXiv 2017, arXiv:1705.07181. [Google Scholar]
- Gorenflo, R.; Loutchko, J.; Luchko, Y. Computation of the Mittag-Leffler function Eα,β(z) and its derivative. Fract. Calc. Appl. Anal. 2002, 5, 491–518. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Hilfer, R. Fractional Calculus and Regular Variation in Thermodynamics. In Application of Fractional Calculus in Physics; Hilfer, R., Ed.; World Scientific: Singapore, 2000; p. 429. [Google Scholar]
- Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Ž. Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 2014, 242, 576–589. [Google Scholar]
- Singh, Y.; Kumar, D.; Modi, K.; Gill, V. A new approach to solve the Cattaneo-Hristov model and fractional diffusion equations with Hilfer-Prabhaker derivative. Mathematics 2019, 5, 843–855. [Google Scholar]
- Garraa, R.; Garrappa, R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Samaraiz, M.; Preven, Z.; Rahman, G.; Nisar, K.; Kumar, D. On the (k,s)-Hilfer-Prabhakar fractional derivative with applications to mathematical physics. Front. Phys. 2020, 8, 309. [Google Scholar] [CrossRef]
- Agarwal, P.; Al-Mdallal, Q.; Cho, Y.J.; Jain, S. Fractional differential equations for the generalized Mittag-Leffler function. Adv. Differ. Equations 2018, 2018, 58. [Google Scholar] [CrossRef] [Green Version]
- Al-Refai, M.; Luchko, Y. Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 2014, 17, 483–498. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. Analysis of fractional diffusion equations of distributed order: Maximum principles and its applications. Analysis 2015, 36, 1–11. [Google Scholar] [CrossRef]
- Al-Refai, M.; Abdeljawad, T. Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel. Adv. Differ. Equ. 2017, 2017, 315. [Google Scholar] [CrossRef]
- Al-Refai, M.; Aljarrah, A.; Abdeljawad, T. Analysis of fractional differential equations with fractional derivative of generalized Mittag-Leffler kernel. Adv. Differ. Equ. 2021, 2021, 325. [Google Scholar] [CrossRef]
- Al-Refai, M. Maximum principles and applications for fractional differential equations with fractional operators involving Mittag-Leffler function in the kernel. Fract. Calc. Appl. Anal. 2021, 24, 1220–1230. [Google Scholar] [CrossRef]
- Borikhanov, M.; Kirane, M.; Torebek, B.T. Maximum principle and its application for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions. Appl. Math. Lett. 2018, 81, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Kirane, M.; Torebek, B.T. Maximum principle for space and time-space fractional partial differential equations. Z. Anal. Anwend. 2021, 40, 277–301. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum principle for the generalized time-fractional diffusion equations. J. Math. Anal. Appl. 2009, 351, 18–223. [Google Scholar] [CrossRef] [Green Version]
- Xue, G.; Lin, F.; Su, G. The maximum principle for variable-order fractional diffusion equations and the estimates of higher variable-order fractional derivatives. Front. Phys. 2020, 8, 580554. [Google Scholar] [CrossRef]
- Abdulla, A.B.; Al-Refai, M.; Al-Rawashdeh, A. On the existence and uniqueness of solutions for a class of non-linear fractional boundary value problems. J. King Saud-Univ.-Sci. 2016, 28, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Al-Refai, M.; Hajji, M. Monotone iterative sequences for nonlinear boundary value problems of fractional Order, Nonlinear Analysis Series A: Theory. Methods Appl. 2011, 74, 3531–3539. [Google Scholar]
- Al-Refai, M. Basic results on nonlinear eigenvalue problems of fractional order. Electron. J. Differ. Equ. 2012, 2012, 1–12. [Google Scholar]
- Liu, X.; Jia, M. The method of lower and upper solutions for the general boundary value problems of fractional differential equations with P-Laplacian. Adv. Differ. Equ. 2018, 2018, 28s. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Su, X. The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order. Comput. Math. Appl. 2011, 62, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.; Saigo, M.; Saxena, R. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- de Oliveira, E.C.; Mainardi, F.; Vaz, J., Jr. Models based on Mittag–Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J. Spec. Top. 2011, 193, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Górska, K.; Horzela, A.; Lattanzi, A.; Pogány, T.K. On complete monotonicity of three parameter Mittag-Leffler function. Appl. Anal. Discrete Math. 2021, 15, 118–128. [Google Scholar] [CrossRef]
- Tomovoski, Z.; Hilfer, R.; Srivastava, H. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
- Royden, H.L. Real Analysis, 3rd ed.; Collier Macmillan: New York, NY, USA; London, UK, 1988. [Google Scholar]
- Debnath, P.; Srivastava, H.M.; Kumam, P.; Hazarika, B. Fixed Point Theory and Fractional Calculus: Recent Advances and Applications; Springer: Singapore, 2022. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Dover Publication Inc.: Mineola, NY, USA, 2006. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Refai, M.; Nusseir, A.; Al-Sharif, S. Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications. Fractal Fract. 2022, 6, 612. https://doi.org/10.3390/fractalfract6100612
Al-Refai M, Nusseir A, Al-Sharif S. Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications. Fractal and Fractional. 2022; 6(10):612. https://doi.org/10.3390/fractalfract6100612
Chicago/Turabian StyleAl-Refai, Mohammed, Ameina Nusseir, and Sharifa Al-Sharif. 2022. "Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications" Fractal and Fractional 6, no. 10: 612. https://doi.org/10.3390/fractalfract6100612
APA StyleAl-Refai, M., Nusseir, A., & Al-Sharif, S. (2022). Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications. Fractal and Fractional, 6(10), 612. https://doi.org/10.3390/fractalfract6100612